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GSV-INDICES AS RESIDUES

TATSUO SUWA

Abstract. We introduce a local invariant for a vector field v on a complete intersection V

with an isolated singularity as the residue of the relevant Chern class of the ambient tangent
bundle by a frame consisting of v and some natural meromorphic vector fields associated with

defining functions of V . We then show that the residue coincides with the GSV-index as well
as the virtual index of v so that it provides another interpretation of these indices. As an

application, we give an algebraic formula for the GSV-indices of holomorphic vector fields on

singular curves.

In this note we introduce a local invariant of a vector field v on a complete intersection V
with an isolated singularity. It is the residue arising from the localization of the relevant Chern
class of the ambient tangent bundle by a frame consisting of v and some other vector fields.
The last ones are naturally associated to defining functions of V and are holomorphic on and
normal to the non-singualr part of V (Definition 2.7 below). Although it is a priori of differential
geometric nature, defined in the framework of Chern-Weil theory adapted to the Čech-de Rham
cohomology, it is directly related to a topological invariant coming from the obstruction theory
(cf. (2.10)).

Historically, there is the so-called GSV-index for a vector field v as above ([6], [13]). It is
defined topologically, either using the frame consisting of v and the conjugated gradient vector
fields of defining functions or referring to the Milnor fiber. On the differential geometric side,
there is the virtual index which is the residue arising from the localization by v of the Chern
class of the virtual tangent bundle of V (cf. [11]). It coincides with the GSV-index in the case
considered here, however it can be defined in more general settings.

The topological aspect of the residue mentioned in the beginning is that it coincides with
the GSV-index (Theorem 3.4) and the differential geometric aspect is that it coincides with the
virtual index (Theorem 4.4), so that it provides another interpretation of these indices as well as
another way of computing them. On the way we show how topological and differential geometric
residues of vector fields on complete intersections interacts.

We then apply the above to the case of holomorphic vector fields on singular curves. A direct
computation of the residue taking suitable connections shows an integral representation of the
GSV-index (Proposition 5.1), which was given by M. Brunella in [4] by a different approach.
This in turn gives an algebraic formula for the GSV-index in this case (Corollary 5.2). The
formula is somewhat different from the one in this special case of the general algebraic formula
obtained as homological index by X. Gómez-Mont in [5] (see [2] for complete intersections). It
is only for the case of curves, however the advantage is that each term of it is expressed as the
dimension of the quotient of the ring of holomorphic functions by an ideal generated by a regular
sequence.
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1. Preliminaries

We recall localization theory of characteristic classes in the framework of Chern-Weil theory
adapted to the Čech-de Rham cohomology, as initiated in [10]. Here we adopt the presentation
in [15], see also [18].

Connections. Let M be a C∞ manifold and E a C∞ complex vector bundle of rank l on M .
We denote by Ap(M,E) the C-vector space of complex valued C∞ p-forms with coefficients in E
on M , i.e., C∞ sections of the bundle

∧p
(T cRM)∗⊗E, where T cRM denotes the complexification

of the tangent bundle of M . In the case E = C ×M , the trivial line bundle, we denote it by
Ap(M) so that it is the space of complex valued p-forms on M .

Recall that a connection for E is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

satisfying the “Leibniz rule”

∇(fs) = df ⊗ s+ f∇(s), for f ∈ A0(M) and s ∈ A0(M,E).

Note that every vector bundle admits a connection. If ∇ is a connection for E, it induces a
C-linear map

∇ : A1(M,E) −→ A2(M,E)

satisfying

∇(ω ⊗ s) = dω ⊗ s− ω ∧∇(s), for ω ∈ A1(M) and s ∈ A0(M,E).

The composition

K = ∇ ◦∇ : A0(M,E) −→ A2(M,E)

is called the curvature of ∇.
The fact that a connection is a local operator allows us to get local representations of it and its

curvature by matrices whose entries are differential forms. Thus suppose that ∇ is a connection
for E and that E is trivial on an open set U . If e = (e1, . . . , el) is a frame of E on U , we may
write

∇(ei) =

l∑
j=1

θji ⊗ ej

with θij 1-forms on U . We call θ = (θij) the connection matrix with respect to e. Also, from
the definition we compute to get

K(ei) =

l∑
j=1

κji ⊗ ej , κij = dθij +

l∑
k=1

θik ∧ θkj .

We call κ = (κij) the curvature matrix with respect to e. If e′ = (e′1 . . . , e
′
l) is another frame of

E on U ′, we have e′i =
∑l
j=1 ajiej for some C∞ functions aij on U ∩ U ′. The matrix A = (aij)

is non-singular at each point of U ∩ U ′. If we denote by θ′ and κ′ the connection and curvature
matrices of ∇ with respect to e′, we have

(1.1) θ′ = A−1 · dA+A−1θA and κ′ = A−1κA in U ∩ U ′.
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Chern forms. Since differential forms of even degrees commute one another with respect to
exterior product, we may treat κ above as an ordinary matrix. Thus, for q = 1, . . . , l, we define
a 2q-form σq(κ) on U by

det(Il + κ) = 1 + σ1(κ) + · · ·+ σl(κ),

where Il denotes the identity matrix of rank l. In particular, σ1(κ) = tr(κ) and σl(κ) = det(κ).
Although σq(κ) depends on the connection ∇, it does not depend on the choice of the frame
of E by (1.1) and it defines a global 2q-form on M , which we denote by σq(∇). An important
feature of the forms is that they are closed. We set

cq(∇) =

(√
−1

2π

)q
σq(∇)

and call it the q-th Chern form. The total Chern form is defined by c∗(∇) = 1 +
∑l
q=1 c

q(∇) so
that locally it is given by

(1.2) c∗(∇) = det
(
Il +

√
−1

2π
κ
)
.

Note that it is invertible.
If we have two connections ∇0 and ∇1 for E, we may construct the difference form cq(∇0,∇1),

which is a (2q − 1)-form with the properties that cq(∇1,∇0) = −cq(∇0,∇1) and that

d cq(∇0,∇1) = cq(∇1)− cq(∇0).

In fact the form cq(∇0,∇1) is constructed as follows. We consider the vector bundle

E × R→M × R
and let ∇̃ be the connection for it given by ∇̃ = (1− t)∇0 + t∇1, with t a coordinate on R. Then
we define

cq(∇0,∇1) = p∗c
q(∇̃),

where p∗ denotes the integration along the fiber of the projection p : M × [0, 1]→M .
From the above we see that the class [cq(∇)] of the closed 2q-form cq(∇) in the de Rham

cohomology H2q
d (M) depends only on E and not on the choice of the connection ∇. It is the

q-th Chern class cq(E) of E.

Remark 1.3. If we use the obstruction theory, the q-th Chern class is defined in the integral
cohomology H2q(M,Z). It is shown that the class cq(E) defined as above is equal to its image
by the canonical homomorphism

H2q(M,Z) −→ H2q(M,C)
∼−→ H2q

d (M),

where the last isomorphism is the de Rham isomorphism (e.g., [18]).

Localization. Let E be a vector bundle of rank l. An r-section of E is an r-tuple s = (s1, . . . , sr)
of sections of E. A singular point of s is a point where s1, . . . , sr fail to be linearly independent.
An r-frame is an r-section without singularities. An l-frame is simply called a frame, as already
used above.

Definition 1.4. Let s = (s1, . . . , sr) be a C∞ r-frame of E on an open set U . We say that a
connection ∇ is trivial with respect to s, or simply s-trivial, on U , if ∇(si) = 0, i = 1, . . . , r.

The following is fundamental for the localization we consider :

Proposition 1.5. If ∇ is s-trivial,

cq(∇) = 0, for q ≥ l − r + 1.
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We explain localization process and the associated residues in the case pertinent to ours.
Thus let M be a complex manifold of dimension n and p a point in M . Let U0 = M r {p} and
U1 a neighborhood of p and consider the covering U = {U0, U1} of M . We then work in the
framework of the Čech-de Rham cohomology of U . Let E be a complex vector bundle of rank l
on M . Suppose we have an r-frame s of E on U0, r = l− n+ 1. The n-th Chern class cn(E) of
E is represented by the Čech-de Rham cocycle

(cn(∇0), cn(∇1), cn(∇0,∇1)),

where ∇i is a connection for E on Ui, i = 0, 1. We choose ∇0 so that it is s-trivial. Thus
by Proposition 1.5, cn(∇0) = 0 and the cocycle defines a class cn(E, s), called the localization
of cn(E) by s, in the relative cohomology H2n(M,M r {p};C). This in turn gives rise to the
residue Rescn(s, E; p) as its image by the Alexander isomorphism

H2n(M,M r {p};C)
∼−→ H0({p},C) = C.

The residue is in fact an integer given by

Rescn(s, E; p) =

∫
R

cn(∇1)−
∫
∂R

cn(∇0,∇1),

where R is a 2n-disk around p in U1.

Exact sequence. Let

(1.6) 0 −→ E′′
ι−→ E

ϕ−→ E′ −→ 0

be an exact sequence of vector bundles, and ∇′′, ∇ and ∇′ connections for E′′, E and E′,
respectively. We say that (∇′′,∇,∇′) is compatible with (1.6) if

∇(ι ◦ s′′) = (id⊗ι) ◦ ∇′′(s′′) and ∇′(ϕ ◦ s) = (id⊗ϕ) ◦ ∇(s)

for s′′ in A0(M,E′′) and s in A0(M,E).
The following is proved using the expression (1.2) :

Proposition 1.7. If (∇′′,∇,∇′) is compatible with (1.6),

c∗(∇) = c∗(∇′′) · c∗(∇′).

Remark 1.8. Given connections ∇′′ and ∇′ for E′′ and E′, it is possible to construct a con-
nection ∇ for E so that (∇′′,∇,∇′) is compatible with (1.6). Moreover, this can be done under
the assumption that the connections be trivial with respect to appropriate frames.

Virtual bundles. Let E and E′ be vector bundles and ∇ and ∇′ connections for E and E′,
respectively. We set ∇• = (∇,∇′) and define the total Chern form of the virtual bundle E −E′
by

c∗(∇•) = c∗(∇)/c∗(∇′).
For two pairs of connections ∇•0 = (∇0,∇′0) and ∇•1 = (∇1,∇′1), we may define the difference

form cq(∇•0,∇•1) with similar properties as before. Namely, letting ∇̃• = (∇̃, ∇̃′) with

∇̃ = (1− t)∇0 + t∇1 and ∇̃′ = (1− t)∇′0 + t∇′1,

we set

cq(∇•0,∇•1) = p∗c
q(∇̃•).

The total Chern class c∗(E−E′) of E−E′ is the class of c∗(∇•) in the de Rham cohomology
H∗d (M). It is also given by c∗(E − E′) = c∗(E)/c∗(E′).
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2. Residues of vector fields

The localization theory explained in the previous section applies also to the case of singular
varieties. We first recall this in the situation relevant to ours. For details we refer to [16], [17]
and [18]. Then we define the residue of a vector field on a complete intersection with an isolated
singularity using an appropriate frame.

Residues of multi-sections. Let U be a neighborhood of the origin 0 in Cm and V a subvariety
(reduced, but may not be irreducible) of pure dimension n in U . Assume that V contains 0 and
that V r {0} is non-singular. We take a closed ball B around 0 sufficiently small so that, in
particular, R = B ∩ V has a cone structure over ∂R = L, the link of V at 0 (cf. [12]).

Let E be a C∞ complex vector bundle of rank l on U and s = (s1, . . . , sr) a C∞ r-frame of
E on a neighborhood V ′ of L in V , r = l − n + 1. Then there is a natural localization of the
n-th Chern class cn(E|V ) of E|V by s, which gives rise to a residue, denoted by Rescn(s, E|V ; 0).
This is given as follows. Let ∇0 be an s-trivial connection for E|V ′ and ∇1 a connection for E.

Definition 2.1. The residue of s at 0 with respect to cn is defined by

Rescn(s, E|V ; 0) =

∫
R

cn(∇1)−
∫
∂R

cn(∇0,∇1).

Remark 2.2. 1. The definition of the residue above does not depend on the choice of B or the
connections involved.

2. In practice, we may assume that E is trivial on U and we may take as ∇1 the connection
trivial with respect to some frame of E. In this case, the first term disappears and we have only
an integral on ∂R = L.

The fundamental fact is that the residue above coincides with the “topological residue” defined
by the obstruction theory. To explain this, we denote by Wr(Cl) the Stiefel manifold of ordered
r-frames in Cl. It is (2n−2)-connected and its (2n−1)-st homotopy group is naturally isomorphic
to Z.

Let us first consider the basic case where U = V and l = m = n. Thus r = 1 and s consists of
a single section s. In this case L = S2n−1, a (2n−1)-sphere and, if we denote by h = (h1, . . . , hn)
the components of s with respect to some frame of E, the restriction of h to L defines a map

ϕ : L −→W1(Cn) = Cn r {0}.

On the other hand, by appropriate choices of ∇0 and ∇1, we may show that cn(∇1) = 0
and cn(∇0,∇1) = h∗βn, where βn denotes the Bochner-Martinelli form on Cn (cf. [18, Lemma
3.4.1]). Thus we have

(2.3) Rescn(s, E; 0) = degϕ.

In particular, if E = TU , the holomorphic tangent bundle of U , s = v is a vector field and
this is the Poincaré-Hopf index PH(v, 0) of v at 0.

Coming back to the general case, if V =
⋃
Vi is the irreducible decomposition of V , the link L

has connected components (Li) accordingly, each Li being the link of Vi. The r-frame s defines
a map

ϕi : Li −→Wr(Cl).
Since Li is a connected real (2n − 1)-dimensional manifold, we have the degree of ϕi, as an

integer. We refer to [18, Theorem 6.3.2] for the following (in [17, Theorem 6.1], we need to
assume that V is irreducible) :
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Lemma 2.4. We have
Rescn(s, E|V ; 0) =

∑
degϕi.

Remark 2.5. 1. In the above E and s may be assumed to be only continuous, as they admit
“C∞ approximations”.

2. If E and s are restrictions of holomorphic ones on U , we have an analytic expression of
Rescn(s, E|V ; 0) as a Grothendieck residue (cf. [16]). Moreover, if V is a complete intersection,
or more generally if V admits a smoothing in U , we have an algebraic expression as the dimension
of certain analytic algebra (cf. [17]).

Vector fields on complete intersections. Letting U , V and V ′ be as above, we have an
exact sequence

(2.6) 0 −→ TV ′ −→ TU |V ′
π−→ NV ′ −→ 0,

where TV ′ and TU denote the holomorphic tangent bundles of V ′ and U , and NV ′ the normal
bundle of V ′ in U .

Let us now assume that V is a complete intersection defined by f = (f1, . . . , fk) in U ,
k = m− n. Here we adopt the terminologies in [15, Ch.II, 13] so that V is reduced but may not
be irreducible, to make sure.

In a neighborhood of a regular point of f , we may choose (f1, . . . , fk) as a part of local
coordinates on U so that we have holomorphic vector fields ∂

∂f1
, . . . , ∂

∂fk
away from the critical

set of f . They are linearly independent and “normal” to the non-singular part of V so that
(π( ∂

∂f1
|V ′), . . . , π( ∂

∂fk
|V ′)), which will be simply denoted by ∂, form a frame of NV ′ . Here we

should note that the restriction means the restriction as a section of the vector bundle TU .
Suppose we have a C∞ non-singular vector field v on V ′. Then the (k + 1)-tuple of sections

v =
(
v,

∂

∂f1

∣∣∣
V ′
, . . . ,

∂

∂fk

∣∣∣
V ′

)
of TU |V ′ form a (k + 1)-frame so that we have the residue Rescn(v, TU |V ; 0), which we simply
call the residue of v :

Definition 2.7. The residue of v at 0 is defined by

Res(v, 0) = Rescn(v, TU |V ; 0).

Thus

(2.8) Res(v, 0) =

∫
R

cn(∇1)−
∫
∂R

cn(∇0,∇1),

where ∇0 is a v-trivial connection for TU |V ′ and ∇1 a connection for TU .

Remark 2.9. 1. For the frame v above we cannot use the analytic or algebraic expression
mentioned in Remark 2.5, 2, even if v admits a holomorphic extension to U , as the vector
fields ∂

∂fj
cannot be extended holomorphically through 0. On the other hand, the topological

expression in Lemma 2.4 is still valid :

(2.10) Res(v, 0) =
∑

degϕi,

where ϕi is the map defined by v on each connected component Li of the link L of V .

2. The above residue is, in some sense, dual to the index for a 1-form introduced in [7].

Proposition 2.11. If V is non-singular at 0,

Res(v, 0) = PH(v, 0).
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Proof. In this case, the sequence (2.6) extends to the exact sequence

(2.12) 0 −→ TV −→ TU |V −→ NV −→ 0.

Note that PH(v, 0) is given as the right side of (2.8) with ∇0 and ∇1 replaced by a v-trivial
connection for TV ′ and a connection for TV , respectively.

We take a v-trivial connection ∇′′0 for TV ′, a v-trivial connection ∇0 for TU |V ′ and the ∂-
trivial connection ∇′0 for NV ′ so that (∇′′0 ,∇0,∇′0) is compatible with (2.6). Also let ∇′′1 be
a connection for TV and ∇′1 the ∂-trivial connection for NV . We take a connection ∇1 for
TU so that (∇′′1 ,∇1,∇′1) is compatible with (2.12) (cf. Remark 1.8). Then noting that the
total Chern forms satisfy c∗(∇1) = c∗(∇′′1) · c∗(∇′1) and that c∗(∇′1) = 1, as ∇′1 is trivial, we
have cn(∇1) = cn(∇′′1). Similarly, from the construction of the difference form and noting that
∇′0 = ∇′1 on V ′, we have cn(∇0,∇1) = cn(∇′′0 ,∇′′1). �

Remark 2.13. The above may be shown by obstruction theory as well, the essential point being
again that ( ∂

∂f1
, . . . , ∂

∂fk
) has no singularities on V , if V is non-singular.

In the global case, this type of residues also appear as relative Chern classes. Let us again
start with the basic case. Thus let M be the closure of a relatively compact open set of a complex
manifold M1 of dimension n. Suppose ∂M is (piecewise) C∞ and we have a non-singular vector
field v in a neighborhood M ′ of ∂M in M1. Let ∇0 be a v-trivial connection for TM ′ and ∇1 a
connection for TM1 and define

(2.14) PH(v,M) =

∫
M

cn(∇1)−
∫
∂M

cn(∇0,∇1).

We may extend v to all of M with possibly a finite number of singularities pi and using (2.3),
we see that

(2.15) PH(v,M) =
∑

PH(v, pi).

Coming back to the situation before, let f = (f1, . . . , fk) : U → Ck and B be as above. We
denote by C(f) the set of critical points of f and set D(f) = f(C(f)), which is a hypersurface in
a neighborhood of the origin 0 in Ck. For t sufficiently near 0, we set Vt = f−1(t), which admits
at most isolated singularities C(f) ∩ Vt, all lying in the interior of B. If t is not in D(f), Vt is
non-singular, in fact a Milnor fiber F of f (cf. [12], [8]). Let V ′t be a neighborhood of Rt = B∩Vt
in Vt and vt a non-singular vector field on V ′t . We set vt = (vt,

∂
∂f1
|V ′

t
, . . . , ∂

∂fk
|V ′

t
) and define the

residue Res(vt, Vt) by the formula (2.8) with ∇0 replaced by a vt-trivial connection for TU |V ′
t

and R by Rt. The following is proves as Proposition 2.11 :

Proposition 2.16. If Vt is non-singular,

Res(vt, Vt) = PH(vt, Vt).

3. GSV-index

Let U be a neighborhood of the origin 0 in Cn+k and V a complete intersection in U of dimen-
sion n, as in Section 2. Let v be a non-singular continuous vector field on V ′, a neighborhood
in V of the link L of V . For the definition of the GSV-index of v at 0, we adopt the one in
[15, Ch.IV, 1]. It is in the spirit of the second definition in [6], involving the Milnor fiber, and
is equivalent to the one given in [6] and [13] as the degree of a certain map, provided that V is
irreducible (see Remark 3.3 below).
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Let us consider the situation in the last part of Section 2. Let U ′ be a neighborhood of L
in U . We may assume that U ′ does not contain critical points of f . Then we have an exact
sequence, which extends (2.6), V ′ = U ′ ∩ V :

(3.1) 0 −→ Tf |U ′ −→ TU |U ′ −→ N |U ′ −→ 0,

where Tf denotes the bundle on U rC(f) of vectors tangent to the fibers of f and N a trivial
bundle of rank k on U (cf. Section 4 below). In this situation, N |U ′ may be thought of as
f∗TCk|U ′ . Starting from the given non-singular vector field v on V ′, we may construct a non-
singualr vector field ṽ on U ′ so that it is tangent to V ′t for all t near 0 in Ck. This is done by
taking an extension of v to a section of TU |U ′ and then projecting it to a section of Tf |U ′ by a
splitting of (3.1). Let vt denote the restriction of ṽ to V ′t . For a regular value t of f we denote
Vt by F and vt by w. Then we have the Poincaré-Hopf index PH(w,F ) (cf. (2.14)).

Definition 3.2. The GSV-index of v at 0 is defined by

GSV(v, 0) = PH(w,F ).

Remark 3.3. 1. The definition does not depend on the choice of the regular value t (cf. the
proof of Theorem 3.4 below).

2. If V is irreducible, then L is connected and the above index GSV(v, 0) coincides with the
degree of the map

ψ : L −→Wk+1(Cn+k)

given as the restriction to L of (v, grad f1, . . . , grad fk), where grad fj denotes the complex con-

jugate of the gradient vector field of fj : grad fj =
∑n+k
i=1

∂fj
∂zi

∂
∂zi

(cf. [6], [13]). This can be

shown by the obstruction theory as in [6]. We could also show this by the Chern-Weil theory as
Theorem 3.4 below, considering another residue using the frame (v, grad f1, . . . , grad fk) instead
of (v, ∂

∂f1
, . . . , ∂

∂fk
).

3. Suppose V is not irreducible and let V =
⋃
Vi be the irreducible decomposition. Note that

this happens only if k ≥ n, as V r {0} is assumed to be non-singular. In this case, L has as
many connected components (Li) and it is not appropriate to consider the degree of ψ as above.
However, proceeding as Theorem 3.4 below and using Lemma 2.4, we have GSV(v, 0) =

∑
degψi,

with ψi the restriction of ψ to Li.
To further make comments in this situation, we denote the above index by GSV(v, V ; 0).

If each Vi is also a complete intersection, restricting v to Vi, we have GSV(v, Vi; 0) defined as
in Definition 3.2 and it is expressed as the degree of a map as above, however the point is
that we have to use the defining functions for Vi (not for V ) as (f1, . . . , fk). For that reason,
GSV(v, V ; 0) 6=

∑
i GSV(v, Vi; 0), in general. For example, in the case n = k = 1, denoting V

and Vi by C and Ci, we have

GSV(v, C; 0) =
∑
i

GSV(v, Ci; 0)−
∑
i6=j

(Ci · Cj)0,

where (Ci · Cj)0 denotes the intersection number of Ci and Cj at 0 (see [15, Ch.V, 5] and
references therein).

Let us note that in the beginning of Section 3.2 of [3], V has to be assumed to be irreducible,
even in the higher dimensional case, and that in Remark 3.2.2, loc. cit., there are some misplace-
ments of terms in the second displayed formula : it should be read as above with GSV(v, C; 0)
defined as in Definition 3.2.

Here is the main theorem of this section :
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Theorem 3.4. We have

GSV(v, 0) = Res(v, 0).

Proof. We compute Res(vt, Vt) using (the restriction to Vt of) connections as follows. Let ∇0 be
a ṽ-trivial connection for TU ′ and ∇1 a connection for TU . Then we have

Res(vt, Vt) =

∫
Rt

cn(∇1)−
∫
∂Rt

cn(∇0,∇1).

which depends continuously on t. For a regular value t, this is PH(vt, Vt) (cf. Proposition 2.16),
which is an integer (cf. (2.15)). Thus it does not depend on t, since the regular values are dense.
For a regular value this is GSV(v, 0), while for t = 0, this is equal to Res(v, 0). �

Remark 3.5. 1. The above may be shown by the obstruction theory as well.

2. From the above theorem and (2.10), we see that if V is irreducible, we have another expression
of the GSV-index as the degree of a map, which involves the vector field v and the holomorphic
vector fields ∂

∂fj
. In the case V is not irreducible, we have again from the above theorem and

(2.10), GSV(v, 0) =
∑

degϕi (cf. Remark 3.3, 3 above).

4. Virtual index

The notion of virtual index was introduced in [11]. It can be defined for a vector field on a
certain type of local complete intersection V . To be a little more precise, let S be a compact set
in V and V1 a neighborhood of S such that V1 r S is in the non-singular part of V . For a C∞

vector field v non-singular on V1 r S, we may define the virtual index Vir(v, S) of v at S as the
residue arising from the localization of the n-th Chern class of the virtual tangent bundle of V
by v, n = dimV .

Here we recall the case of isolated singularities. Thus let U , V and V ′ be as in Section 2.
Assume that V is a complete intersection defined by f = (f1, . . . , fk) in U . In this case, the
bundle map π in (2.6) has an extension

π : TU |V −→ N |V
withN a trivial vector bundle of rank k on U (e.g., [15, Ch.II, 13]). The extension is natural in the
sense that N admits a frame ν = (ν1, . . . , νk) extending the frame ∂ = (π( ∂

∂f1
|V ′), . . . , π( ∂

∂fk
|V ′))

of NV ′ . We set τV = TU |V − N |V and call it the virtual tangent bundle of V . Recall that its
total Chern class is given by c∗(τV ) = c∗(TU |V )/c∗(N |V ).

Let v be a C∞ vector field on V ′. Then we will see that the n-th Chern class cn(τV ) of τV
is localized at 0 to give rise to the virtual index Vir(v, 0) of v at 0. In the sequel, we follow the
description of [15, Ch.IV, 3].

We take connections ∇, ∇0 and ∇′0 for TV ′, TU |V ′ and NV ′ , respectively, so that
(i) ∇ is v-trivial : ∇(v) = 0, and that
(ii) the triple (∇,∇0,∇′0) is compatible with (2.6).

We set ∇•0 = (∇0,∇′0). Recall that the total Chern form of the pair ∇•0 of connections is
defined by c∗(∇•0) = c∗(∇0)/c∗(∇′0). By (ii) above, c∗(∇•0) = c∗(∇) so that by (i),

cn(∇•0) = cn(∇) = 0,

which is the key fact for the localization. Let ∇1 and ∇′1 be connections for TU and N ,
respectively, and set ∇•1 = (∇1,∇′1). The total Chern form c∗(∇•1) of the pair ∇•1 is defined as
above and cn(∇•1) is a 2n-form on U . Recall that we have also the difference form cn(∇•0,∇•1).
Let B and R = B ∩ V be as in Section 2.
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Definition 4.1. The virtual index of v at 0 is defined by

(4.2) Vir(v, 0) =

∫
R

cn(∇•1)−
∫
∂R

cn(∇•0,∇•1).

Remark 4.3. 1. If V is non-singular at 0, we have (cf. [15, Ch.IV, Lemma 3.3]) :

Vir(v, 0) = PH(v, 0).

2. In practice we may take as ∇1 and ∇′1 connections trivial with respect to some frames of TU
and N , respectively. In this case, the first term in (4.2) disappears and we have only an integral
on ∂R = L.

3. If v is the restriction to V ′ of some holomorphic vector field on U leaving V invariant, this
integral can be expressed as a Grothendieck residue relative to V (cf. [11], [15, Ch.IV, (7.3)]).
Moreover in this case, we have the “virtual residues” for Chern polynomials of degree n (cf. [15,
Ch.IV, 7]), generalizing the Baum-Bott residues for holomorphic vector fields in [1].

Theorem 4.4. We have

Vir(v, 0) = Res(v, 0).

Proof. We take a v-trivial connection ∇ for TV ′, a v-trivial connection ∇0 for TU |V ′ and a ∂-
trivial connection∇′0 for NV ′ so that (∇,∇0,∇′0) is compatible with (2.6) and set∇•0 = (∇0,∇′0).
Also, let ∇1 be an arbitrary connection TU and let ∇′1 be the ν-trivial connection for N and
set ∇•1 = (∇1,∇′1). Here we recall that ν is a frame extending ∂.

From c∗(∇•1) = c∗(∇1)/c∗(∇′1) and c∗(∇′1) = 1, we have

(4.5) cn(∇•1) = cn(∇1).

To find cn(∇•0,∇•1), recall that it is given by integrating cn(∇̃•) over the 1-simplex [0, 1], where

∇̃• = (∇̃, ∇̃′) with ∇̃ = (1 − t)∇0 + t∇1 and ∇̃′ = (1 − t)∇′0 + t∇′1. Since ∇′0 = ∇′1 on V ′,

we have ∇̃′ = ∇′0 and moreover, c∗(∇̃′) = 1, as ∇′0 is ∂-trivial. Thus we have cn(∇̃•) = cn(∇̃)
exactly as above. Therefore we have cn(∇•0,∇•1) = cn(∇0,∇1), which together with (4.5) implies
the equality. �

Remark 4.6. The above proof is similar to the one for [9, Theorem 4.3]. We note that the
latter can also be simplified as above.

From Theorems 3.4 and 4.4, we recover the following equality, which was initially proved in
[11], see also [14] :

Corollary 4.7. We have

Vir(v, 0) = GSV(v, 0).

Remark 4.8. As can be seen from the above, we could use, instead of ( ∂
∂f1

, . . . , ∂
∂fk

), an arbitrary

k-frame of TU to define the residue Res(v, 0) for similar results, as long as it is normal to the
non-singular part of V . An advantage of the use of ( ∂

∂f1
, . . . , ∂

∂fk
) is, besides its naturalness,

that we have some concrete results as shown in the following section.

5. The case of plane curves

Let C be an analytic curve (reduced but may not be irreducible) defined by f = 0 in a
neighborhood U of 0 in C2 = {(z1, z2)}, containing 0 as a possibly singular point. Also let

ṽ = a1
∂

∂z1
+ a2

∂

∂z2
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be a holomorphic vector field on U , possibly singular at 0 and leaving C invariant. The last
condition can be rephrased as ṽ(f) = hf for some holomorphic function h. Let v denote the
restriction of ṽ to C ′ = C r {0}.

We denote by O the ring of germs of holomorphic functions at 0 in C2. We may assume that,
changing the coordinates of C2 if necessary, the germs of f and a1 are relatively prime in O. In
this case f and ∂f

∂z2
are also relatively prime. We set ∂if = ∂f

∂zi
. Let L denote the link of C at 0.

Proposition 5.1. In the above situation,

GSV(v, 0) =
1

2π
√
−1

∫
L

(da1

a1
− d(∂2f)

∂2f

)
.

Proof. By Theorem 3.4, we only need to compute Res(v, 0) = Rescn(v, TU |C ; 0) for v = (v, ∂∂f |C′),

as given in (2.8).
Let ∇0 be the connection for TU |C′ trivial with respect to v and ∇1 the connection for TU

trivial with respect to ( ∂
∂z1

, ∂
∂z2

). Then we have c1(∇1) = 0. Now we compute c1(∇0,∇1). For

this, consider the connection ∇̃ = (1− t)∇0 + t∇1 of the bundle TU |C′ × R on C ′ × R. Let θ0

and θ1 be the connection matrix of ∇0 and ∇1 with respect to the frame ( ∂
∂z1

, ∂
∂z2

). We have
θ1 = 0. We try to find θ0. We assume that f and a1 are relatively prime as before. Thus f and
∂2f = ∂f

∂z2
are relatively prime so that (z1, f) forms a coordinate system on a neighborhood of

C ′ and we may write ∂
∂f = (∂2f)−1 ∂

∂z2
. The matrix A of change of frame from v to ( ∂

∂z1
, ∂
∂z2

)

can be computed from ( ∂
∂z1

, ∂
∂z2

) = vA to get

A =
∂2f

a1

(
(∂2f)−1 0
−a2 a1

)
.

Thus by (1.1), we have

θ0 = A−1 · dA = −

(
da1
a1

0

∗ −d(∂2f)
∂2f

)
.

Let θ̃ and κ̃ be the connection and curvature matrices of ∇̃ with respect to ( ∂
∂z1

, ∂
∂z2

). Then

we have κ̃ = dθ̃+ θ̃ ∧ θ̃, θ̃ = (1− t)θ0 + tθ1 = (1− t)θ0. The term in κ̃ involving dt is −dt∧ θ0 so
that we have, denoting by p∗ the integration along the fiber of the projection p : C ′× [0, 1]→ C ′,

c1(∇0,∇1) =

√
−1

2π
p∗ tr κ̃ =

1

2π
√
−1

tr θ0 = − 1

2π
√
−1

(da1

a1
− d(∂2f)

∂2f

)
,

which proves the proposition. �

Corollary 5.2. In the above situation,

GSV(v, 0) = dimCO/(f, a1)− dimCO/(f, ∂2f).

Proof. As f and a1 are relatively prime, Γ1 = { z ∈ U | f(z) = 0, |a1(z)| = ε } is a 1-cycle on
C ′ homologous to L, for a small positive number ε. Thus

1

2π
√
−1

∫
L

da1

a1
=

1

2π
√
−1

∫
Γ1

da1

a1
.

Then by the projection formula we have (e.g., [18])

1

2π
√
−1

∫
Γ1

da1

a1
=
( 1

2π
√
−1

)2
∫

Γ

df

f
∧ da1

a1
,

where Γ is the 2-cycle on C ′ given by Γ = { z ∈ U | |f(z)| = |a1(z)| = ε }. The right side above
equals dimO/(f, a1). Similarly for the second term. �
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Remark 5.3. 1. Proposition 5.1 gives an alternative verification of an integral representation
of the GSV-index given in [4, p. 532]. For this, note that we may take −a1 and ∂2f as k and g
in [4].

2. In fact in [4] the right side of the above formula appears as the difference of the orders of zeros
and of poles of a certain vector field on the Milnor fiber. We may also give such an interpretation
on the central fiber C as follows. Note that, on Cr {0}, (a1

∂
∂z1

, ∂∂f ) as well as (v, ∂∂f ) is a frame

of the holomorphic tangent bundle of C2 and we may write ∂
∂f = 1

∂2f
∂
∂z2

. Thus the first term

above may be thought of as the order of zero of the vector field a1
∂
∂z1

at 0 on C and the second

term as the order of pole of the vector field ∂
∂f at 0 on C.

3. The general algebraic formula in [5] reads, in this particular case,

GSV(v, 0) = dimCO/(f, a1, a2)− dimCO/(f, ∂1f, ∂2f).

Compared with the one in Corollary 5.2, the corresponding terms may be different, however
the differences are the same.

4. Also in this case, a general integral formula (cf. [11], [15, Ch.IV, Theorem 7.2]) for the virtual
index gives

GSV(v, 0) =
1

2π
√
−1

∫
Γ1

(∂a1

∂z1
+
∂a2

∂z2
− h
)dz1

a1
,

where Γ1 is as in the proof of Corollary 5.2 and may be replaced by L, and h a holomorphic
function such that ṽ(f) = hf .

5. In this case again, the arguments in [16] are still valid, even if ∂
∂f does not extend through 0.

Thus we may use the formula in the case (2), p.285, loc. cit., to directly obtain the formula in
Proposition 5.1, noting that the matrix F there is given by tA−1, with A as in the above proof.
We should note that F becomes meromorphic in this case.

6. It would be an interesting problem to generalize the above formula to the higher dimensional
and codimensional case.
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[2] H.-Ch. Graf von Bothmer, W. Ebeling and X. Gómez-Mont, An algebraic formula for the index of a

vector field on an isolated complete intersection singularity, Ann. Inst. Fourier 58 (2008), 1761-1783.
DOI: 10.5802/aif.2398

[3] J.-P. Brasselet, J. Seade and T. Suwa, Vector Fields on Singular Varieties, Lecture Notes in Math. 1987,
Springer-Verlag, 2009.

[4] M. Brunella, Some remarks on indices of holomorphic vector fields, Publicacions Matematiques 41 (1997),
527-544. DOI: 10.5565/PUBLMAT 41297 17
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DOI: 10.1007/BF01578709
[9] T. Izawa and T. Suwa, Multiplicity of functions on singular varieties, International J. Math. 14 (2003),

541-558. DOI: 10.1142/S0129167X03001910
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