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STRONG TOPOLOGICAL INVARIANCE OF THE MONODROMY GROUP

AT INFINITY FOR QUADRATIC VECTOR FIELDS

VALENTE RAMÍREZ

Abstract. In this work we consider foliations on CP2 which are generated by quadratic

vector fields on C2. Generically these foliations have isolated singularities and an invariant

line at infinity. We say that the monodromy groups at infinity of two such foliations having
the same singular points at infinity are strongly analytically equivalent provided there exists

a germ of a conformal mapping at zero which conjugates the monodromy maps defined along

the same loops on the infinite leaf.
The object of this paper is to show that topologically equivalent generic foliations from

this class must have, after an affine change of coordinates, their monodromy groups at infinity
strongly analytically conjugated.

As a corollary it is proved that any two such generic and sufficiently close foliations can only

be topologically conjugated if they are affine equivalent. This improves, in the case of quadratic
vector fields, the main result of [2] which claims that two generic, topologically equivalent and

sufficiently close foliations are affine equivalent provided the conjugating homeomorphism is

close enough to the identity map.

1. Introduction

It is a well known result that every polynomial vector field on C2 can be analytically extended
to a line field on CP2. In this paper we will consider holomorphic foliations on CP2 which in a
fixed affine chart are generated by quadratic vector fields.

1.1. Holomorphic foliations from the class A2.

Definition 1. Let I be a line on CP2 which will be fixed throughout this paper. The space An
is defined to be the class of all foliations on CP2 generated by a polinomial vector field of degree
n in the affine chart C2 ≈ CP2 \ I and having only isolated singularities.

Having fixed this affine chart, the space An can naturally be embedded in the projective
vector space of polynomial vector fields of degree at most n; two such vector fields generate the
same foliation if and only if they differ only by a scalar multiple.

In this work we will deal exclusively with the class of foliations A2. Let A′2 be the subclass of
foliations from A2 which have the line at infinity I invariant and exactly three singularities on
I. The space A′2 is Zariski open in A2.

Definition 2. Two foliations F , F̃ ∈ A2 are topologically equivalent provided there exists a
homeomorphism H : CP2 → CP2 which preserves the orientation both on the leaves and on CP2

and brings the leaves of the first foliation to those of the second one. In such case we will say
that the two foliations are topologically conjugated by the homeomorphism H. The foliations are
said to be affine equivalent if H is an affine transformation.
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and by Programa Educativo, Fundación Telmex.
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Let F , F̃ in A′2 be two foliations having the same singular locus at infinity Σ = Sing(F) ∩ I.
Choose a base point b on the infinite leaf LF = I \ Σ and consider, for each element on the

fundamental group γ ∈ π1(I \ Σ, b), the monodromy transformations ∆γ and ∆̃γ corresponding

to the foliations F and F̃ respectively.

Definition 3. We say that the monodromy groups at infinity GF and GF̃ of two foliations
having the same singular set at infinity are strongly analytically equivalent provided there exists
a germ h of a conformal mapping at zero such that

h ◦∆γ = ∆̃γ ◦ h
for any element γ of the fundamental group of the infinite leaf.

1.2. Main result.

Theorem 1. If two generic foliations from the class A2 with the same singular points at infinity
are topologically equivalent and the conjugacy fixes these singular points then their monodromy
groups at infinity are strongly analytically equivalent.

This property is called strong topological invariance of the monodromy group at infinity. Note
that for any two topologically equivalent foliations in A′2 we can always assume, after an affine
change of coordinates, that both foliations have the same singular points at infinity and that the
conjugating homeomorphism preserves these singular points.

Previously the following invariance property was known:

Proposition 1 ([5]). If two foliations from A′2 with non-solvable monodromy group at infinity are
topologically equivalent and have the same singular points at infinity then for any set of generators
γ1, γ2 of the fundamental group of the infinite leaf there exists another set of generators ρ1, ρ2

and an analytic germ h : (C, 0)→ (C, 0) such that

h ◦∆γi = ∆̃ρi ◦ h, i = 1, 2.

Contrary to this proposition, Theorem 1 claims that the second set of generators can be
chosen to coincide with the original set of generators. As an important corollary of Theorem 1
we obtain the following result:

Theorem 2. A generic foliation from the class A2 has a neighborhood in this class such that any
other foliation in this neighborhood which is topologically equivalent to the first foliation must be
affine equivalent to the original foliation.

Note that in the above theorem no assumptions are being made about the conjugating home-
omorphism. This property was introduced in [3] and is called ideal rigidity. However, it was
stated as an unknown property for polynomial foliations.

1.3. Sketch of the proofs. A topological equivalence between two generic foliations from the
class A2 having the same singular points at infinity restricts to a homeomorphism H : LF → LF̃
from the infinite leaf onto itself. Theorem 1 is proved by studying the isomorphisms that such
homeomorphism induces on the fundamental group and first homology group of the infinite leaf.
It will be shown that if the conjugacy preseves the singular points at infinity then the induced
isomorphism on homology is the identity map and therefore an inner automorphism is induced
on the fundamental group. From this fact we will easily deduce that the monodromy groups at
infinity are strongly analytically equivalent.

Notice that Theorem 1 is stated only for generic foliations from the class A2. The proof of
Theorem 1 cannot be carried out in a similar way for the classes An with n > 2 due to an
algebraic obstruction; if the fundamental group of the infinite leaf is free on more than two
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generators a trivial action on homology1 does not imply that the action on the fundamental
group is an inner automorphism. The fact that the action on fundamental group is an inner
automorphism is the key ingredient in the proof of Theorem 1.

Ideal rigidity is very closely related to a property called absolute rigidity which was introduced
in [2], yet in Theorem 2 there are no restrictions on the conjugating homeomorphism.

Definition 4. A foliation F ∈ An is absolutely rigid in the class An provided there exists a
neighborhood U ⊆ An of F and a neighborhood U of the identity id : CP2 → CP2 in the space
Homeo(CP2) of homeomorphisms of CP2 onto itself such that every foliation F ′ ∈ U topologically
conjugated to F by a homeomorphism H ∈ U is affine equivalent to F .

Proposition 2 ([2]). A generic foliation from the class An is absolutely rigid.

In the proof of Proposition 2 the closeness of the topological conjugacy to the identity homeo-
morphism is required in order to guarantee that the monodoromy groups at infinity are strongly
analytically equivalent. In the case of quadratic vector fields, in virtue of Theorem 1, such
hypothesis can be dropped and so Theorem 2 is deduced.

1.4. Genericity assumptions. Consider the following properties for a foliation F ∈ A′2:
(i) The monodromy group at infinity GF is non-solvable;

(ii) The characteristic numbers of the singular points at infinity are pairwise different;
(iii) All singularities of F are hyperbolic;
(iv) Foliation F has no algebraic leaves except for the infinite line.

The genericity of conditions (i) and (iv) is discussed in [5]. Foliations having pairwise different
characteristic numbers form a complex Zariski open subset of A′2 and the set of foliations with
hyperbolic singularities determines a real Zariski subset of A′2.

It is proved in [5] that non-solvable groups of germs are topologically rigid, hence condition
(i) is sufficient to prove Theorem 1. For Theorem 2 all conditions (i)–(iv) are assumed.

2. Induced automorphisms on the fundamental group and first homology group

In the following constructions we will consider foliations with close tuples of singular points
at infinity yet not necessarily equal.

Let F ∈ A′2 be a generic foliation and let Σ = {a1, a2, a3} be its singular locus at infinity. Let
D1, D2, D3 be open disks on I centered at a1, a2, a3 respectively with pairwise disjoint closures
and define D = ∪Di. Let b be an arbitrary point in I \D.

Denote by Ũ the set of those foliations in A′2 with the property of having their singularities
at infinity on D and having exactly one singularity on each Di.

Definition 5. Denote by TOP(F , b) the set of all pairs (F̃ ,H) in the product Ũ ×Homeo(CP2)

such that H is a topological conjugacy between F and F̃ that fixes the point b.

Choose any (F̃ ,H) ∈ TOP(F , b). The foliation F , and so does F̃ , has a unique algebraic leaf;
the punctured infinite line. This implies that the homeomorphism H : CP2 → CP2 preserves the

line I and maps bijectively the singular set Σ = Sing(F) ∩ I onto Σ̃ = Sing(F̃) ∩ I.
From now on if H is a homeomorphism from CP2 onto itself which preserves the infinite line

I we shall denote by H its restriction H = H|I.
If Σ 6= Σ̃ the fundamental groups π1(I \Σ, b) and π1(I \ Σ̃, b) do not coincide. However, both

surfaces I \ Σ and I \ Σ̃ deformation retract onto I \D and thus both the fundamental groups

π1(I \ Σ, b) and π1(I \ Σ̃, b) are naturally isomorphic to the group π1(I \D, b).

1See Section 2 for the corresponding definitions.
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In fact, for every loop γ on I \ Σ based on b we can assume, without loss of generality, that
it is contained in I \D and so it can be regarded indistinctly as an element of any of the groups

π1(I\Σ, b), π1(I\Σ̃, b), π1(I\D, b). The concept of strong analytic equivalence for the monodromy
groups can naturally be extended for pairs of foliations whose singularities at infinity are close

enough. In particular, this can be done for foliations F , F̃ if F̃ belongs to the neighborhood Ũ
constructed above.

Definition 3’. Let F̃ ∈ Ũ . We say that the monodromy groups at infinity GF and GF̃ are
strongly analytically equivalent provided there exists a germ h of a conformal mapping at zero
such that

h ◦∆γ = ∆̃γ ◦ h
for any element γ of the fundamental group π1(I \D, b).

We are now going to define the action that H has on the fundamental group by assigning to

each pair (F̃ ,H) ∈ TOP(F , b) an element of the automorphism group of the group π1(I \D, b)
in the following way:

Let r : I \Σ→ I \D and r̃ : I \ Σ̃→ I \D be the retractions mentioned above. Since they are
homotopy equivalences they induce isomorphisms

r∗ : π1(I \ Σ, b)→ π1(I \D, b) and r̃∗ : π1(I \ Σ̃, b)→ π1(I \D, b)
on the fundamental groups. The homeomorphism H|I\Σ also induces an isomorphism

H∗ : π1(I \ Σ, b)→ π1(I \ Σ̃, b).

There exists a unique group automorphism Φ(H) : π1(I \D, b) → π1(I \D, b) which makes the
following diagram commutative:

π1(I \ Σ, b)
H∗ //

r∗
��

π1(I \ Σ̃, b)

r̃∗
��

π1(I \D, b)
Φ(H)

// π1(I \D, b)

Thus we get a well defined map

Φ: TOP(F , b)→ Aut(π1(I \D, b)).
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Here Aut(π1(I\D, b)) denotes the automorphism group of π1(I\D, b). For the sake of simplicity

we shall write Φ(H) instead of Φ(F̃ ,H).

2.1. Inner automorphisms of the fundamental group. Let (F̃ ,H) ∈ TOP(F , b) and sup-

pose Φ(H) = id. For any germ of cross-section Γ at b transversal to the leaves of F and F̃ there
exists (Proposition 1) an analytic germ

h : (Γ, b)→ (Γ, b)

induced by H that conjugates the monodromy groups in the following way

h ◦∆γi = ∆̃ρi ◦ h, i = 1, 2

where ρi is defined by the composition ρi = H ◦ γi and γ1, γ2 are canonical generators of
π1(I \ D, b). But the condition Φ(H) = id implies that the loops ρi are homotopic to the
corresponding γi and so the monodromy groups are strongly analytically equivalent.

The following lemma shows that we can also deduce the strong analytic equivalence of the
monodromy groups in the case when the action on the fundamental group is an inner automor-
phism, not necessarily trivial.

Lemma 1. If (F̃ ,H) ∈ TOP(F , b) and Φ(H) is an inner automorphism on π1(I \D, b) then the
monodromy groups GF and GF̃ are strongly analytically equivalent.

Proof. Let (F̃ ,H) ∈ TOP(F , b) and suppose Φ(H) is an inner automorphism; namely, there
exists an element λ ∈ π1(I \D, b) such that for any γ ∈ π1(I \D, b)

Φ(H)(γ) = λ · γ · λ−1.

Since the curve H ◦ γ is homotopic to Φ(H)(γ) for any γ ∈ π1(I \D, b) there exists an analytic
germ h : (Γ, b)→ (Γ, b) such that

h ◦∆γ = ∆̃λ·γ·λ−1 ◦ h.

This implies

h ◦∆γ = ∆̃λ−1 ◦ ∆̃γ ◦ ∆̃λ ◦ h,
and so

h0 ◦∆γ = ∆̃γ ◦ h0,

where h0 is defined to be h0 = ∆̃λ ◦ h. �

2.2. Induced action on homology. In an analogous way, moving on to the first homology
group, we are now going to define a map

η : TOP(F , b) // Aut(H1(I \D;Z))

(F̃ ,H) � // η(H)

such that η(H) is the only automorphism which makes the following diagram commutative:

H1(I \ Σ;Z)
H∗ //

r∗
��

H1(I \ Σ̃;Z)

r̃∗
��

H1(I \D;Z)
η(H)

// H1(I \D;Z)
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Lemma 2. Let (F̃ ,H) ∈ TOP(F , b). Then η(H) = id provided that H(ai) ∈ Di for each
i = 1, 2, 3.

Proof. Let us choose 1-cycles2 σ1, σ2 : ∆1 → I \ Σ in such a way that they make up a canonical
set of generators of the group H1(I \ Σ;Z) and σi(∆

1) ⊆ Di, H(σi(∆
1)) ⊆ Di.

Define now βi = r ◦ σi. In this way β1, β2 is a canonical set of generators of the group
H1(I \D;Z) which satisfies βi(∆

1) ⊆ ∂Di.

H(σi(∆
1)) ⊆ Di and so r̃ ◦H ◦ σi(∆1) ⊆ ∂Di. Therefore (r̃ ◦H)∗σi must be homologous to

an integer multiple of βi. This implies that the automorphism η(H) can be expressed as

η(H)(β1) = mβ1, η(H)(β2) = nβ2.

for some integers m,n.
On the other hand, the composition r̃ ◦H : I \ Σ → I \D is a homotopy equivalence and so

it induces an isomorphism on the homology group. Thus mβ1 and nβ2 generate H1(I \ D;Z).
This is only possible if m,n = ±1, i.e. (r̃ ◦ H)∗σi ' ±βi, i = 1, 2. But both r̃ and H are
orientation preserving maps and so we conclude that (r̃ ◦ H)∗σi ' βi and thus η(H) is the
identity automorphism. �

3. Proof of the main results

3.1. Proof of Theorem 1.

Proof of Theorem 1. Suppose F and F̃ are generic foliations having the same singular points
at infinity, are topologically conjugated by a homeomorphism H and this topological conjugacy
preserves the singular points at infinity. Without loss of generality we can assume it also preserves

the base point b. Therefore (F̃ ,H) ∈ TOP(F , b) and clearly the condition H(ai) ∈ Di is satisfied.
By Lemma 2 the action on homology η(H) is the identity automorphism.

By Hurewicz Theorem H1(I\D;Z) is naturally isomorphic to the abelianization of π1(I\D, b).
Let q : π1(I \D, b)→ H1(I \D;Z) be the canonical projection. Through q every automorphism
f on π1(I \ D, b) descends to a unique automorphism on H1(I \ D;Z). This assignment gives

2∆1 is the standard 1-simplex ∆1 = {(t0, t1) ∈ R2 | t0 + t1 = 1 and t1, t2 ≥ 0}.
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raise to a natural and surjective homomorphism T : Aut(π1(I \D, b))→ Aut(H1(I \D;Z)) such
that ∀f ∈ Aut(π1(I \D, b)) the diagram commutes:

π1(I \D, b)
f //

q

��

π1(I \D, b)

q

��
H1(I \D;Z)

T (f)
// H1(I \D;Z)

Moreover, the kernel of such homomorphism consists precisely on those automorphisms on
π1(I \D, b) which are inner automorphisms 3 [4]; i.e. Ker(T ) = Inn(π1(I \D, b)).

The homeomorphism H satisfies q ◦ Φ(H) = η(H) ◦ q,

π1(I \D, b)
Φ(H)

//

q

��

π1(I \D, b)

q

��
H1(I \D;Z)

η(H)
// H1(I \D;Z)

and therefore η(H) = T (Φ(H)). Since η(H) = id then Φ(H) ∈ Ker(T ) and so is an inner
automorphism on π1(I \ D, b). By Lemma 1 the monodromy groups GF and GF̃ are strongly
analytically equivalent. �

3.1.1. A remark about conjugating homeomorphisms. Theorem 1 has been proved above by ex-
hibiting explicitly a conformal germ h0 : (C, 0)→ (C, 0) that conjugates the monodromy groups.
In fact, this germ can be realized as the transverse component of a global topological conjugacy

between F and F̃ . Namely, we have the following lemma:

Lemma 3. Let (F̃ ,H) ∈ TOP(F , b) and choose a cross-section Γ at b transversal to the leaves

of F and F̃ . If H(ai) ∈ Di for each i = 1, 2, 3 then there exists another topological conjugacy

H0 : CP2 → CP2 between F and F̃ such that its transverse component

h0 = H0
t
b : (Γ, b) −→ (Γ, b)

yields a strong analytic equivalence between the monodromy groups GF and GF̃ ;

h0 ◦∆γ = ∆̃γ ◦ h0

for any element γ ∈ π1(I \D, b).

Proof. We have a topological conjugacy H that satisfies H(ai) ∈ Di. By Lemma 2 the action
on homology η(H) is trivial and so Φ(H) is an inner automorphism on π1(I \D, b). By the same
arguments used on Section 2.1 there is an analytic germ

h : (Γ, b)→ (Γ, b)

induced byH (its transverse component at b) and an element λ ∈ π1(I\D, b) that the monodromy
groups GF and GF̃ are conjugated in the following way

h ◦∆γ = ∆̃λ−1 ◦ ∆̃γ ◦ ∆̃λ ◦ h,

3This statement would not hold if π1(I \D, b) was a free groups of rank grater than two. This fact is precisely
the obstruction for proving the same result in the case of polynomial vector fields of degree n > 2.



200 VALENTE RAMÍREZ

therefore

(∆̃λ ◦ h) ◦∆γ = ∆̃γ ◦ (∆̃λ ◦ h).

Suppose we can find a homeomorphism H̃ : CP2 → CP2 that self-conjugates F̃ , preserves the
cross-section Γ and such that its transverse component at b

H̃t
b : (Γ, b)→ (Γ, b)

coincides with the germ ∆̃λ. Then the composition H0 = H̃ ◦ H would yield a topological

conjugacy between F and F̃ whose transverse component at b

h0 = H̃t
b ◦ h = ∆̃λ ◦ h

strongly conjugates the monodromy groups GF and GF̃ . Such a homeomorphism H̃ can easily

be constructed in the following way: Consider the monodromy map ∆̃λ. Recall that holonomy
transformations along a path are defined as a finite composition of correspondence maps

∆j : (τj , pj)→ (τj+1, pj+1)

where τj , τj+1 are cross-sections at points pj , pj+1 that lay on the same leaf and belong to a same
flow box. We can assume this correspondence maps are given by the time-one map of a constant
(in the appropriate coordinates) vector field. If the flow box is sufficiently small we can extend

such vector field to a smooth (real C∞) vector field tangent to the leaves of F̃ that vanishes
outside a compact neighborhood of the flow box. The time-one map of this new vector field

is a homeomorphism Hj : CP2 → CP2 which preserves the foliation F̃ , maps the cross-section
(τj , pj) to the cross-section (τj+1, pj+1) and the restriction

Hj |(τj ,pj) : (τj , pj)→ (τj+1, pj+1)

coincides with the correspondence map ∆j .

The composition of all of the homeomorphisms Hj will be a homeomorphism H̃ which self-

conjugates foliation F̃ and whose transverse component at b, by construction, coincides with the

monodromy map ∆̃λ.
Lemma 3 is now proved. �

Remark 1. The homeomorphism H̃ constructed above is isotopic to the identity map on CP2.
Its restriction to the infinite leaf is a map isotopic to the identity and such isotopy is obtained
by sliding the base point b along the closed loop λ. For any loop γ ∈ π1(I\D, b) the composition

H̃ ◦ γ turns out to be homotopic to the loop λ−1 · γ · λ.
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This action is exactly inverse to the one induced by the original conjugacy between F and F̃
and so the composition H̃ ◦H has a trivial action on the fundamental group π1(I \D, b); this is,

(F̃ ,H0) ∈ TOP(F , b) and Φ(H0) = id.

3.2. Topological invariance of the characteristic numbers of the singular points. On
this section we shall define the neighborhood U of F in A2 that is claimed to exist in Theorem

2. Its defining property being that if (F̃ ,H) ∈ TOP(F , b) and F̃ ∈ U then the homeomorphism
H satisfies H(ai) ∈ Di for i = 1, 2, 3. Whenever this situation happens we will say that H
preserves the numbering of the singular points at infinity.

Let us denote by λ1, λ2, λ3 the characteristic numbers of the singular points a1, a2, a3 re-

spectively. Given any other foliation F̃ ∈ Ũ , denote by ai(F̃) the unique singularity that F̃ has

on the disk Di. Let us denote by λ(ai(F̃)) the characteristic number of the singularity ai(F̃)

corresponding to the foliation F̃ . We shall keep writing ai and λi instead of ai(F) and λ(ai(F)).

Let M : Ũ → C3 be the map M(F̃) = (λ(a1(F̃)), λ(a2(F̃)), λ(a3(F̃))). Since the characteristic
numbers λ1, λ2, λ3 are pairwise different there exists ε > 0 such that if j 6= k then |λj−λk| ≥ 2ε.
Denote by Vi the disk Vi = {z ∈ C | |λi − z| < ε} and let U = M−1(V1 × V2 × V3). The map M

is continuous (in fact, it is algebraic [1]) so U is an open neighborhood of F contained in Ũ .

Lemma 4. If F is a generic foliation then for any other foliation F̃ ∈ U topologically conjugated

to F̃ by a homeomorphism H : CP2 → CP2 the homeomorphism H preserves the numbering of
the singular points at infinity; this is, for every i = 1, 2, 3 H(ai) ∈ Di.

Proof. Choose F̃ ∈ U topologically conjugated to F by H : CP2 → CP2. The genericity con-
ditions imposed on F imply that the characteristic numbers of the singularities at infinity are
topological invariants in the following sense [1]: if H is a topological conjugacy between F and

F̃ then λ(H(ai)) = λi. Additionally, from the definition of U it follows that

|λ(aj(F̃))− λk| < ε if j = k

|λ(aj(F̃))− λk| ≥ ε if j 6= k,

which implies H(ai) = ai(F̃) for each i = 1, 2, 3; this is, H preserves the numbering of the
singular points at infinity. �

3.3. Ideal rigidity of foliations from the class A2. In order to conclude that generic foli-
ations from the class A2 are ideally rigid we will use a modified version of Proposition 2 which
appears in [3].

Definition 6. Let S = {a1, ..., an+1} ⊆ I be a finite set of n+ 1 distinct points; D1, ..., Dn+1 a
collection of n+ 1 disjoint open disks covering S; D = ∪Di and b ∈ I \D.

A homeomorphism H : I → I is called homotopically trivial over I \D if H(b) = b, for each
point ai its image H(ai) belongs to the same disk Di and the images H(αi) of the segments
αi = [b, ai] connecting the base point b with each point ai are homotopic to the corresponding
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segments αi in the class of homotopy with the fixed endpoint b and free endpoint ai,t ∈ D
restricted to the respective disk.

A homeomorphism is said to be homotopically trivial without specifying the system of disks,
if it is homotopically trivial over some system of disks.

Definition 7. A foliation F ∈ A′n will be called reasonably rigid if there exists a neighborhood
U of it in An such that any foliation F ′ ∈ U topologically equivalent to F is affine equivalent
to F provided that the topological equivalence between F and F ′ induces a homotopically trivial
homeomorphism of the infinite line I onto itself.

Proposition 3 ([3]). A generic foliation from the class A′n is reasonably rigid.

We now prove Theorem 2.

Proof of Theorem 2. Let F ∈ A2 be a generic foliation. Let U be the neighborhood of F
constructed in Section 3.2. Since foliation F is reasonably rigid there exists a neighborhood U ′

of it in A2 such that any foliation F ′ ∈ U ′ topologically equivalent to F is affine equivalent to
F ′ provided that the topological equivalence between F and F ′ induces a homotopically trivial
homeomorphism.

Suppose now that F̃ ∈ U ∩U ′ is topologically equivalent to F . Without loss of generality we

can suppose this conjugacy preserves the base point b. Since F̃ ∈ U the topological conjugacy H
preserves the numbering of the singular points at infinity and, according to Lemma 3 and Remark
1, we can also suppose that the topological conjugacy satisfies Φ(H) = id. This condition is

equivalent to H being a homotopically trivial homeomorphism. Since F̃ ∈ U ′ we conclude that
both foliations are affine equivalent. �
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