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TOPOLOGY OF SINGULAR HOLOMORPHIC FOLIATIONS ALONG A

COMPACT DIVISOR

DAVID MARÍN AND JEAN-FRANÇOIS MATTEI

Abstract. We consider a singular holomorphic foliation F defined near a compact curve C
of a complex surface. Under some hypothesis on (F , C) we prove that there exists a system

of tubular neighborhoods U of a curve D containing C such that every leaf L of F |(U\D) is

incompressible in U \ D. We also construct a representation of the fundamental group of the
complementary of D into a suitable automorphism group, which allows to state the topological

classification of the germ of (F ,D), under the additional but generic dynamical hypothesis of
transverse rigidity. In particular, we show that every topological conjugation between such

germs of holomorphic foliations can be deformed to extend to the exceptional divisor of their

reductions of singularities.

Dedicated to Xavier Gómez-Mont on the occasion of his 60h birthday

1. Introduction and main results

We consider a smooth complex surface M endowed with a holomorphic foliation F having
isolated singularities and a compact connected holomorphic curve C. To treat in a unified way
the local setting we will also allow the case that C reduces to an isolated singular point. There
are two main results in this paper under some hypothesis concerning the pair (F , C), which we
will precise in the sequel:

(A) The existence of a fundamental system of neighborhoods of C where the leaves of F are
incompressible in the complementary of an “adapted” curve D containing C. Recall that a
subset A of a topological space V is incompressible in V if the natural inclusion A ⊂ V
induces a monomorphism at the fundamental group level for every choice of the base point
in A.

(B) The construction of a representation of the fundamental group of the complementary of D
into a suitable automorphism group, which allows us to state the topological classification of
the germ (F ,D) of F along D. When the curve C is smooth and invariant by F , this object is
directly equivalent to the classical holonomy representation of π1(C) into the automorphisms
of a transverse section.

A particular situation of this context occurs when the pair (M, C) is a resolution of a surface
singularity (S,O), see Example 1.6. In the general setting it is well known that there exists
a composition E : M → M of blow-ups such that the curve C := E−1(C) and the foliation
F := E∗F satisfy the following properties:

• C has normal crossings and all its irreducible components Ci, i ∈ I are smooth,
• two different irreducible components of C are disjoint or intersect in a unique point,
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• F is reduced in the sense of [4], i.e. each singular point of F has Camacho-Sad index
in C \ Q>0 and each component Ci is either F-invariant or Ci ∩ Sing(F) = ∅ and F is
totally transverse to Ci.

All the notions that we introduce in the sequel are germified along D or D. By definition the
isolated separatrix set of F is the set S constituted by invariant curves by F , which are not
contained in C and which intersect some F-invariant irreducible component of C. The image of
the components of S by E are called the isolated separatrices of F .

Let GC be the dual graph associated to (M, C) having one vertex si for each irreducible
component Ci of C and one edge when two irreducible components of C intersect. We also
introduce a double weighting (gi, νi) in each vertex si, by giving the genus gi = g(Ci) and minus
the self-intersection νi = −Ci · Ci. It is well known that we can topologically recover a tubular
neighborhood of C in M by a plumbing procedure from the data given by the dual graph with
weights GC , see Section 2.1.

In the sequel we will need to consider a (not necessarily compact) holomorphic curve D ⊂M
containing C. We define the valence with respect to D of an irreducible component D of D
as the number v(D) of singular points of D lying on D. A dead branch of D is a connected
maximal union of irreducible components of C of genus 0 with valence 2 with respect to D except
for one of them whose valence must be 1.

Making an additional iterative blowing down process if necessary, without loss of generality
we can also assume that

• there is no exceptional (i.e. having self-intersection −1) F-invariant rational component
of C of valence ≤ 2 with respect to D.

Notice that an irreducible component D (not necessarily compact) of D may be transverse to
F . In that case we will say that D is a dicritical component of F .

In order to state our first main result we must introduce some new notions. Denote by GD
the dual graph associated to the divisor D.

• A breaking element of GD is every vertex corresponding to a dicritical component of
F and every edge corresponding to a linearizable singularity of F .

• The break graph associated to (F ,D) is the graph obtained from GD by removing all
the breaking elements and the edges whose one of its endpoints is a breaking vertex.

• An initial component of (F ,D) is a F-invariant irreducible component C of C such
that one of the following situations holds:
(a) g(C) = 0, there is a non-linearizable singular point p0 of F on C and every point

p ∈ Sing(D) ∩ C, p 6= p0, belongs to some dead branch;
(b) g(C) > 0 and the holonomy of the boundary of every embedded conformal disk in

C containing Sing(D) ∩ C is not linearizable.

We introduce two hypothesis on the pair (F , C). The first one is of local nature and it concerns
only the singularities of F . The second one is global and it also concerns the topology of C.

(L) The reduced foliation F has no saddle-nodes and each singularity s ∈ Sing(F) having
Camacho-Sad index λs /∈ Q is linearizable.

(G) Each connected component of the break graph associated to (F , C) is a tree, which contains
at most one vertex corresponding to an initial component C of C of genus g(C) > 0.

Notice that Condition (L) is generic in the following sense: let B ⊂ C be the set of Brjuno
numbers, namely those complex numbers λ verifying that the germ of every singular foliation
defined by a 1-form of type (u + · · · )dv − (λv + · · · )du is always linearizable. It is well known
that C \ R ⊂ B and that R− \ B has zero measure.
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If λ ∈ R>0 then the singularity is a node. Because the reducedness of F we have that λ is
necessarily irrational. If such a singular point s belongs to the strict transform of a (necessarily
isolated) separatrix Z of F we say that Z is a nodal separatrix of F and s a nodal singularity.
The topological specificity of such singularity is the existence, in any small neighborhood of s,
of a saturated closed set whose complement is an open disconnected neighborhood of the two
punctured local separatrices of the node. We call nodal separator such a saturated closed set.
A nodal separator of M is the image by E of a nodal separator in M .

If D is a dicritical component of F then for each singular point s ∈ Sing(D) ∩D we consider
a conformal closed disk Ds ⊂ D containing s in its interior such that their pairwise intersections
are empty. A dicritical separator associated to D is a tubular neighborhood of the closure of
D\

⋃
s∈Sing(D)∩D

Ds which is the total space of a holomorphically trivial disk fibration whose fibers

are contained in the leaves of F . A dicritical separator of M is the image by E of a dicritical
separator of M .

On the other hand, Condition (G) is not generic and we do not know if the incompressibility
of the leaves of F in the complementary of some D ⊃ C holds when it is not fulfilled. Even in the
case that Condition (G) holds, the first choice D = C does not work for instance by considering
the case that C is the exceptional divisor of the reduction of singularities of a germ of foliation F
in M = (C2, 0) because M \ C ∼= C2 \ {0} is simply connected. The next natural choice consists
to add to C the isolated separatrices S of F but this is not enough as the following example
shows.

Exemple 1.1. Consider the dicritical foliation F in (C2, 0) defined by the rational first integral

f(x, y) = y2−x3

x2 whose isolated separatrix set is the cusp S = {y2−x3 = 0}. Let M be a Milnor
ball for S. The composition E : M → M of blow-ups considered in the introduction for this
case corresponds to the minimal desingularization of S. The exceptional divisor C = E−1(0) has
three irreducible components D1, D2, D3 which we numerate according to the order that they
appear in the blowing up process. Thus D2

1 = −3, D2
2 = −2 and D2

3 = −1. The strict transform
S of S only meets D3. It turns out that D1 and D2 are two dead branches composed by a
single irreducible component attached to D3. Moreover D1 a dicritical component. In fact, it
is totally transverse to F = E∗F . Thus, C ∪ S do not satisfy Condition (c) in Definition 1.2.
On the other hand, it is well-known that if a, b and c are meridian loops around D1, D2 and
D3 respectively, with common origin, then π1(M \ S, ·) = 〈a, b, c | a3 = b2 = c〉. We shall see
that there exist non-incompressible leaves of F inside M \ (C ∪ S). Indeed, looking at the
situation after the first blowing-up, we immediately see that there are two types of leaves of F :
those that are near to the isolated separatrix set S, which are disks minus two points and the
others which are diffeomorphic to D∗. If L is a leaf of the first kind then π1(L) = 〈α+, α−|−〉
is a free group of rank 2. We claim that we can choose the generators so that the morphism
ı : π1(L)→ π1(M \(C∪S)) induced by the inclusion is given by ı(α+) = a and ı(α−) = b−1ab. It
follows that ı(α3

+α
−3
− ) = a3b−1a−3b = 1 and consequently L is not incompressible in M \ (C ∪S).

In order to prove the claim we consider the coordinate system (t, x) on M \(C∪S) induced by the
first blowing-up, defined by E(t, x) = (x, tx) = (x, y). We have f(x, t) := (E∗f)(x, t) = t2 − x
and the restriction of f to Uε := {|f | = ε}, 0 < ε � 1, is a locally trivial C∞-fibration over
the standard circle S1

ε of radius ε, whose fiber over ε is Fε := C \ {±
√
ε}. Since the pull-back

of Uε
f→ S1

ε by the exponential map exp : [0, 2π] → S1
ε, exp(θ) = εeiθ, is trivial, we obtain a

trivializing map τ : Fε × [0, 2π]→ Uε sending (z, θ) into (t, x) = (zei
θ
2 , (z2− ε)eiθ). We consider

the path β : s 7→ (z, θ) = (0, s + π), s ∈ [0, 2π], projecting by τ into the loop (t, x) = (0,−εeis)
which is a meridian of D2. Hence, we can take the generator b ∈ π1(M \(C∪S)) as the homotopy
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class of β. Let z(s) be a simple loop in Fε based on z = 0 having index +1 around +
√
ε and

index 0 around −
√
ε. We define α−(s) = (z(s), 0) and α+(s) = (z(s), 2π). It is clear that α+ is

homotopic to βα−β
−1 in Fε × [0, 2π]. Hence its respective projections by τ are also homotopic

loops in Uε. Notice that τ(α−(s)) = (z(s), z2(s) − ε) and τ(α+(s)) = (−z(s), z2(s) − ε) are
meridians around D1 so that we can choose the generator a ∈ π1(M \ (C ∪ S)) ∼= π1(Uε) as
the homotopy class of τ(α+). The fundamental group of the leaf L passing through the point
(t, x) = (0,−ε) is π1(L) = 〈α+, α−| −〉 and the images of its generators by ı are given by
ı(α+) = a and ı(α−) = b−1ab.

However, if we define D := S ∪ T ∪ C, where T is the strict transform of {x = 0}, we can
directly see that all the leaves are incompressible in M \ D. Indeed T meets D1 transversely,
then

π1(M \ D, ·) = 〈a, b, c | b2 = c, [c, a] = 1〉 = 〈a, b | [a, b2] = 1〉
and the elements a and b−1ab are without relation in this group. �

Thus, we must make some additional “holes” in M \ (C ∪ S) in order to obtain a bigger
fundamental group which could contain the fundamental group of each leaf. This will be done
by considering a new divisor D ⊃ C ∪ S obtained by adding some small curves transverse to C
satisfying the following technical properties.

Definition 1.2. We say that a (generally not compact) divisor D ⊂M is adapted to (F , C) if
the following conditions hold:

(a) the adherence of D \ C is a finite union of conformal disks transverse to C at regular points
of C and D \ C does not contain any singular point of F ;

(b) the isolated separatrix set S is contained in D;
(c) for every irreducible components C and D of C we have C ∩ D = ∅ provided that C is

contained in a dead branch and D is dicritical;
(d) if D = C, then it contains at least two irreducible components which do not belong to any

dead branch;
(e) each connected component of the break graph associated to (F ,D) contains at most one vertex

corresponding to an initial component of (F ,D)

Adding to C∪S one non-isolated separatrix over each dicritical component of C having valence
1 and one transverse curve over certain initial components of genus zero, we obtain a divisor D
adapted to (F , C) provided it fulfills Condition (G):

Proposition 1.3. If (F , C) satisfies Condition (G) then there always exists a divisor D adapted
to (F , C).

In the case that C is the exceptional divisor of the reduction of a germ F at (C2, 0), in the
statement of Corollary A we will precise the “minimal” divisor adapted to (F , C).

For A ⊂ B ⊂M we denote by SatF (A,B) the union of all the leaves of F|B passing through
some point of A. We fix a plumbing tubular neighborhood W of C in M (see Section 2.1). The
first main result of this paper is the following.

Theorem A. Let D be a divisor adapted to (F , C). Assume that (F ,D) satisfies the assumptions
(L) and (G) stated below. Then there exists a fundamental system (Un)n∈N, Un+1 ⊂ Un, of
open neighborhoods of D := E(D) in M and there exists a smooth holomorphic curve Υ ⊂ M
transverse to F having a finite number of connected components, such that for each n ∈ N the
open sets U∗n := Un \ D and V ∗ := E(W ) \ D satisfy the following properties:

(i) the inclusions U∗n+1 ⊂ U∗n ⊂ V ∗ induce isomorphisms of their fundamental groups,
(ii) every leaf of F |U∗n is incompressible in U∗n,
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(iii) each connected component of Y ∗n := E(Υ) ∩ U∗n is a punctured topological disk which is
incompressible in U∗n and SatF (Y ∗n , Un) is the complementary in U∗n of a finite union of
nodal and dicritical separators,

(iv) there does not exist any path lying on a leaf of F|U∗n with distinct endpoints on Y ∗n which
is homotopic in U∗n to a path lying on Y ∗n ,

(v) the leaf space of the foliation induced by F in the universal covering space of U∗n is a not
necessarily Hausdorff one-dimensional complex manifold.

Remark 1.4. It will follow from the proof that a curve Υ satisfying the properties of Theorem A
can be constructed in the following way. We choose a vertex in each connected component of
the break graph of (F ,D), a regular point in the corresponding irreducible component of D
and we take transversal disks through these points as branches of Υ. Hence, the irreducible
components of this curve are in one-to-one correspondence with the connected components of
the break graph.

The following corollary of Theorem A completes the main result of [10].

Corollary A. Let F be a germ of singular holomorphic foliation in (C2, 0) which is a generalized
curve such that all its singularities after reduction whose Camacho-Sad index is not rational are
linearizable. Then, there exists an open ball B centered at 0, an analytic curve Z closed in B
containing all the isolated separatrices of F , a fundamental system (Un)n∈N of neighborhoods
of Z in B and a curve Υ ⊂ B, transverse to F outside the origin, such that the open sets
U∗n := Un \ Z and V ∗ := B \ Z satisfy Properties (i)-(v) of Theorem A. Moreover, if F is not
dicritical then we can take Z as the set of all the separatrices of F . Otherwise, we can take
Z as the set of all the isolated separatrices of F jointly with one non-isolated separatrix of F
for each dicritical component containing a unique singular point of the exceptional divisor of the
reduction of F .

Remark 1.5. We point out some issues of each requirement of adapted divisor in Definition 1.2:

(a) As we have already pointed out, roughly speaking, W \ D is obtained from W \ C making
some holes in order to that π1(W \ D) is big enough to contain the fundamental group of
each leaf.

(b) As it was stated by R. Thom in the seventies, the separatrix set can be viewed as the
organization center of the topology of the foliation around a singular point. Hence it is
natural to study the topological embedding of the leaves in the complement of it. In the
dicritical case there is an infinite number of separatrices, so the first natural candidate curve
to eliminate from the ambient space is the isolated separatrix set.

(c) If m ⊂ C is an invariant dead branch of D then on a neighborhood of m, the leaves sufficiently
close to m are disks or rational curves. If moreover m attaches to a dicritical component D,
then Condition (c) of Definition 1.2 is not satisfied. Near D the leaves L far away from m
are punctured disks with infinite cyclic fundamental group Zc, but we can deform the loop
c ⊂ L in the ambient space so that it is conjugated to a loop in a simply connected leaf close
to m. Hence, in this case we never have the incompressibility of all the leaves. On the other
hand, there exist counter-examples to the incompressibility of the leaves if we admit some
dicritical component contained in a dead branch, as we have already seen in Example 1.1,
where we have treated in detail the simplest non-trivial dicritical foliation in (C2, 0) showing
this behavior.

(d) The radial vector field is a trivial counter-example for the incompressibility of its leaves if
Condition (d) of Definition 1.2 is not satisfied. On the other hand, if C is an F-invariant
divisor whose dual graph is a tree and (F ,D) do not satisfy Condition (d) of Definition 1.2,
then the intersection matrix (Ci · Cj) can not be negative definite. Indeed, the main result
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of [1] implies the existence of separatrices (which are necessarily isolated because C is F-
invariant) in that case. Hence D ⊃ S∪C ) C. Consequently, such divisors do not come from
foliations on surface singularities. However, it would be interesting to study the topology of
the leaves in this context. The simplest situation occurs when D = C is a chain. Since the
restriction of the leaves to a neighborhood of a component of valence 1 and 2 are disks and
annuli respectively, we deduce that the global leaves in the chain situation are topologically
spheres, hence simply connected.

(e) Condition (e) of Definition 1.2 is of technical nature and it comes from the method of
construction developed in [10] which is used in this work.

Exemple 1.6. Let (S,O) the surface singularity

{z2 = (x2 + y2)(x2 + y7)} ⊂ (C3, 0)

considered in [1]. The desingularization (M, C) of (S,O) is described by a triangular graph whose
vertex represent rational curves having self-intersections −2, −2 and −3, cf. [8]. After [17], the
fundamental group G of S \ {O} ∼= M \ C can be presented as

G = 〈a, b, c | cac−1 = a−3b5, cbc−1 = a−5b8, [a, b] = 1〉
and it is solvable. By the synthesis theorem of [9] there exists a singular holomorphic foliation F
on (S,O) such that after desingularization defines a singular foliation F on M whose singularities
are reduced and correspond to the three intersection points of the precedent rational curves. By
applying the index theorem of [3] we deduce that the Camacho-Sad index of these singularities

belong to the list {− 11
10 ±

√
21

10 ,−
9
10 ±

√
21

10 ,−
3
2 ±

√
21
6 }. From Siegel and Liouville theorems we

deduce that all three singularities are linearizable. By applying Theorem A we obtain that the
fundamental group of each leaf of F is solvable because it is a subgroup of G. Therefore all the
leaves of F are disks or annuli. �

The precedent arguments show a more general result.

Corollary 1.7. Let (S,O) be a surface singularity such that the fundamental group of S \ {O}
is solvable. If F is a singular holomorphic foliation on (S,O) without local separatrices then all
the leaves of F are disks and annuli.

Proof. The classification of configurations with solvable fundamental group given by [17] and
the hypothesis about the non-existence of local separatrices force all the Camacho-Sad indices
to be algebraic numbers, hence of Brjuno type. �

To deal with the second objective of the paper, the topological classification, we fix the
topological type of C as embedded divisor in M , a divisor D adapted to (F , C), a fundamental
system (Un)n∈N of neighborhoods of C fulfilling conditions (i)-(v) of Theorem A and a universal

covering q : Ũ0 → U0 \ D. In the sequel we will use the following notations:

if A ⊂ U0 then A∗ = A \ D and Ã = q−1(A∗).

Thanks to Property (i) in Theorem A, we can take the restriction of q to Ũn as universal covering

of U∗n. The deck transformation groups of all these coverings will be identified to Γ := Autq(Ũ0).

We denote by Qn the leaf space of the foliation induced by F in Ũn. Clearly the holomorphic
natural maps Qn+1 → Qn form an inverse system denoted by QF . As we already pointed out
in [12, §3] in the local setting, each deck transformation factorizes through Qn and allows us to
consider the notion of monodromy. To this end, we denote by A←− the category of inverse systems

of objects in some category A. We refer to [5, 12] for a precise description of the morphisms in
A←−.
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Definition 1.8. The monodromy representation of F along D is the natural morphism of groups

mF : Γ→ AutAn←−
(QF ),

where An←− is the category of pro-objects associated to the category An of analytic spaces.

Consider now another foliation F ′ defined in a neighborhood of a curve C′ embedded in a
surface M ′ and a divisor D′ adapted to (F ′, C′). In order to state our second main result, we
need to adapt to our new context some additional notions that we have already considered in [12]:

• We say that a topological conjugation between the germs (F ,D) and (F ′,D′) is S-transversely
holomorphic if it is transversely holomorphic outside some nodal and dicritical separators.
We have the same notion for conjugations between the germs (F ,D) and (F ′,D′). Notice that
if there are no dicritical components nor nodal singularities then a S-transversely holomorphic
conjugation is just a transversely holomorphic conjugation.

• A S-conjugation between the monodromies mF and mF
′

consists of (ϕ, ϕ̃, h) where

h : QF → QF
′

is an isomorphism in the category Top
←−−

, which is holomorphic outside the subset corresponding

to the leaves of some nodal and dicritical separators (we will say that h is a S-An←− isomor-

phism), ϕ : (U,D) → (U ′,D′) is a germ of homeomorphism defined in some neighborhoods
of D and D′ and ϕ̃ is a lifting of ϕ to the universal coverings of U \ D and U ′ \ D′ such that
the following diagram commutes

Γ
mF−→ AutAn←−

(QF ) ⊂ AutTop
←−−

(QF )

ϕ̃∗ ↓ ↓ h∗

Γ′
mF
′

−→ AutAn←−
(QF ′) ⊂ AutTop

←−−
(QF ′).

In addition, we say that (ϕ, ϕ̃, h) is realized over germs of subsets Σ ⊂ M and Σ′ ⊂ M ′, if
ϕ(Σ) = Σ′ and the following diagram commutes:

Σ̃
ϕ̃|Σ̃−→ Σ̃′

↓ ↓
QF h−→ QF ′ ,

where the vertical arrows are the natural morphisms. These notions also apply to (F ,D) and
(F ′,D′).

• We define the cut divisor Dcut as the disjoint union of the closure of each connected compo-
nent of the complementary in D of nodal singular points and dicritical components of (F ,D).
Notice that the dual graph of Dcut is not the break graph of (F ,D). These notions are inde-
pendent.

• A S-collection of transversals for F and D is a finite collection Σ = {(Σi, pi)}i, where
each (Σi, pi) is the image by E : M → M of the germ of a regular curve transverse to F at
a regular point pi ∈ D \ Sing(D) not belonging to the exceptional divisor E of E, the whole
collection satisfying that for each connected component Dcut

α ⊂ Dcut of the cut divisor there
exists i ∈ {1, . . . ,m} such that pi ∈ Dcut

α . The existence of a such collection follows from the
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below lemma whose proof is just adapted from that of the Strong Camacho-Sad Separatrix
Theorem given in [14].

Lemma 1.9. There is no irreducible component of Dcut contained in the exceptional divisor
E of E.

Proof. By contradiction, let Dcut
α be a component of Dcut contained in E and denote by T

its dual graph. As in [14, Section 3] the vertices si of T are weighted by the self-intersection
of the corresponding component Di multiplied by −1 and to each edge aij (joining si and
sj) is associated the pair (℘ij , ℘ji), where −℘ij is equal to the real part Camacho-Sad index
CS(F , Di, sij) and {sij} := Di ∩Dj . At the singular points s of D lying in the regular part of
Dcut
α the Camacho-Sad index of F are not negative real number. Indeed, it is zero if s is the

attaching point of a dicritical component and it is positive if s is a nodal singularity. Then the
index formulae give the inequalities

∑
j ℘ij ≥ Di ·Di and, using the terminology introduced

in [14], T is a fair quasi-proper tree. We also have the inequalities ℘ij℘ji ≤ 1 and T is well-
balanced. This cannot occur because of Lemma 2.1 of [14], which asserts the no existence of
well balanced fair proper tree, is extended to quasi-proper trees in [14, Section 4]. �

Remark 1.10. The method developed in [14] immediately give a lower bound for the number
of isolated separatrices for dicritical foliations in terms of the number of nodal singularities
and dicritical components.

• We say that a foliation F is S-transversely rigid if every topological conjugation between
F and another foliation F ′ is necessarily S-transversely holomorphic. There are many situ-
ations in which we have this property. For instance, an extended version of the Transverse
Rigidity Theorem of [15] already used in [12] asserts that the following condition implies the
S-transversal rigidity:

(R) Each connected component of the cut divisor contains an irreducible component with non-
solvable holonomy group.

• We call D-extended divisor every curve D+ ⊃ D such that D+ \ D consists in the union of
pairs of non-isolated separatrices, one pair for each dicritical separator of F .

• A germ of homeomorphism ϕ : (M,D) → (M ′,D′) is excellent if it satisfies the following
properties:
(a) outside some neighborhoods of the singular locus of D and D′, ϕ conjugates the smooth

disk fibrations πi and π′i given by Lemma 2.1;
(b) ϕ is holomorphic in a neighborhood of the singular set of D.

Theorem B. Let D (resp. D′) be a divisor adapted to (F , C) (resp. (F ′, C′)). Assume that
(F ,D) and (F ′,D′) satisfy the assumptions (L) and (G). Then the following statements are
equivalent:

(1) (F ,D) and (F ′,D′) are S-transversely holomorphic conjugated;
(2) (F ,D) and (F ′,D′) are S-transversely holomorphic conjugated by an excellent homeomor-

phism;
(3) there exists a S-conjugation (ϕ, ϕ̃, h) between the monodromies representations of F along

D and F ′ along D′, which is realized over S-collections of transversals, such that:
(a) there exist a D-extended divisor D+ such that ϕ(D+) is a D′-extended divisor; in addi-

tion, for each irreducible component D of D we have that D is F-invariant if and only
if ϕ(D) is F ′-invariant;
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(b) for each singular point s of F and each invariant local irreducible component of D at s
we have the equality of Camacho-Sad indices CS(F , D, s) = CS(F ′, ϕ(D), ϕ(s));

(4) there exists a S-conjugation (ϕ, ϕ̃, h) between the monodromies representations of F along
D and F ′ along D′, which is realized over S-collections of transversals, such that:
(a) for each irreducible component D of D we have that D is F-invariant if and only if

ϕ(D) is F ′-invariant;
(b) for each invariant local irreducible component D ⊂ D at a point s ∈ D ∩ Sing(D) we

have CS(F , D, s) = CS(F ′, ϕ(D), ϕ(s));
(c) ϕ is excellent.

Moreover, if F satisfies Condition (R) (more generally if F is S-transversely rigid) then the
precedent properties (1)-(4) are also equivalent to:

(1’) (F ,D) and (F ′,D′) are topologically conjugated;
(2’) (F ,D) and (F ′,D′) are topologically conjugated by an excellent homeomorphism.

Remark 1.11. The proof of Theorem B shows in fact that the conjugations in (1) and (2) (or
(1’) and (2’)) are homotopic in the complementary of the corresponding divisors.

Corollary B. Let F be a germ of singular holomorphic foliation in (C2, 0) which is a generalized
curve such that all its singularities after reduction whose Camacho-Sad index is not rational are
linearizable. Assume that F satisfies Condition (R) below. Let F ′ be another germ of singular
holomorphic foliation in (C2, 0).

Then for every topological conjugation germ ϕ : (B,F)→ (B′,F ′) there exists a new topological
conjugation germ ϕ̂ : (π−1(B), π∗F) → (π′−1(B′), π′∗F ′) defined after the reduction processes π
and π′ of singularities of F and F ′ such that

(1) ϕ̂ is holomorphic at a neighborhood of Sing(π∗F),
(2) there exist germs of invariant curves Z ⊂ B and Z ′ ⊂ B′ satisfying conclusions of

Corollary A such that ϕ(Z) = Z ′, ϕ̂(π−1(Z)) = π′−1(Z ′) and such that the restrictions
ϕ : B \ Z → B′ \ Z ′ and ϕ̂ : π−1(B \ Z)→ π′−1(B′ \ Z ′) are homotopic.

In particular, the analytic type of the singularities of π∗F and its projective holonomy represen-
tations are topological invariants of the germ of F at 0.

Theorem B with D reduced to a point and Corollary B generalize Theorems I and II of
[12] to the case of dicritical foliations. Moreover, the topological conjugations considered in
[12] are assumed to send nodal separatrices into nodal separatrices preserving its corresponding
Camacho-Sad indices. In this paper we have used the following result of R. Rosas [16, Proposition
11] which allows us to eliminate this constraint and to extend our results to general topological
conjugations.

Theorem 1.12. Every topological conjugation Φ between two germs F and F ′ of holomorphic
foliations in (C2, 0) maps nodal separatrices into nodal separatrices preserving its corresponding
Camacho-Sad indices.

The idea of the proof is the following.

(a) Let Z be a nodal separatrix of F . Any tubular neighborhood of Z \ {0} retracts into a
2-torus T whose first homology group is endowed with a natural Z-basis given by monomial
coordinates after reduction of singularities of the foliation, cf. [12, Definition 6.1.2].

(b) Up to a foliated isotopy we can assume that Φ preserves the 2-tori T and T ′ corresponding
to Z and Z ′ := Φ(Z). It is possible to prove that Φ∗ : H1(T,Z)→ H1(T ′,Z) conjugates its
corresponding canonical basis, see [16, Theorem 10] and [12, Theorem 6.2.1].
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(c) We can canonically identify T and T ′ with the standard 2-torus and F|T and F ′|T ′ with

1-dimensional linear irrational foliations. It remains to see that the slopes of two linear
foliations on the torus are equal once we assume that they are topologically conjugated by
a homeomorphism homotopic to the identity.

2. Localisation

2.1. Plumbing. The following result is well known in the literature, cf. for instance [13, 7, 17,
19]:

Lemma 2.1. There exist an open tubular neighborhood W of C in M and a decomposition
W =

⋃
i∈IWi satisfying the following conditions:

(i) each Wi is a tubular neighborhood of an irreducible component Ci of C;
(ii) each Wi admits a smooth disk fibration πi : Wi → Ci over Ci whose Euler number −νi is

the self-intersection of Ci; moreover each nonempty intersection Cj ∩Wi, i 6= j, is a fiber
of πi;

(iii) there exists a differentiable function h : W → R+ which is a submersion on W \ C, such
that h−1(0) = C and {h−1([0, ε))}ε>0 is a fundamental system of neighborhoods of C, which
do not meet the boundary of W in M ;

(iv) there exists a simplicial map π : W → C having connected fibres whose restriction to
Wi \

⋃
j 6=i

Wj coincides with πi, i ∈ I.

Furthermore, we can endow W with a riemannian metric so that the flow of the gradient vector
field of h preserves the level hypersurfaces h = ε. In particular, all the neighborhoods h−1([0, ε))
are homeomorphic. Moreover, we can topologically recoverW by making the plumbing procedure
described in [13, 7] of the fibrations πi : Wi → Ci obtained from the data given by the dual graph
with weights G.

Remark 2.2. We point out some considerations.

(a) If additionally the intersection matrix (Ci · Cj)i,j is definite negative then, after Grauert’s
theorem, there exists a complex structure on the plumbing W such that the quotient W/C
becomes a complex surface with an isolated singularity.

(b) The existence of the simplicial map π : W → C having connected fibres implies the existence
of a epimorphism

π1(∂W )→ π1(C) ∼= π1(G) ∗ π1(C1) ∗ · · · ∗ π1(Cn),

where G is the dual graph associated to (W, C) and C1, . . . , Cn are the irreducible components
of C, cf. [17].

(c) We can assume that the fibrations πi : Wi → Ci are holomorphic in a neighborhood of
Sing(C)∩Ci. Moreover, if Ci is a dicritical component of (F , C) then we can assume that the
fibers of πi are the leaves of the restriction F|Wi

.

2.2. Boundary assembly. Let V be a smooth manifold endowed with a regular foliation F
of class C1 and let A be an arbitrary subset of V . By definition, a leaf of F|A is a connected
component of L ∩ A, where L is a leaf of F . For every A ⊂ V we define the boundary of A

as ∂A := A \
◦
A, where

◦
A is the interior of A. The definitions and results of this section are

borrowed from [10].

Definition 2.3. If A ⊂ B ⊂ V we will say that A is 1-F-connected in B (denoted by A#
F
B) if

for every leaf L of F|B and for all paths a : [0, 1]→ A and b : [0, 1]→ L with the same endpoints
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m0, m1, which are homotopic (with fixed endpoints) in B, there exists a path c : [0, 1]→ A ∩ L
with endpoints m0, m1, which is homotopic to a inside A and to b inside L.

Definition 2.4. Let (Vi)i∈I a finite or numerable collection of submanifolds (with boundary) of
V of the same dimension that V . We will say that Vi is a F-adapted block if it satisfy the
following properties:

(B1) ∂Vi is incompressible in Vi,
(B2) ∂Vi is a transversely orientable submanifold of V transverse to F ,
(B3) ∂Vi is 1-F-connected in Vi,
(B4) every leaf of F|Vi is incompressible in Vi.

We will say that V is a boundary assembly of the blocks Vj if for all i ∈ I Condition (B1)
and the following property hold:

(B5) for all different i, j ∈ I either Vi ∩ Vj = ∅ or Vi ∩ Vj is a connected component or ∂Vi and
a connected component of ∂Vj.

We will say that V is a foliated boundary assembly if each block Vi is F-adapted and if V is
a boundary assembly of Vj.

Theorem 2.5 (Localisation). If V is a foliated boundary assembly of Vi then every leaf of
F is incompressible in V and for every I ′ ⊂ I, the union V ′ =

⋃
i∈I′

Vi is incompressible and

1-F-connected in V .

Remark 2.6. If V =
⋃
i∈I

Vi and each block Vi satisfy Condition (B5) in previous Definition 2.4,

then we define its dual graph GV by putting one vertex for each element of I and one edge
between vertex i and j for each common boundary component of Vi and Vj . We can give an
explicit presentation of the fundamental group of V uniquely from π1(GV ) and the morphisms
π1(Vi ∩ Vj)→ π1(Vi) thanks to the following generalization of the classical Seifert-Van Kampen
theorem (r = 0).

Proposition 2.7. Let A be a connected simplicial complex with connected sub-complex A0 and
A1 such that A = A0∪A1 and A0∩A1 = B0t· · ·tBr, where each Bi is a connected sub-complex
of Aj for each i = 0, . . . , r and j = 0, 1. Let ϕij : π1(Bi)→ π1(Aj) be the morphisms induces by
the natural inclusions Bi ⊂ Aj. Then π1(A) is isomorphic to the quotient

(π1(A0) ∗ π1(A1) ∗ Z(u0) ∗ · · · ∗ Z(ur))/K ,

where K is the normal subgroup generated by the relations u0 = 1 and

ϕi,0(bi) = u−1
i ϕi,1(bi)ui, ∀bi ∈ π1(Bi), i = 0, . . . , r.

Proof. See the proof of Proposition 2.1. of [17] for the case r = 1. The case r > 1 is completely
analogous. �

2.3. Decomposition of D and boundary assembly of Milnor tubes. We consider the
function h : W → R+ given by Lemma 2.1 with h−1(0) = C. If f : W → C is a reduced

holomorphic equation of D \ C then we consider the product H := h · |f | and we define the open
4-Milnor tube of height η > 0 associated to D as Tη := H−1([0, η)). We also denote

T ∗η := Tη \ D = H−1((0, η))

and we remark that if η > 0 is small enough then the closed 3-Milnor tube Mη, defined as

the adherence of H−1(η) in W , is transverse to ∂W . The set of open 4-Milnor tubes associated
to D is a fundamental system of neighborhoods of D ⊂W . In [19] it is shown that there exists a
vector field ξ such that ξ(H) > 0, by gluing suitable local models with a partition of the unity.
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The flow of ξ allows to define homeomorphisms between the open 4-Milnor tubes of different
height, provided they are small enough.

For each irreducible component D of D we also consider the disk fibrations πD : WD → D
given by Lemma 2.1 if D ⊂ C and trivial ones if D ⊂ D \ C. After Point (c) of Remark 2.2 we
can choose the tubular neighborhoods WD and the fibrations πD in such a way that for each
singular point s ∈ Sing(D) the following properties hold:

(a) If {s} = D ∩D′ then Ws := WD ∩WD′ admits holomorphic local coordinates

(xs, ys) : Ws
∼→ D2 × D2

such that the germ of F at s is given by a 1-form of the following type:
• xsdyx − λsysdxs with λs ∈ C, if s is a linearizable singularity;
• xsdys − (λsys + xsys(· · · ))dxs with λs ∈ Q<0, if s is a resonant singularity;
• dxs (resp. dys) if D (resp. D′) is a dicritical component of (F ,D).

(b) D∩Ws = {ys = 0}, D′∩Ws = {xs = 0} and the restrictions of πD and πD′ to Ws∩{|xs| < 3
2}

and Ws ∩ {|ys| < 3
2} coincide with (xs, ys) 7→ xs and (xs, ys) 7→ ys respectively.

For each irreducible component D of D we denote ΣD := Sing(D) ∩D and

(1) Ds := D ∩ {|xs| ≤ 1, |ys| ≤ 1} for s ∈ ΣD .

For each irreducible F-invariant component D of D of genus g(D) > 0 we fix a smooth real
analytic curve ΓD which is the boundary of a closed conformal disk DΓD containing ΣD such
that the holonomy of ΓD is linearizable, provided that D is not an initial component, see the
introduction. Notice that ΣD 6= ∅ because of Condition (e) in Definition 1.2. If D contains a
unique singular point s of D then we shall take ΓD = ∂Ds and DΓD = Ds. Otherwise we can
assume that every two closed disks Ds and Ds′ , s, s

′ ∈ ΣD, are disjoint and contained in the
open disk DΓD \ ∂DΓD when g(D) > 0. We also denote

(2) D∗ := D \
⋃
s∈ΣD

Ds, if g(D) = 0

and

(3) D∗ := DΓD \
⋃
s∈ΣD

Ds, if g(D) > 0.

Consider the union J ⊂ D of all the Jordan curves of the form ΓD with g(D) > 0 and all
the curves ∂Ds with s ∈ D ∩ Sing(D). Let A be the set of elementary blocks of D defined
as the adherence of the connected components of D \ J. There exists an uniformity height
η1 > 0 such that for all η ∈ (0, η1] the set {Tη(A)}A composed by the adherence of the connected
components of

Tη \
⋃
D⊂D

π−1
D (J ∩D)

is in one to one correspondence with A. More precisely, for each A ∈ A there is a unique
connected component of Tη \

⋃
D⊂D

π−1
D (J∩D) containing A ⊂ D and whose adherence we denote

by Tη(A). Notice that for each elementary block A ⊂ D we can construct a vector field ξA
whose flow induces deformation retracts between (T ∗η (A), ∂T ∗η (A)) and (T ∗η1

(A), ∂T ∗η1
(A)) for all

η ∈ (0, η1], see Theorem 5.1.5 and Proposition 9.3.2 of [19]. If B = ∪iAi ⊂ D is an arbitrary
union of elementary blocks of D we also adopt the following convenient notation

(4) Tη(B) :=
⋃
i

Tη(Ai) and T ∗η (B) := Tη(B) \ D .
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Definition 2.8. We will say that an inclusion ı : A ⊂ B between two subspaces of a topological
space is rigid if ı∗ : π1(A, p)

∼→ π1(B, p) is an isomorphism for all p ∈ A. We will say that
ı is ∂-rigid if ∂A ⊂ ∂B and the two inclusions A ⊂ B and ∂A ⊂ ∂B are rigid. Recall that

∂A = A \
◦
A.

Proposition 2.9. Consider a subset B ⊂ T ∗η1
. If for each elementary block A of D the inclusion

B ∩ T ∗η1
(A) ⊂ T ∗η1

(A) is ∂-rigid, then the inclusion B ⊂ T ∗η1
is also rigid. In particular the

inclusion T ∗η ⊂ T ∗η1
is rigid for all η ∈ (0, η1].

Proof. This assertion follow immediately from Remark 2.6 and the following (trivial) result. �

Lemma 2.10. Let A ⊂ B ⊂ C be topological spaces. If two of the three inclusions A ⊂ B,
B ⊂ C and A ⊂ C are (∂-)rigid then the third one is also (∂-)rigid.

Notice that the collection {T ∗η (A)}A∈A does not define a boundary assembly of T ∗η because
Condition (B1) in Definition 2.4 is not always verified. More precisely, if C is an irreducible
component of C having genus 0 and valence 1 then the boundary of T ∗η (C) is not incompressible.
This situation leads us to consider bigger blocks of D as we have already done in [10].

Definition 2.11. The fundamental blocks of D are the unions of elementary blocks of D
described below:

(a) For each F-invariant irreducible component D of D not contained in a dead branch, we
consider the aggregate block defined as

mD ∪D∗ ∪

( ⋃
s∈mD∩D

Ds

)
,

where mD is the union of all the dead branches meeting D, D∗ is defined by Equations (2)
or (3), and Ds is given by (1).

(b) For each singularity s ∈ Sing(D) belonging to different irreducible components D and D′ of
D, we consider the singularity block Ds ∪ D′s provided that s do not belong to any dead
branch.

(c) For each F-invariant irreducible component D ⊂ C of genus g(D) > 0, we consider the

genus block D \DΓD .
(d) For each dicritical irreducible component D of F , we consider the dicritical block

D ∪
⋃

(s,D′)∈KD

D′s,

where KD is the set of pairs (s,D′) constituted by a singular point s of D lying on D and
the irreducible component D′ 6= D of D meeting D at s.

An initial block of D is either an aggregate block containing a single singular point of D which
do not belong to any dead branch, or a genus block associated to an initial component D of D
of genus g(D) > 0 such that the holonomy of ΓD is not linearizable. A breaking block of D is
either a singularity block associated to a linearizable singular point or a dicritical block.

Proposition 2.12. For every η ∈ (0, η1], T ∗η is a boundary assembly of the blocks {T ∗η (B)}B∈B
defined by (4), where B is the set of fundamental blocks of D.

The proof of this proposition will be based on explicit descriptions of the fundamental groups
of T ∗η (B), by generators and relations. But before we must give some preliminary information

about the topology of tubular neighborhoods of dead branches. Let m =
⋃̀
i=1

Di be a F-invariant
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dead branch with v(D1) = 1, v(Di) = 2 for i = 2, . . . , `. For each j = 1, . . . , ` the intersection

matrix of
j⋃
i=1

Di is

Aj =



e1 1 0 · · · 0

1 e2 1
. . .

...

0 1 e3
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 ej


whose determinant is denoted δj = det(Aj). Assume that the attaching component C of m
is also F-invariant according to Condition (c) in Definition 1.2 and that m can not be blow-
down according to the initial assumptions stated in the introduction. Let di ∈ π1(T ∗η (m)) be a
meridian of Di and let c ∈ π1(T ∗η (m)) be a meridian of C.

Lemma 2.13. There exist coprime positive integers p ≥ 2 and q ≥ 1 such that dp` = cq.

Proof of Lemma 2.13. By assumption C∪m is F-invariant and the singularities of F are reduced
and they are not saddle-nodes. Then classically the Camacho-Sad indices

λi = CS(F , Di, si) , i = 1, . . . , `

are rational strictly negative numbers. By Camacho-Sad formula follows that λi = ei − 1
λi−1

.

On the other hand, by developing the determinant of Ai+1 by the last row, we have the equality
δi+1 = ei+1δi − δi−1. We claim that λi = δi

δi−1
, for i = 2, . . . , `. Indeed, this is trivially the case

for i = 2 and the inductive step i⇒ i+ 1:

λi+1 = ei+1 −
1

λi
= ei+1 −

δi−1

δi
=
ei+1δi − δi−1

δi
=
δi+1

δi

completes the proof of the claim. Since λi < 0 for all i = 1, . . . , ` and δ1 = e1 < 0, it follows
that (−1)iδi > 0 and, by Silvester’s criterion, the matrix A` is definite negative. We take
p = (−1)`δ` ≥ 1 and q = (−1)`−1δ`−1 ≥ 1. By Grauert’s criterion, m can be blow-down if and
only if A` is definite negative and δ` = ±1. Hence p ≥ 2 by the assumption on m. Moreover we
have

gcd(p, q) = gcd(δ`, δ`−1) = gcd(δ`−1, δ`−2) = · · · = gcd(δ2, δ1) = gcd(e1,−1).

Hence gcd(p, q) = 1. It only remains to prove that dp` = cq. This equality follows directly

from the fact that (A−1
` )`` = δ`−1

δ`
and from the relation A`v + w = 0 in H1(T ∗η (m),Z), where

v = ([d1], · · · , [d`])t and w = (0, . . . , 0, [c])t. This relation being a matrix reformulation of the
Camacho-sad index formulae along the components of m. �

The following result is well-known in combinatorial group theory.

Lemma 2.14. If pi ≥ 2 and qi ≥ 1 are coprime integers then every element γ of the group Γ
presented by

〈c, d1, . . . , dm | [c, di] = 1, dpii = cqi , i = 1, . . . ,m〉
can be written in a unique way as γ = u1 · · ·urcs with ui = dεiji , 0 ≤ εi < pi and s ∈ Z.

Proof of Proposition (2.12). By construction the family {T ∗η (B)}B∈B satisfy property (B5) in
Definition 2.4. In order to check Condition (B1) for each block T ∗η (B), we will distinguish four
cases according to the type of B ∈ B:
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(a) If B is the aggregated block associated to an F-invariant irreducible component D of
D then, after [17], we obtain a presentation of π1(T ∗η (B)) by considering the generators
a1, . . . , ag, b1, . . . , bg, c, d1, . . . , dv and the relations

(5) [c, ∗] = 1, cν ·
g∏
i=1

[ai, bi] ·
v∏
j=1

dj = 1, dpkk = cqk , k = 1, . . . ,m ≤ v,

where g, v and ν are respectively the genus, the valence and the self-intersection of D, m
is the number of dead branches contained in B and pk, qk are the positive coprime integers
given by Lemma 2.13. Each connected component of the boundary of T ∗η (B) is a torus
whose fundamental group is 〈c, dj |[c, dj ] = 1〉, j = m+ 1, . . . , v. The incompressibility of the
boundary is equivalent to the following implication

(6) (j > m and dαj c
β = 1 in π1(T ∗η (B))) =⇒ α = β = 0,

which is trivially true if m = v. Hence, in the sequel we will assume that m ≤ v− 1. Notice
that π1(T ∗η (B)) = Γ ∗C G where Γ is the group considered in Lemma 2.14, G is defined by

G := 〈a1, . . . , ag, b1, . . . , bg, c, dm+1, . . . , dv−1| [c, ∗] = 1〉 ∼= Z∗2g+v−m−1 ⊕ Z
and C = 〈c| −〉 ∼= Z. Trivially C injects in G. On the other hand, because pi ≥ 2 for
i = 1, . . . ,m, C also injects into Γ. Seifert-Van Kampen Theorem implies that G can also
considered as a subgroup of π1(T ∗η (B)). Thus, for j ≤ v−1 implication (6) can be considered
in the subgroup G, where it is trivially true. It only remains to treat the case of j = v. But

dαv c
β is equal to

(
g∏
i=1

[ai, bi]
v−1∏
j=1

dj

)−α
cβ−να and this expression can not be simplified using

the relations (5), if g > 0 or v −m ≥ 2 provided (α, β) 6= (0, 0). It remains to consider the
situation g = 0 and v −m = 1. In this case G = C and the element of Γ given by

dαv c
β = (d1 · · · dm) · · · (d1 · · · dm)︸ ︷︷ ︸

−α

cβ−να

is written in the unique reduced form stated in Lemma 2.14. Consequently it is trivial if
and only if α = β = 0.

(b) If B is a singularity block then T ∗η (B) ∼= T × [0, 1] and ∂T ∗η (B) ∼= T × {0, 1}, so that each
connected component of its boundary is incompressible.

(c) If B is a genus block (g > 0) then

π1(T ∗η (B)) ∼= 〈a1, . . . , ag, b1, . . . , bg, c | [c, ∗] = 1〉

contains π1(∂T ∗η (B)) = 〈
g∏
i=1

[ai, bi], c | [c, ∗] = 1〉.

(d) If B is the dicritical block associated to some dicritical component D of D of genus g ≥ 0
and valence v ≥ 1 then D is not adjacent to any dead branch of D by Condition (c) in Def-
inition 1.2 and consequently π1(T ∗η (B)) is the group G considered in case (a) taking m = 0.
Each connected component of ∂T ∗η (B) is a torus whose fundamental group 〈dj , c | [c, dj ] = 1〉
injects into G.

�

2.4. Existence of adapted blocks. In order to control the topology of the foliated blocks that
we will construct in Section 3 we must consider the notions of size and roughness of a suspension
type subset introduced in [10]. First of all we recall the notion of suspension type subset. Let P
be a regular point of F lying on an irreducible component D of D, let ∆ be a subset contained
in the fibre π−1

D (P ) and let µ be a path contained in D with origin P .
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Definition 2.15. The suspension of ∆ over µ along the fibration πD is the union

V∆,µ :=
⋃
m∈∆

|µm|,

where µm denotes the path of origin m lying on the leaf of F passing through m which lifts the
path µ via πD, i.e. πD ◦ µm = µ and µm(0) = m.

This notion is well defined provided ∆ is small enough. In [10] we have also introduced the
notion of roughness e(ξ) of an oriented curve ξ ⊂ C∗. Here we will say that Ω ⊂ C is of infinite

roughness if Θ = Ω\
◦
Ω is not a piecewise smooth curve. Otherwise we will define the roughness

of Ω as e(Ω) = inf{(Θ+), (Θ−)}, where Θ+ and Θ− are two curves of opposite orientations
parameterizing Θ. The finiteness of the roughness is equivalent to the starlike property with
respect to the origin.

Since every open Riemann surface is Stein, each fibration πD : WD → D is analytically trivial
over every open set D′ ( D. Fix on W ′ := π−1

D (D′) a trivializing coordinate zD′ : W ′ → C,
i.e. (zD′ , πD) is a biholomorphism from W ′ onto the product of the unit disk of C times D′; we
define the roughness of a subset E of W ′ with respect to zD′ as

ezD′ (E) := sup{e(zD′(E ∩ π−1
D (m))), m ∈ D} ∈ R+ ∪ {∞}.

We also define the size of E with respect to zD′ as

‖E‖zD′ := max{|zD′(m)|, m ∈ E},

and we denote c(·) = max{ezD′ (·), ‖ · ‖zD′} called control function.

Now we present an existence theorem of F-adapted blocks having controlled size and rough-
ness, which we will prove in next section. In Section 4 we shall prove Theorem A by gluing
inductively these F-adapted blocks and using Localization Theorem 2.5. We keep the notation
T ∗η (A) for the blocks of the boundary assembly given in Proposition 2.12.

Theorem 2.16. Fix ε > 0 and η ∈ (0, η1].

(I) Let A be an initial fundamental block of D. Then there exists a holomorphic regular curve
ΥA ⊂ T ∗η1

transverse to F and there exists a subset Bη(A) of T ∗η (A) satisfying the following
conditions:
(1) for η′ > 0 small enough the inclusion T ∗η′(A) ⊂ Bη(A) is ∂-rigid;

(2) Bη(A) is a F-adapted block;
(3) the connected components V1, . . . ,VnA of ∂Bη(A) are of suspension type over the con-

nected components of ∂A;
(4) c(Vj) ≤ ε for each j = 1, . . . , nA;
(5) the intersection ΥA,η := ΥA ∩ Bη(A) is incompressible in Bη(A) and it satisfies

SatF (ΥA,η,Bη(A)) = Bη(A) and ΥA,η#
F
Bη(A).

(II) Let A be a fundamental block of D which is not an initial or breaking block. Then there
exists a holomorphic regular curve ΥA ⊂ T ∗η1

transverse to F , there exist a constant

CA > 0 and a function ρA : R+ → R+ with lim
c→0

ρA(c) = 0, such that for every suspension

type subset V ⊂ T ∗η (A) over a connected component of ∂A satisfying c(V) ≤ CA, there
exists a subset Bη(A) of T ∗η (A) satisfying Properties (1), (2), (3) and (5) of Part (I) as
well as
(3’) V1#

F
V;

(4’) c(Vj) ≤ ρA(c(V)) for each j = 1, . . . , nA.
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(III) Let A be a breaking block of D. Then for every choice of suspension type subsets

V1, . . . ,VnA ⊂ T ∗η (A)

over the connected components of ∂A such that the inclusion
nA⋃
i=1

Vi ⊂ ∂T ∗η (A) be rigid,

there exists a subset Bη(A) of T ∗η (A) satisfying Properties (1) and (2) of Part (I), such
that the connected components V ′1, . . . ,V ′nA of ∂Bη(A) are of suspension type and they
satisfy
(3”) V ′j#F Vj
(4”) c(V ′j) ≤ ε
for each j = 1, . . . , nA.

We will prove this theorem in the following section.

3. Construction of foliated adapted blocks

Theorem 2.16 is proved in [10, Theorem 3.2.1] when the fundamental block A is an aggregated
block or a singularity block. Thus, it suffices to consider the cases of genus blocks and dicritical
blocks which we treat separately in sections 3.1 and 3.2 respectively.

3.1. Genus type foliated adapted block. In the sequel we will assume that the genus of D
is g > 0. In order to simplify the notations in this section we will denote

Γ := ΓD, DΓ := DΓD , and D′ := D \DΓD .

3.1.1. Preliminary constructions. We fix a normal form for D given by

• a closed regular polygon P ⊂ C of 4g sides of length 1 centered at the origin;
• arc-length parameterizations a1, b1, a

′
1, b
′
1, . . . , ag, bg, a

′
g, b
′
g of the adjacent sides of P pos-

itively oriented according to ∂P such that a1(0) ∈ R+;
• a continuous map Ψ : P → D such that the restriction of Ψ to each side |aj | or |bj |

is a smooth immersion and the compositions αj := Ψ ◦ aj , βj := Ψ ◦ bj , j = 1, . . . , g,
are simple loops having a same origin mΛ which only meets each other in that point;
moreover α−1

j = Ψ ◦ a′j and β−1
j = Ψ ◦ b′j for j = 1, . . . , g;

• Ψ has an extension to an open neighborhood of P into C which is a local homeomorphism
and its restriction to P \ ∂P is a homeomorphism onto D \ Λ, where

Λ =

g⋃
j=1

|αj | ∪ |βj |

is a wedge of 2g circles.

We fix an open disk Dε ⊂ P centered at the origin of radius ε < cos
(
π
2g

)
. Up to modifying

slightly Ψ we can assume that Ψ(Dε) = DΓ so that the loop θ : [0, 1] → Γ = ∂D′ given by

θ(s) = Ψ(εe2iπs) is a simple parametrization of Γ. We consider the pull-back π̂ : ŴP′ → P ′ by
the restriction of Ψ to P ′ := P \Dε of the fibration πD : WD′ → D′, where WD′ := π−1

D (D′) \D.

Thus, π̂ is a continuous D∗-fibration which is globally trivial. Let Ψ̂ : ŴP′ →WD′ the continuous
map which make commutative the cartesian diagram

ŴP′
Ψ̂−→ WD′

π̂ ↓ � ↓ πD
P ′ Ψ−→ D′ .
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Clearly Ψ̂ is a local homeomorphism whose restriction to π̂−1(P ′ \ ∂P) is a homeomorphism

onto π−1
D (D′ \Λ) \D. The foliation F|WD′

lifts to a regular foliation F̂ on ŴP′ transverse to the
fibres of π̂.

We fix a conformal pointed disk T ⊂ π−1
D (mΛ) whose size and roughness is bounded by a

constant CD > 0 small enough so that all the constructions we shall done in the sequel lead us

to sets having finite size and roughness. By construction there exists T̂ ⊂ π̂−1(m̂) such that

T = Ψ̂(T̂ ), where m̂ is the vertex of P lying on R+. The image by Ψ̂ of the suspension VT̂ ,µ̂ of

T̂ via π̂ over the loop µ̂ := a1∨b1∨a
′
1∨b
′
1∨ · · · ∨ag∨bg∨a′g∨b′g can be considered as the suspension of

T via πD over the loop

(7) µ := Ψ ◦ µ̂ = α1∨β1∨α
−1
1 ∨β−1

1 ∨ · · · ∨αg∨βg∨α−1
g ∨β−1

g .

The subset B := Ψ̂−1(Ψ̂(VT̂ ,µ̂)) of π̂−1(∂P ′) is not necessarily a multisuspension set in the sense

of [10, Definition 4.2.1] because over each vertex of P this set is the union of 4g pointed disks,
two of them are contained in the adherence of B \ π̂−1(SP), where SP is the vertex set of P, but
the other two could not satisfy this condition. We put

B̂∂P := B \ π̂−1(SP), BΛ := Ψ̂(B̂∂P).

The following diagram is commutative but not necessarily cartesian

B̂∂P
Ψ̂−→ BΛ

π̂ ↓ 	 ↓ πD
∂P Ψ−→ Λ .

Now we will precise the geometry of BΛ. Let us denote by hαj (resp. hβj ) the holonomy
transformations of F along the loops αj (resp. βj), represented over the transverse section

π−1
D (mΛ). If CD > 0 is small enough then the following pointed 4g disks are well defined

T0 := T , T4j+1 = hαj (Tj) , T4j+2 = hβj (T4j+1) ,

T4j+3 = h−1
αj (T4j+2) , T4j+4 = h−1

βj
(T4j+3) ,

j = 1, . . . , g. We have a decomposition

BΛ = B1 ∪ B2 ∪ · · · B2g ,

of BΛ in 2g pieces of suspension type

B2j−1 := VT4j−4, αj ∪ VT4j−2, α
−1
j

= VT4j−4∪T4j−1, αj ,

B2j := VT4j−3, βj ∪ VT4j−1, β
−1
j

= VT4j−3∪T4j , βj ,

j = 1, . . . , g, with finite roughness. Moreover, πD(Bi ∩ Bj) = {mΛ}. From this description
follows:

(∗) If λ : [0, 1] → L is a simple parametrization of a leaf L of F|Bk , k = 1, . . . , 2g, then there

exists a unique path λ̂ : [0, 1] → B̂∂P such that Ψ̂ ◦ λ̂ = λ and the orientations of π̂ ◦ λ̂ and
∂P coincide.

Lemma 3.1. If χ is a path lying on a leaf L of BΛ such that π ◦ χ = µν then there exists a

unique path χ̂ : [0, 1]→ B̂∂P lying on a leaf of F̂ such that Ψ̂ ◦ χ̂ = χ.

Proof. We decompose χ = χ1∨ · · · ∨χn with |χj | ⊂ Bkj . By property (∗) each χj possesses a
unique lift χ̂j with the same orientation as ∂P. We must prove that all these lifts glue in a
unique continuous path χ̂. Fix j ∈ {1, . . . , n} and notice that the point χj(1) possesses exactly

4g pre-images by Ψ̂, one over each vertex of P. To prove that χ̂j(1) = χ̂j+1(0) it suffices to see
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that π̂ ◦ χ̂j(1) = π̂ ◦ χ̂j+1(0). But π̂ ◦ χ̂j is the unique lift of π ◦ χj with the same orientation as
∂P and theses lifts glue because π ◦ χ lifts, by hypothesis. �

Remark 3.2. Since CD > 0 is small enough so that the roughness of Bj is finite, we have that
for every η′ > 0 small enough BΛ retracts onto T ∗η′(Λ), which has the homotopy type of a product

of a circle by the wedge of circles Λ. More precisely, for all m0 ∈
4g⋃
k=1

Tk the map

(8) χ : π1(BΛ,m0)→ π1(Λ,mΛ)⊕ Z , [λ]BΛ 7→
(

[πD ◦ λ]Λ,
1

2iπ

∫
λ

dz

z

)
,

is an isomorphism.

Lemma 3.3. There exist a neighborhood B̂ of P ′ in ŴD′ and two retractions by deformation

r : D′ → Λ and R : BD′ := Ψ̂(B̂)→ BΛ such that

(i) B̂ ∩ π̂−1(∂P) = B̂∂P , BD′ ∩ π−1
D (Λ) = BΛ and the following diagram is commutative:

B̂ Ψ̂−→ BD′
π̂ ↓ 	 ↓ πD
P ′ Ψ−→ D′ .

(ii) R and r commute with the fibration πD, i.e. πD ◦R = r ◦ πD;
(iii) for every leaf L of F|BD′ , the restriction R|L is a retraction by deformation of L onto

L ∩ BΛ;
(iv) every path γ on BD′ with endpoints lying on the fibre π−1

D (mΓ) of a point mΓ ∈ Γ is

homotopic inside BD′ to a path contained in BΓ := BD′ ∩π−1
D (Γ) if and only if the element

[πD ◦ R ◦ γ]Λ of π1(Λ,mΛ) belongs to the subgroup generated by the loop µ defined in
Equation (7);

(v) a path γ lying on a leaf L of FBD′ with endpoints on π−1
D (mΓ) is homotopic inside L to a

path lying on BΓ ∩ L if [πD ◦R ◦ γ]Λ belongs to the subgroup 〈µ〉 of π1(Λ,mΛ).

Proof. Let Φ(t, z) the flow of the radial vector field R = z ∂
∂z on C. If z ∈ P ′ we define

ζ(z) = inf{t ∈ R>0 |Φ(t, z) /∈ P ′}. The map

ĥ : P ′ × [0, 1] −→ P ′ , ĥ(z, t) := Φ (t ς(z), z)

is a homotopy defining a retraction by deformation r̂ := h(·, 1) : P ′ → ∂P. Its restriction
to ∂Dε × [0, 1] is a homeomorphism sending each segment {z} × [0, 1] onto the intersection

of the half line R≥0 · z with P ′. We define r := Ψ̂ ◦ r̂ ◦ (Ψ|Γ)−1. The vector field R lifts

(via π̂) to a unique vector field R̂ tangent to the foliation F̂ . Let Φ̂(t,m) be its flow and

denote ς ′(z) := inf{t ∈ R>0 | Φ(−t, z) ∈ Dε}. The map (m, t) 7→ Φ̂(−tς ′(π̂(m)),m) define

a homeomorphism of B̂∂P′ × [0, 1] onto a neighborhood B̂ of P ′ in ŴD′ . Consider now the
homotopy

Ĥ : B̂ × [0, 1] −→ B̂ , Ĥ(m, t) := Φ̂(tς(π̂(m)),m) , π̂ ◦ Ĥ = ĥ ◦ π̂ ,

which lifts h̃, and the homotopy

Ĥ ′ : B̂ × [0, 1] −→ B̂ , Ĥ ′(m, t) := Φ̂(−tς ′(π̂(m)),m) , π̂ ◦ Ĥ ′ = ĥ′ ◦ π̂ ,

which lifts the homotopy

ĥ′ : ∂Dε × [0, 1] −→ P ′ , ĥ′(z, t) := Φ (−t ς ′(z), z) .
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Clearly the restrictions

Ĥ ′|B̂∂P×[0,1]
: B̂∂P × [0, 1]

∼−→ B̂ and Ĥ|B̂∂Dε×[0,1] : B̂∂Dε × [0, 1]
∼−→ B̂ ,

are homeomorphisms which conjugate the product foliations F̂|B̂∂P × [0, 1] and F̂|B̂∂Dε × [0, 1] to

the foliation F̂ , where B̂∂Dε = Ψ̂−1(BΓ) ⊂ π̂−1(∂Dε). The maps

R̂ := Ĥ(·, 1) : B̂ −→ B̂∂P and R̂′ := Ĥ ′(·, 1) : B̂ −→ B̂∂Dε
are retractions by deformation inducing retractions by deformation on each leaf of F̂ lifting
respectively r̂ and

r̂′ := ĥ′(·, 1) : P ′ −→ ∂Dε .
Since the restriction of Ψ̂ to B̂ \ B̂∂Dε is a homeomorphism onto BD′ \BΛ, the map Ψ̂ ◦ R̂ ◦ Ψ̂−1 :
BD′ \ BΛ → BΛ is well defined and it extends to a map R : BD′ → BΛ by being the identity

on BΛ. Indeed, the restriction of Ψ̂ to each subset B̂k := B̂ ∩ π̂−1
({

2πk
4g < arg(z) < 2π(k+1)

4g

})
and B̂′k := B̂ ∩ π̂−1

D

({
arg(z) = 2πk

4g

})
, k = 0, . . . , 4g − 1, is a homeomorphism onto their image.

Moreover R̂(B̂k) = B̂k ∩ B̂∂P , R̂(B̂′k) = B̂′k ∩ B̂∂P . Therefore the restriction of Ψ̂ ◦ R̂ ◦ Ψ̂−1 to

each subset Ψ̂(B̂k), Ψ̂(B̂′k) is well-defined and continuous. All these restrictions coincide with

the identity map on BΛ because R̂ = Id on Ψ̂−1(BΛ) = B̂∂P . Thus R : BD′ → BΛ is a retraction
by deformation satisfying Properties (ii) and (iii) of the lemma. We shall see now that R also
satisfies Property (iv).

Let γ : [0, 1] → BD′ , γ(0), γ(1) ∈ π−1
D (mΓ), mΓ ∈ Γ, be a path homotopic to another

path γ1 lying on BΓ. It follows from (8) that we can take for πD ◦ γ1 a power Γ̆ν of the

simple parametrization Γ̆(t) := Ψ(εe2iπt), t ∈ [0, 1] of Γ which satisfies r ◦ Γ̆ = µ. Hence
πD ◦R ◦ γ = r ◦ πD ◦ γ = µν .

Conversely, let γ : [0, 1]→ BD′ , γ(0), γ(1) ∈ π−1
D (mΓ), be a path such that πD◦R◦γ = r◦πD◦γ

is homotopic to µν . We consider a path ξ contained in BΓ having the same endpoints as γ and
such that πD ◦ ξ ∼ Γ̆. The loop δ := γ∨ξ−ν satisfy [πD ◦ R ◦ δ]Λ = 0. Consequently R ◦ δ is
homotopic in BΛ to a loop lying on the fibre π−1

D (mΛ). Since R is a retraction by deformation
commuting to the projection πD, we obtain that δ is homotopic inside BD′ to a loop δ1 lying on
π−1
D (mΓ). Hence γ is homotopic inside BD′ to the path δ1∨ξ

−ν which is contained in BΓ.
Now, we shall prove Property (v) from the following assertion:

(?) Let δ be a path lying on a leaf L of F|BΛ
such that πD ◦ δ is homotopic to µν . Then there

exists a path χ homotopic to δ inside L such that πD ◦ χ = µν .

We can apply this property to the path δ := R ◦ γ because πD ◦ R ◦ γ is homotopic to µν

for some ν ∈ Z by hypothesis. Thus we obtain a path χ homotopic to R ◦ γ inside L ∩ BΛ such

that πD ◦ χ = µν . By applying Lemma 3.1 to it we get a continuous Ψ̂-lift χ̂ lying on the leaf

L̂ = Ψ̂−1(L) of F̂ . On the other hand, by using the foliated retraction R we construct two paths
ξ0, ξ1 : [0, 1]→ L such that ξ0(0) = γ(0), ξ0(1) = R ◦ γ(0), ξ1(0) = R ◦ γ(1), ξ1(1) = γ(1) and

γ ∼L ξ0∨(R ◦ γ)∨ξ1 ∼L ξ0∨χ∨ξ1 = Ψ̂ ◦ (ξ̂0∨χ̂∨ξ̂1)

for the unique continuous Ψ̂-lifts ξ̂0, ξ̂1 of ξ0 and ξ1 respectively. Moreover |ξ0| and |ξ1| are

contained in orbits of R̂ and clearly ξ̂0∨χ̂∨ξ̂1 is homotopic in L̂ to R̂′ ◦ χ̂. Then γ is homotopic

in L to Ψ̂ ◦ χ̂ which is contained in BΓ ∩ L.

In order to prove Assertion (?) we consider a path δ : [0, 1] → L satisfying the hypothesis
of this assertion. Without loss of generality we can assume that δ is smooth and transverse to
the fibre π−1

D (mΛ). We get a subdivision t1 = 0 < t2 < · · · < tq′+1 = 1 of the interval [0, 1],
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such that each curve δ([tj , tj+1]) is contained in a single block Bτ(j). The endpoints mj := δ(tj)
and mj+1 := δ(tj+1) of the path δj := δ|[tj ,tj+1] project by πD onto the point mΛ and the image
of δj is the closed segment Lj of the leaf L (of real dimension one) delimited by the points mj

and mj+1. The projection of the path δj by πD is a loop based on mΛ with image |ατ(j)| or
|βτ(j)| depending on the parity of τ(j). Moreover, the equality πD ◦ δj(t) = mΛ only holds for
t = tj and t = tj+1. Thus, if we assume that πD ◦ δj is not null-homotopic then there exists a

homotopy inside |πD ◦δj | between πD ◦δj and one of the loops ατ(j), α
−1
τ(j), βτ(j) or β−1

τ(j). Clearly

this homotopy lifts to a homotopy inside Lj between δj and a new path ρj . Finally, there exists
q ≤ q′ such that δ is homotopic inside L to the path

ρ := ρ1∨ · · · ∨ρq , πD ◦ ρj =: µτ(j) ∈ {ατ(j) , α
−1
τ(j) , βτ(j) , β

−1
τ(j) } .

Let us consider the word

M(δ) := µτ(1) µτ(2) · · ·µτ(q)

composed by the signs of the alphabet

A := {α1, α
−1
1 , . . . , αg, α

−1
g , β1, β

−1
1 , . . . , βg, β

−1
g } .

By a sequence of moves of type

(9) u1 · · ·uk v v−1 uk+1 · · ·uN → u1 · · ·uk uk+1 · · ·uN , uj , v ∈ A ,

u1 · · ·uk v v−1 uk+1 · · ·uN ← u1 · · ·uk uk+1 · · ·uN , uj , v ∈ A ,

we can transform the word M(δ) in a unique word M(δ)red, called the reduced word associated
to M(δ), which do not contain any sub-word of length two of type v v−1, v ∈ A. The uniqueness
of M(δ)red follows from the solution of the word problem in a free group, cf. [6]. More precisely,
every element of the free group

π1(Λ,mΛ)
∼−→〈α̇1, . . . α̇g, β̇1, . . . β̇g | −〉 ,

can be written in a unique way in the form Ṁ := u̇1∨ · · · ∨u̇p, where M := u1 · · ·up, uj ∈ A is a
reduced word. Now we use the hypothesis that πD ◦ δ is homotopic inside Λ to a loop of type
µν . We have equality of reduced words:

M(δ)red = µν , µ := α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g .

Notice that we pass from M(δ) to M(δ)red by a sequence of suppression moves of type (9)

M0 = M(δ)→ · · · →Mq = M(δ)red , Mk = uk, 1 · · ·uk, nk , uk, j ∈ A .

To finish the proof it suffices to remark that

- to any suppression move we can associate a homotopy inside Λ between the loops

Mk := uk, 1∨ · · · ∨uk, nk

and Mk+1 := uk+1, 1∨ · · · ∨uk+1, nk+1
,

- if one of the paths ρj composing ρ satisfies µτ(j+1) = µ−1
τ(j+1), then there exists a homotopy

inside L between ρj∨ρj+1∨ρj+2 and a path ρ̃j+2 such that πD ◦ ρ̃j+2 = µτ(j).

�
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3.1.2. Checking the properties of Theorem 2.16. First of all, we will precise the construction of
the foliated block Bη(A) associated to the genus fundamental block A = D′. In the construction

made in the precedent section we take a conformal disk T ⊂ π−1
D (mΛ) of size small enough so

that it is contained in the open 4-Milnor tube Tη. Since BΓ is a subset of type multi-suspension
we can apply to it the rabotage procedure described in [10, Definition 4.3.5] in order to obtain
a subset RΓ of BΓ of suspension type such that the inclusion RΓ ⊂ BΓ is rigid and verifies
RΓ#

F
BΓ. Then we define

Bη(A) := (BD′ \ BΓ) ∪RΓ.

Clearly the inclusion Bη(A) ⊂ BD′ is ∂-rigid.

We begin checking the properties of the part (I) in Theorem 2.16. In order to see the point
(1) we consider the following commutative diagram induced by the natural inclusions:

π1(T ∗η′(Λ)) −→ π1(Tη′(D′))
↓ ↓

π1(BΛ) −→ π1(BD′)
Remark 3.2 implies that the first vertical arrow is an isomorphism. The bottom horizontal arrow
is also an isomorphism because the map R in Lemma 3.3 is a deformation retract. By lifting
conveniently the retraction r to Tη′(D′) we see that the top horizontal arrow is also an isomor-
phism. The fourth arrow is also an isomorphism. Consequently the inclusion Tη′(D′) ⊂ BD′
is rigid. The inclusion Tη′(D′) ⊂ Bη(A) is also rigid. The fact that it is also ∂-rigid follows
immediately from the construction.

In order to show (2) we must prove Properties (B1)-(B4) of Definition 2.4:

(B1) ∂Bη(A) is incompressible in Bη(A) because the inclusion ∂T ∗η′(D′) ⊂ ∂Bη(A) is rigid and

∂T ∗η′(D′) is incompressible in T ∗η′(D′) thanks to Proposition 2.12.

(B2) The boundary ∂Bη(A) is transverse to F because it is of suspension type.
(B3) Since ∂Bη(A) has been obtained by the rabotage procedure from a multi-suspension type

subset BΓ, in order to prove the 1-F-connectedness of ∂Bη(A) inside Bη(A) it suffices to
show that BΓ#

F
BD′ because ∂Bη(A)#

F
BΓ. In order to prove this, we consider a leaf L of

BD′ and two paths a : [0, 1]→ BΓ and b : [0, 1]→ L which are homotopic in BD′ By point
(3) of Lemma 3.3 we deduce that [πD ◦ R ◦ b] ∈ 〈µ〉 ⊂ π1(Λ,mΛ). By applying point (4)
of Lemma 3.3 we obtain a new path c : [0, 1] → L ∩ BΓ which is homotopic to b inside L.
By transitivity, c is homotopic to a in BD′ . Since |a| and |b| are contained in BΓ which is
incompressible in BD′ we conclude that a is homotopic to c in BΓ.

(B4) After point (2) of Lemma 3.3 we know that every leaf L of Bη(A) is a deformation retract

of L∩BΛ, which outside of the fibre π−1
D (mΛ) is a suspension type subset. We deduce that

every leaf L ∩ BΛ of F|BΛ
is incompressible.

Properties (3) and (4) of Part (I) are trivial because in this case nA = 1. To see (5) we define
first ΥD′ as the holonomic transport of π−1

D (mΛ) ∩ T ∗η1
(D′) along the oriented segment join-

ing the point mΛ to mΓ. It is clear that ΥD′ ∩ Bη(A) is incompressible in Bη(A) and that
SatF|Bη(A)

(ΥD′ ,Bη(A)) = Bη(A). On the other hand, ΥD′ ∩ Bη(A)#
F
∂Bη(A)#

F
Bη(A) because

∂Bη(A) is of suspension type.

To prove Part (II) of Theorem 2.16 we recall that if A = D′ is not an initial block then the
holonomy transformation hΓ associated to Γ is linearizable. Therefore, there exists a conformal
disk Σ ⊂ π−1

D (mΓ) such that hΓ(Σ) ⊂ Σ or h−1
Γ (Σ) ⊂ Σ. We define V1 = VΣ,Γ and we begin the

precedent construction with the conformal disk T ⊂ π−1
D (mΛ) obtained by holonomic transport
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of V1 ∩ π−1
D (mΓ) along the segment joining mΓ to mΛ, choosing mΛ as the breaking point of

V1. Indeed, from this choice the precedent construction shows that V1 is of suspension type and
∂Bη(A) = V1#

F
V. Thus, we have proved point (3’). Since nA = 1 we can take ρA(c) = c to

obtain trivially (4’).

Finally, by definition a genus block is not a breaking block, so Part (III) do not apply in this
case.

3.2. Dicritical type foliated adapted block. We fix a fundamental block A ⊂ D associated to
a dicritical irreducible component D of F of genus g and valence nA ≥ 1, given by Definition 2.11.
Condition (c) in Definition 1.2 implies that there are no dead branches adjacent to D.

Each connected component of ∂A is the boundary of a closed diskD
(i)
si contained in an adjacent

component D(i) of D and D ∩ D(i) = {si}, i = 1, . . . , nA. Let Vi be the given suspension sets

over ∂D
(i)
si . Since the holonomy of ∂D

(i)
si is the identity we can choose a saturated subset V ′i ⊂ Vi

having c(V ′i) ≤ ε, i.e. satisfying Condition (4”). The saturation condition of V ′i inside Vi implies
that each V ′i is of suspension type and satisfies Property (3”).

Next we define BV′i as the saturation of V ′i ⊂ Vi by F inside π−1
D(i)(D

(i)
si ), where πD(i) is the

Hopf fibration over the component Di. We put BV′ :=
nA⋃
i=1

BV′i and we finally define

Bη(A) :=
(
π−1
D (D \ BV′) ∩ T ∗η (A)

)
∪ (BV′ \D) .

Recall that we have choose Hopf fibration πD to be constant along the leaves of F|WD
, see Point

(c) of Remark 2.2.
In order to prove Part (III) of Theorem 2.16 it suffices to show Assertions (1) and (2) of Part

(I) because ∂Bη(A) =
nA⋃
i=1

V ′i is automatically satisfied by construction. It is clear that Bη(A)

is a tubular neighborhood of A so that Bη(A) contains T ∗η′(A) for η′ > 0 small enough. This

inclusion is ∂-rigid because the inclusions ∂Bη(A) ⊂ ∂T ∗η (A) and ∂T ∗η′(A) ⊂ ∂T ∗η (A) are rigid

and, on the other hand, we can easily see that Tη′(A) ⊂ Bη(A) is a retract by deformation and
consequently this last inclusion is also rigid.

To prove that Bη(A) is a F-adapted block it suffices to observe the following assertions
concerning properties (B1)-(B4) of Definition 2.4:

(B1) By using Proposition 2.12,

π1(∂Bη(A)) ∼= π1(∂T ∗η (A)) ↪→ π1(T ∗η (A)) ∼= π1(Bη(A))

after the ∂-rigidity of Bη(A) ⊂ T ∗η (A) that we have seen before.

(B2) The boundary ∂Bη(A) =
nA⋃
i=1

V ′i is a suspension type subset over ∂A and consequently it is

transverse to F .
(B3) Each connected component of

⋃
L∈F

(L ∩ ∂Bη(A)) is diffeomorphic to the product D∗ × D∗

endowed with the horizontal foliation. Consequently, we have that ∂Bη(A)#
F
Bη(A).

(B4) Every leaf L of F|Bη(A) is diffeomorphic to D∗ and a generator of π1(L) is sent to the
element c contained in the center of the group π1(Bη(A)) which is isomorphic to the direct
sum of Zc and a free group of rank 2g + nA − 1.
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4. Proofs of the main results

4.1. Proof of Theorem A. Recall that the break graph associated to (F ,D) was obtained
by considering the complement of the breaking elements R inside GD, see Introduction. We
consider the graph Ǧ obtained by eliminating the part of the break graph associated to (F ,D)
corresponding to the dead branches of D. After Condition (e) in Definition 1.2 and Hypothesis
(G) on (F ,D), each connected component Λ of Ǧ is a tree with at most one vertex corresponding
to an initial component C ⊂ C. We apply Part (I) of Theorem 2.16 to the initial block AC
associated to C. If Λ does not contain any initial element then we begin the construction from a
fundamental block A associated to an arbitrary element of Λ by applying Part (II). To do that we
choose some suspension type initial boundary V with c(V) small enough. Since the fundamental
blocks A 6= AC corresponding to elements of Λ are not initial blocks we can apply to them by
adjacency order Part (II) of Theorem 2.16 from the suspension type boundary obtained in the
precedent step. Since Λ is finite this procedure stops. In this way we obtain a F-adapted block
for each fundamental block of D except for the breaking blocks of D. The size and roughness of
the boundary of the F-adapted block obtained at each step of this inductive process is controlled
by those of the block constructed in the precedent step. If we choose the size and roughness
sufficiently small at the beginning then we have finite roughness at each step of the induction, see
[10, §3.2] for more details. We make the boundary assembly of these F-adapted blocks obtaining
a connected subset Bη(Λ) of T ∗η (Λ) for each connected component Λ of Ǧ.

In order to make the boundary assembly of all these sets Bη(Λ) we need also to consider F-
adapted blocks associated to the breaking elements ρ ∈ R adjacent to two connected components
Λ and Λ′ of Ǧ, which we construct from the suspension type boundaries of Bη(Λ) and Bη(Λ′)
by using Part (III) of Theorem 2.16. Notice that the case Λ = Λ′ is not excluded. In fact, this
situation could happen when ∂Bη(Λ) is not connected.

In this way we obtain a foliated boundary assembly

Bη =
⋃

Λ⊂Ǧ

Bη(Λ) ∪
⋃
ρ∈R
Bη(ρ) ⊂ T ∗η .

We take U1 = E(Bη1
) ∪ D. There exists η2 > 0 such that T ∗η2

⊂ Bη1
and we define

U2 = E(Bη2) ∪ D ⊂ U1.

By induction we construct a decreasing a sequence (ηn) tending to zero such that

Un := E(Bηn) ∪ D ⊂ Un−1.

Put Υ := tAΥA, where A varies in the set of fundamental blocks of D which are not breaking
blocks. To finish it suffices to remark the validity of the following assertions:

(i) The inclusion U∗n+1 ⊂ U∗n is rigid by Remark 2.10, Corollary 2.9 and Property (1) of
Theorem 2.16.

(ii) Every leaf L of F |U∗n is incompressible after Property (2) of Theorem 2.16 by using Local-
ization Theorem 2.5.

(iii) Thanks to Property (5) of Theorem 2.16 each irreducible component of Y ∗n is incompress-
ible in the corresponding F-adapted block, which is incompressible in U∗n by Localization
Theorem 2.5. Hence Y ∗n is incompressible in U∗n. Let Ω be the union of all the F-adapted
blocks associated to non-breaking fundamental blocks of D. Thanks to Property (5) in
Theorem 2.16 we have SatF (Υ ∩ Bη,Ω) = Ω. Clearly, the connected components of ∂Ω
are exactly the connected components of the boundary of all F-adapted blocks associated
to breaking fundamental blocks of D. Finally, for each F-adapted block B associated to a
fundamental breaking block A of D we have that B \ SatF (∂B,B) is a nodal or dicritical
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separator according to whether A is a dicritical block or a singularity block (necessarily
associated to a nodal singularity).

(iv) Property (iv) of Theorem A is equivalent to the relation Y ∗n #
F
U∗n. This follows from

tAΥA#
F
Bη because ΥA#

F
Bη(A) by Theorem 2.16, Bη(A)#

F
Bη by Localization Theorem 2.5

and the transitivity of the relation #
F

.

(v) Let Un be one of the open sets that we have constructed. We still denote by F̃Un the the

pull-back by the universal covering qUn : Ũn → U∗n of the foliation F restricted to U∗n and

we denote Q̃Un its leaf space. It is easy to see that the open subset of Q̃Un corresponding to

leaves of F̃Un projecting onto an open fixed separator has a natural structure of Hausdorff

one-dimensional complex manifold. To obtain a complete holomorphic atlas on Q̃Un we
proceed as follows. From the fact that Y ∗n is incompressible and 1-F-connected in U∗n
follows that each connected component Ỹα ∼= D of q−1

Un
(Y ∗n ) intersects every leaf of F̃Un in

at most one point. Consequently, the open canonical maps τα : Ỹα → Q̃Un , sending each

point p ∈ Ỹα to the leaf Lp of F̃Un passing through p, are injective. Hence the inverse maps

τ−1
α are holomorphic charts on Q̃Un . We achieve the proof by noting that Un\SatF (Y ∗n , U

∗
n)

is a disjoint finite union of nodal and dicritical separators and that the transition functions
induce the holonomy pseudo-group of F ; hence they are holomorphic.

4.2. Proof of Corollary A. We must check that the total transform of Z by the minimal reduc-
tion map π of F is an adapted divisor of (π∗F , π−1(0)). Conditions (a) and (b) of Definition 1.2
are obviously fulfilled. Condition (d) can not occur by the existence of local separatrices.

To prove Condition (c) notice that on a neighborhood of a dead branch with branching point
lying on a dicritical component all the leaves are compact. This situation can not happen because
it does not exist compact analytic curves in C2.

To prove Condition (e) we will use the well-known fact that the total divisor of the desingular-
isation of a germ of curve (X, 0) contains at most one irreducible component of the exceptional
divisor adjacent to at least two dead branches. We take for X the union of the isolated separatri-
ces of F and two non-isolated separatrices for each dicritical component of π∗F . We can easily
check that the minimal desingularisation morphism of X coincide with π, see [2, Theorem 2].
Then there exists at most one initial component of (π∗F , π−1(0)).

4.3. Proof of Theorem B. As we have already point out in the introduction, the equivalences
(1)⇔ (1′) and (2)⇔ (2′) follow from the main result of [15] thanks to Condition (R). Since the
implication (2) ⇒ (1) is obvious it only remains to prove implications (1) ⇒ (3) ⇒ (4) ⇒ (2).
To do that we will make a strong use of the notions and statements introduced in [12].

(4)⇒ (2): Conditions (a) and (b) in (4) imply that if D ⊂ D is a dicritical component of
(F ,D) then ϕ(D) is a dicritical component of (F ′,D′) and if s ∈ D is a nodal singularity of
F then ϕ(s) is a nodal singularity of F ′. Consequently ϕ sends connected components of the
cut divisor Dcut defined in the introduction into connected components of D′cut. On the other

hand, by assumption (ψ, ψ̃, h) := (ϕ|Σ, ϕ̃|Σ̃, h) is a realization of the S-conjugation (ϕ, ϕ̃, h)

between the monodromies mF and mF
′

over S-collections of transversals (Σ,Σ′) in the sense of
[12, Definition 3.6.1]. Moreover, by definition it satisfies trivially the additional condition

ψ̃• = ϕ̃• : π0(Σ̃)→ π0(Σ̃′)

required in the Extension Lemma of [12, Lemma 8.3.2], whose proof is also valid for genus blocks.
If Dcut is not a tree we choose singularity blocks Bα such that Dtree := Dcut \

⋃
Bα does not
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contain any cycle of components. Let B′α be the singularity block of D′cut corresponding to Bα
by ϕ and put D′tree := D′cut \

⋃
B′α. By applying iteratively the Extension Lemma beginning

by (ψ, ψ̃, h) we obtain a realization (ψ0, ψ̃0, h) of (ϕ, ϕ̃, h) over a union W of foliated adapted
blocks covering Dtree and D′tree.

Now we fix transversal disks Υ,Θ to the local separatrices associated to the singularity block
Bα contained in the boundary of W . Extension Lemma implies that ψ0 is excellent and that
ψ0 and ϕ coincide over D. Consequently, Υ′ := ψ0(Υ) = ϕ(Υ) and Θ′ := ψ0(Θ) = ϕ(Θ) are

transversal disks to the local separatrices associated to the singularity block B′α. Let (ψ1, ψ̃1, h)

be the restriction of the realization (ψ0, ψ̃0, h) to Υ.

Applying again Extension Lemma to the realization (ψ0
|Θ, ψ̃

0
|Θ̃
, h) for the block Bα we obtain

a new realization whose restriction (ψ2, ψ̃2, h) to Υ satisfies ψ2(Υ) = Υ′,

ψ̃1
• = ϕ̃• = ψ̃2

• : π0(Υ̃)→ π0(Υ̃′),

and the commutativity of the following diagrams

Υ̃α ↪→ QF

ψ̃i ↓ ↓ h
Υ̃′ϕ̃•(α) ↪→ QF ′

for all α ∈ π0(Υ̃) and i = 1, 2. Since the horizontal arrows of these diagrams are monomorphisms

we deduce that (ψ1, ψ̃1, h) = (ψ2, ψ̃2, h). Consequently, we can glue these realizations to obtain

a new realization (Ψ, Ψ̃, h) defined in a union of adapted foliated blocks covering Dcut.
Finally, it only remains to extend Ψ to the dicritical components and the nodal singularities

in order to obtain a global realization of (ϕ, ϕ̃, h) which will be the desired S-transversely holo-
morphic conjugation between (F ,D) and (F ′,D′). In fact, the extension to nodal singularities
has been described in [12, §8.5].

Now we fix dicritical components D ⊂ D and D′ := ϕ(D) ⊂ D′. On neighborhoods of
these components the foliations F and F ′ are disk fibrations. Because D and D′ have the same
self-intersection number, we can identify two tubular neighborhoods of D and D′ endowed with
the restriction of the foliations F and F ′ with a tubular neighborhood of the zero section of
the normal bundle of D in M endowed with the natural fibration. Thus, we can consider the
realization to be extended as a map from a disjoint union K of closed disks contained in D
to Aut0(D, 0). We can extend it to a union K ′ of bigger disks containing K, being a constant
automorphism of the fibres over ∂K ′ and consequently to the whole dicritical component D
using the connectedness of Aut0(D, 0).

(1)⇒ (3): Let g : (U,D)
∼→ (U ′,D′) be a S-transversely holomorphic conjugation between

(F ,D) and (F ′,D′) and g̃ : Ũ → Ũ ′ a lifting to the universal coverings of U \ D and U ′ \ D′.
By [12, Remark 3.6.2] there exists a S-An←− isomorphism h : QF → QF ′ such that (g, g̃, h) is a

S-conjugation between the monodromies mF and mF
′
. Consider Σ a S-collection of transversals

for F and D+ a D-extended divisor. Using [12, Proposition 3.6.4] and by composing g by a
suitable F ′-isotopy Θt, having support on a neighborhood W ′ of g(Σ), we obtain an homeo-
morphism ϕ := Θ1 ◦ g such that Σ′ := ϕ(Σ) is a S-collection of transversals for F ′ and D′.
Now we choose D′+ as ϕ(D+). On the universal covering Ũ we also consider the lifting ϕ̃ of ϕ

which coincides with g̃ on the complementary of W̃ ′. Again by the same proposition, we see that
(ϕ, ϕ̃, h) is a S-conjugation of the monodromies realized over the S-collections of transversals Σ
and Σ′. It remains to check properties (a) and (b) of Point (3). First remark that ϕ maps iso-

lated separatrices of F into isolated separatrices of F ′ because we have the following topological
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characterization:

S is a non-isolated separatrix if and only if there is a family {Sj}j∈N of pairwise disjoint sepa-
ratrices such that every i, j ∈ N we have that Si is topologically conjugated to S and Si ∪ Sj is
topologically conjugated to S ∪ Si.

We deduce that D′+ is a D′-extended divisor. The last assertion of Condition (a) is trivially
satisfied by the topological conjugation ϕ. In (b) equality of Camacho-Sad indices follows from
Theorem 1.12 of R. Rosas if D is a nodal separatrix of F . Otherwise, ϕ is transversely holomor-
phic in a neighborhood of D and the desired equality is proved in [12, §7.2].

(3)⇒ (4): We apply the following result which will be proved later.

Lemma 4.1. Under the hypothesis of Point (3) there exists a germ of homeomorphism

ϕ : (M,D)→ (M ′,D′)
sending the strict transform of D+ into the strict transform of D′+ and a there is a lift ϕ̃ of ϕ to
the universal coverings of the complementaries of D and D′ satisfying the following properties:

(i) at each singular point of D+ the actions of ϕ and ϕ on the set of local irreducible components

of D+ coincide;
(ii) ϕ|Σ = ϕ|Σ and ϕ̃Σ̃ = ϕ̃|Σ̃;

(iii) ϕ̃∗ = ϕ̃∗ : Γ→ Γ′;

(iv) ϕ is excellent.

Properties (ii) et (iii) trivially imply that (ϕ, ϕ̃, h) is a S-conjugation between the monodromies

mF and mF
′

realized over the S-collections of transversals Σ and Σ′. From property (i) easily

follows Condition (a) of Point (4) because the strict transforms of D+ \ D and D′+ \ D allows
to identify the dicritical components of (F ,D) and (F ′,D′). Condition (b) of (4) follows from
Condition (b) of (3) for local separatrices D ⊂ D which are not contained in the exceptional
divisor E of E : M → M . Since the dual graph of E is a disjoint union of trees we can apply
the same argument of [12, §7.3] to the F-invariant part of D in order to obtain the equalities of
all Camacho-Sad indices corresponding by ϕ from those of the local separatrices of F and F ′.
Finally (iv) gives (c) in Point (4).

Proof of Lemma 4.1. Following the notations of Section 2.3, for 0 < η � η′ � ε � 1 we con-
sider an open 4-Milnor tube Tη (resp. T ′η′) associated to the divisor D+ := E−1(D+) (resp.

D′+ := E′−1(D′+)) and we denote by T (resp. T ′) the image by E (resp. E′) of its closure

in the neighborhood W (resp. W
′
) considered in Lemma 2.1. It is worth to notice that the

boundary of T is constituted by the closed 3-Milnor tube M = E(Mη) and a finite union of
solid tori whose boundaries are the connected components of ∂M. The same property holds for
T ′ and M′. In the neighborhood of each singular point s of D+ (resp. D′+) we consider an
euclidian metric given by holomorphic coordinates. The boundaries of the closed balls B(s, r)
centered at s with radius r are transverse to M if 0 < r ≤ 2ε. We define a collar piece of T
or M as the intersection of B(s, 2ε) \B(s, ε) with T or M. The connected components of the
adherence of the complementary of the collar pieces of T or M are called essential pieces of T
or M. A continuous map between M and M′ or T and T ′ will be called piece-adapted if the
image of a piece is contained in a piece and the image of the boundary of a piece is contained in
the boundary of a piece.
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First step. Without loss of generality we can assume that ϕ(T ) ⊂ T ′ and that any essential

piece Ts of T containing a singular point s of D+ is mapped into an essential piece T ′s′ of T
containing also a singular point s′ of D′+. Using the local conical structures of the divisors
at their singular points and the retraction T ∗ := T \ D+ → M defined by the vector field ξ
considered in Section 2.3, we can adapt the constructions of [11, Section 4.1] and a variant of
[11, Lemma 4.6] to obtain a piece-adapted continuous map ψT : T ∗ →M′ ⊂ T ′∗ such that

(a) ψT is homotopic to ϕ|T ∗ as maps from T ∗ into T ′∗ by a homotopy preserving all essential

pieces associated to the singularities;
(b) the restriction of ψT to each connected component of a piece of M is a homeomorphism

onto a connected component of a piece of M′ which respect the circle fibrations considered
in Lemma 2.1.

We define ψ as the restriction of ψT to M.

Second step. For any essential piece Mα of M, the part of the proof of the main result of
[11] corresponding to Sections 4.2 to 4.4 gives us a homotopy, which preserves the boundaries,
between the continuous map ψ|Mα

and a homeomorphism ψα :Mα →M′α = ψ(Mα) such that

(a) ψα extends to a homeomorphism Ψα : Tα → T ′α between the corresponding pieces of T and
T ′ containing Mα and M′α;

(b) Ψα is excellent in the sense of [11, Definition 2.5]; in particular, the restriction of Ψα to ∂Tα
conjugates the disk fibrations considered in Lemma 2.1.

Third step. Using the product structure, it is straightforward to construct homotopies on
the collar pieces of M gluing the previous homotopies defined in the essential pieces of M.
In this way we obtain a piece-adapted continuous map ψ′ : M → M′ whose restriction to
each essential Mα coincides with the homeomorphism ψα but whose restriction to any collar
piece is not necessarily a homeomorphism. However, up to deforming ψ′ by suitable homotopies
with support on the collar pieces provided by [18, Theorem 6.1] we can assume that ψ′ is a
piece-adapted global homeomorphism.

It remains to extend ψ′ to an excellent homeomorphism Ψ between T and T ′ possessing a

lifting Ψ̃ to the universal coverings of T \ D and T ′ \ D′ fulfilling properties of Lemma 4.1.
On each essential piece Tα we define Ψ as Ψα constructed in second step. Since the restriction
of Ψα to the boundary of the essential pieces conjugates the disk fibrations, we can apply the
techniques given in [11, Sections 4.4.2 and 4.4.4] to obtain the desired extension Ψ. In addition,
it is not difficult to modify Ψ by an excellent isotopy in order to have Ψ|Σ = ϕ|Σ : Σ → Σ′.

Classically there exists a lifting Ψ̃ to the universal coverings T̃ and T̃ ′ of T \D and T ′ \D′ such

that Ψ̃∗ = ϕ̃∗ : Γ→ Γ′.
Moreover, since the restriction of ϕ and Ψ to each singular pieceMα are related by a homotopy

localized in Mα it follows that

ϕ̃• = Ψ̃• : π0(T̃α)→ π0(T̃ ′α).

Thanks to this last equality we can apply the procedure described in [12, Section 8.4] in order to

modify (Ψ, Ψ̃) by Dehn twists to obtain a new pair (ϕ, ϕ̃) which satisfy the same properties (iii)
and (iv) and fulfills also the equality

ϕ̃• = ϕ̃• : π0(Σ̃)→ π0(Σ̃′).
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Up to making an additional Dehn twist if necessary we obtain that ϕ̃|Σ = ϕ̃|Σ̃, showing Prop-

erty (ii).
Since Property (i) follows from our construction, the proof of the lemma is achieved. �
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