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INDEX OF SINGULARITIES OF REAL VECTOR FIELDS

ON SINGULAR HYPERSURFACES

PAVAO MARDEŠIĆ

...with affection and respect,
for all the pleasure of working with Xavier

Abstract. Gómez-Mont, Seade and Verjovsky introduced an index, now called GSV-index,

generalizing the Poincaré-Hopf index to complex vector fields tangent to singular hypersur-
faces. The GSV-index extends to the real case.

This is a survey paper on the joint research with Gómez-Mont and Giraldo about calcu-

lating the GSV-index IndV±,0(X) of a real vector field X tangent to a singular hypersurface

V = f−1(0). The index IndV±,0
(X) is calculated as a combination of several terms. Each

term is given as a signature of some bilinear form on a local algebra associated to f and X.
Main ingredients in the proof are Gómez-Mont’s formula for calculating the GSV-index on

singular complex hypersurfaces and the formula of Eisenbud, Levine and Khimshiashvili for

calculating the Poincaré-Hopf index of a singularity of a real vector field in Rn+1.

1. Introduction

This paper is a survey of the joint work with Xavier Gómez-Mont and Luis Giraldo spread
over some 15 years. We give a formula for calculating the index of singularities of real vector
fields on singular hypersurfaces. Some partial results are published in [8], [10], [11], [12].

In [13], Gómez-Mont, Seade and Verjovsky studied vector fields tangent to a complex hyper-
surface with isolated singularity. They introduced a notion of index, now called GSV-index at a
common singularity of the vector field and the hypersurface (see also [1]). It is a kind of relative
version of the Poincaré-Hopf index at a singularity. A natural question is how can one calculate
this index. Complex case was studied first. It was solved by Gómez-Mont in his seminal paper
[6]. Gómez-Mont’s formula expresses the GSV index via dimensions of certain local algebras.
The GSV index can be generalized to the real case. More precisely, depending on the side of the
singular hypersurface, there are two GSV indices. Real case, is more difficult than the complex
case since in the real case a simple singularity can carry the index +1 or −1, whereas in the
complex case all simple singularities count as +1.

In the absolute real case Eisenbud, Levine and Khimshiashvili expressed the Poincaré-Hopf
index of a vector field in terms of the signature of a bilinear form.

Our result in the relative real case expresses the GSV-index of a real vector field on a singular
variety as a sum of certain terms. Each term is a signature of a non-degenerate bilinear form on
some local algebra.

Our proof has two essential ingredients: on one hand Gomez-Mónt’s result in the singular
complex case and on the other hand the Eisenbud, Levine, Khimshiashvili’s result in the real
absolute case.

http://dx.doi.org/10.5427/jsing.2014.9j
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1.1. Real absolute case. Let us recall first the definition of the Poincaré-Hopf index of a
singularity of a real vector field in Rn+1. Let

(1) X =

n∑
i=0

Xi ∂

∂xi

be a smooth vector field in Rn+1 having an isolated singularity at the origin X0 = 0. One can
identify the vector field X with a mapping X : (Rn+1, 0) → (Rn+1, 0). Taking a small sphere
Sn around the origin, the vector field X induces a map N = X

||X|| : Sn → Sn, where Sn is the

unitary sphere in Rn+1. The Poincaré-Hopf index Ind0(X) of the vector field X at the origin
is defined as the degree of N . That is, Ind(X, 0) is the number of pre-images of generic points
taken with orientation.

Example 1. Let X be the vector field X(x, y) = x ∂
∂x + y ∂

∂y in R2 having a node at the origin

and let Y be the vector field Y (x, y) = x ∂
∂x − y

∂
∂x having a saddle at the origin.

Then Ind0(X) = 1 and Ind0(Y ) = −1.

1.2. Complex absolute case. Consider the complex n-dimensional space Cn, with complex
coordinates x1, . . . , xn and a complex vector field X of the form X =

∑n
i=0X

i ∂
∂xi

. We can

identify Cn with R2n. With this identification a holomorphic vector field on Cn becomes a
smooth real vector field on R2n and one can apply the previous definition of the Poincaré-Hopf
index Ind0(X) to a singularity of a holomorphic vector field. Note that not every smooth real
vector field on R2n comes from a holomorphic vector field on Cn. By holomorphy, a holomorphic
vector field seen as a map preserves orientation. Hence the index of a singularity of a holomorphic
vector field is necessarily positive.

Example 2. Let n = 1 and let X = x ∂
∂x and Y = x2 ∂

∂x be vector fields in C. Then Ind0(X) = 1
and Ind0(Y ) = 2.

In the complex case, the Poincaré-Hopf index is simply the multiplicity. One counts how
many points are hidden at the singularity at the origin.

2. Definition of the GSV-index in the complex and real case

2.1. Smooth points. Let now f : (Rn+1, p)→ (R, 0) be a germ of an analytic function. Then
V = f−1(0) is a germ of a hypersurface at p. We say that a vector field defined in a neighborhood
of p ∈ V is a vector field tangent to V , if there exists an analytic function h such that

(2) X(f) = fh.

The function h is sometimes called the cofactor of X. Assume first that p ∈ V is a regular point
of f . Then the variety V is smooth in a neighborhood of p. Let x = (x1, . . . , xn) be a chart
of V in a neighborhood of p. We assume moreover that the orientation of ∇f, ∂

∂x1
, . . . , ∂

∂xn
is

positive. The chart x = (x1, . . . , xn) transports the vector field X to Rn. One then applies the
usual definition of the Poincaré-Hopf index. Thus we define the relative Poincaré-Hopf index
IndV,p(X) of a vector field tangent to a hypersurface, relative to the surface. It is easy to verify
that the definition is independent of the choices.

If f : (Cn+1, p) → (C, 0) is a germ of holomorphic function instead, p ∈ Cn+1 is a regular
point of f , V = f−1(f(p)) ⊂ Cn+1 is a complex hypersurface, and X a holomorphic vector
field tangent to V , one transports as previously the vector field to Cn and defines the relative
Poincaré-Hopf index IndV,p(X) in the complex case. Note that in the relative complex case, just
as in the absolute complex case, the relative index is always positive.
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2.2. Singular points, GSV-index in the complex case. Let as previously,

f : (Cn+1, 0)→ (C, 0)

be a germ of a holomorphic function. Assume now that p ∈ Cn+1 is an isolated singularity of f .
Then V = f−1(0) ⊂ Cn+1 is a complex hypersurface with isolated singularity at p. Let X be a
holomorphic vector field defined in a neighborhood of p ∈ Cn+1 tangent to V . That is, relation
(2) holds. In [13], Gómez-Mont, Seade and Verjovsky defined what is now called the GSV-index
of a vector field tangent to a singular variety at the singularity IndV,0(X).

In order to formulate the definition, let us first recall that the holomorphic function
f : (Cn+1, 0)→ (C, 0) having an isolated singularity at the origin defines a Milnor fibration:
f : B \ {0} → C∗, where B ⊂ Cn+1 is a small ball around the origin. Denote Vε = f−1(ε). For
ε 6= 0 small, close enough to zero, all fibers Vε ∩ B are isotopic. Note that the vector field X
is not necessarily tangent to the fibers Vε ∩ B, for ε 6= 0. We modify X slightly, giving a C∞

vector field Xε tangent to a fiber Vε ∩B, for ε 6= 0 close to zero. We assume moreover that the
restriction of the vector field Xε on ∂(Vε ∩B) is isotopic to the restriction of the vector field X
to ∂(V ∩B) see [15] and [1].

The GSV-index can be defined by the formula

(3) IndV,0(X) =
∑

pi(ε)∈Vε∩B

IndVε,pi(ε)(Xε).

It follows from the Poincaré-Hopf theorem that the definition is independent of all choices.
Indeed, the Poincaré-Hopf theorem says that the right-hand side of (3) is the Euler characteristic
χ(Vε ∩B) up to some correction term given by the behavior of any vector field Xε on ∂(Vε ∩B).
Note that by the Milnor fibration theorem all regular fibers Vε ∩B, ε 6= 0, have the same Euler
characteristic. Moreover, the behavior of any vector field in Xε on ∂(Vε ∩B) is the same as the
behavior of X on ∂(V ∩B). Hence the correction term is independent of the choices.

For an equivalent topological definition using residues see Suwa [17].

Proposition 1. [1] Up to a constant K(V ) independent of the vector field X, the GSV-index
IndV,0(X) is characterized by the two following conditions:

(i): At smooth points p ∈ V , the GSV-index coincides with the relative Poincaré-Hopf
index IndV,p(X).

(ii): The GSV-index satisfies the law of conservation of number: For any holomorphic
vector field X ′ tangent to V sufficiently close to X the following law of conservation of
number holds:

(4) IndV,0(X) =
∑
pi∈V

IndV,pi(ε)(X
′).

Here pi are singularities of X ′ belonging to V , which are close to 0.

The constant can be determined by calculating the GSV-index IndV,0(X), for any vector field
tangent to V .

2.3. GSV-index in the real case. Let now f : (Rn+1, 0)→ (R, 0) be a germ of a real analytic
function. In this case, there is no Milnor fibration, or more precisely there are two Milnor
fibrations: one for strictly positive small values of ε and one for small strictly negative values of
ε. The Euler characteristic of all fibers Vε∩B, for ε small of the same sign are the same, but can
be different for ε positive or ε negative. (Think of f : R3 → R given by f(x, y, z) = x2 +y2−z2.)
As in the complex case, in the real case one now defines the GSV-index. More precisely, one
defines two GSV indices IndV ±,0(X), taking Vε, for ε positive or negative respectively.
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3. Calculating the GSV-index on complex hypersurfaces

A formula for calculating the GSV-index in the complex case was given by Gómez-Mont in [6].
Let us first define the principal ingredients. Let OCn+1,0 be the algebra of germs of holomorphic

functions at the origin. Let f ∈ OCn+1,0 be given, with f(0) = 0. Let fi = ∂f
∂zi

, i = 0, . . . , n, be
the partial derivatives of f . Assume that 0 is an isolated singularity of f . This means that the
algebra

(5) AC =
OCn+1,0

(f0, . . . , fn)

is finite dimensional. Here OCn+1,0 is the algebra of germs at 0 of holomorphic functions. The
dimension µ = dim(AC) is the Milnor number of the singularity. Let X be a germ of holomorphic
vector field at 0 ∈ Cn+1 given by (1). Assume that 0 is an isolated singularity of X. This means
that the algebra

(6) BC =
OCn+1,0

(X0, . . . , Xn)

is finite dimensional. Its dimension dim(BC) is the Poincaré-Hopf index Ind0(X) of the vector
field X in the ambient space.

Let V = f−1(0) be the hypersurface defined by f and assume that X is tangent to V . That
is, (2) holds for some holomorphic function h.

Theorem 1. [6] The GSV-index of a holomorphic vector field X tangent to a complex hyper-
surface V at an isolated singularity 0 is given by.

(7) IndV,0(X) =


dim BC

(f) − dim AC

(f) , if (n+1) even,

dimBC − dim BC

(h) + dim AC

(f) , if (n+1) odd.

We give the idea of proof of Theorem 1. As recalled in Proposition 1, the GSV index is defined
up to a constant by condition (i) and (ii) in Proposition 1. In [6] Gómez-Mont considers the
Koszul complex :

(8) 0→ Ωn−1
V,0 →Ωn−1

V,0 → · · · → Ω1
V,0 → OV,0 → 0,

where

(9) Ωi
V,0 =

ΩCn+1,0

fΩCn+1,0 + df ∧ ΩCi−1
n+1,0

.

is the space of relatively exact forms on V and the arrows in (8) are given by contraction of

forms by the vector field X. Gómez-Mont defines the homological index Indhom
V,0 as the Euler

characteristic of the complex (8):

(10) Indhom
V,0 =

n−1∑
i=0

(−1)i dimHi(K)

where Hi(K), i = 0, . . . , n−1, are the i-th homology groups of the Koszul complex (8). It is easy
to see that at smooth points the homological index coincides with the relative Poincaré-Hopf
index. In [7], Giraldo and Gómez-Mont show that the homological index verifies the law of
conservation (ii) of Proposition 1. Hence, the homological index coincides with the GSV-index
up to a constant K(V ). The homological index has the advantage that it can be calculated using
projective resolutions of a double complex. The horizontal complexes in the double complex are
obtained as a mapping cone induced by multiplication by the cofactor h in (2) in the Koszul
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complex in the ambient space. Vertical complexes are obtained as the mapping cone induced by
multiplication by f in the de Rham complex in the ambient space. To show that the homological
index Indhom

V,0 coincides with the GSV-index IndV,0, it is sufficient for each f to calculate both
indices on a vector field X associated to f . If the dimension of the ambient space (n+1) is even,
a natural candidate is the Hamiltonian vector field

(11) Xf =

(n+1)/2∑
i=1

[f2i
∂

∂x2i−1
− f2i−1

∂

∂x2i
].

If (n+ 1) is odd, Gómez-Mont uses the vector field

(12) Yf = f
∂

∂x0
+

(n+1)/2∑
i=1

[f2i
∂

∂x2i−1
− f2i−1

∂

∂x2i
]

in generic coordinates xi.

4. Calculating the Poincaré-Hopf index of vector fields in Rn+1

When studying the Poincaré-Hopf index in the real case, one has to take into account orien-
tation and not just multiplicity. This is done using some bilinear forms. We recall in this section
the results of Eisenbud, Levine [4] and Khimshiashvili [14] who solve this problem for real vector
fields in the ambient space Rn+1. This, in addition to Gómez-Mont’s formula for calculating the
GSV-index on complex hypersurfaces, are the two main ingredients in our study.

Let

(13) B =
ARn+1,0

(X0, . . . , Xn)
,

where ARn+1,0 is the algebra of germs at 0 of analytic functions in Rn+1. Let X, given by
(1), be a germ of analytic vector field with an algebraically isolated singularity. That is, the
singularity when considered over the complex domain remains isolated. Then the algebra B is

finite dimensional. Let J = det(∂Xi

∂xj
) ∈ ARn+1,0 be the Jacobian of the map defined by the

vector field X. It can be shown that the class [J ] ∈ B of J in B is non-zero. In [4] and [14]
Eisenbud, Levine and Khimshiashvili define a nondegenerate bilinear form < , >B,J as follows.

(14) B× B ·−→B L−→R.
Here the first arrow is simply multiplication in the algebra B and L is any linear mapping such
that L([J ]) > 0. Of course, the bilinear form depends on the choice of L. However its signature
sgn(B, J) = sgn(< , >B,J) does not. More precisely Eisenbud, Levine, Khimshiashvili show

Theorem 2. Let X be a germ at 0 of a real analytic vector field on Rn+1 having an algebraically
isolated singularity at the origin. Then the Poincaré-Hopf index IndRn+1,0(X) of the vector filed
X at the origin is given by

(15) IndRn+1,0(X) = sgn(B, J).

In order to prove the theorem, one has to prove that the signature sgn(B, J) coincides with
the Poincaré-Hopf index for simple singularities and verifies the law of conservation of number.
The first claim is easily verified. The key-point of the proof of the law of conservation of number
is the claim that the bilinear form < , >B,J is nondegenerate.

Once one knows that the form is nondegenerate, the law of conservation of number will
follow. Indeed, let X ′ be a small real deformation of the vector field X. As the bilinear form is
nondegenerate, its signature does not change by a small deformation. The local algebra B will
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decompose into a multilocal algebra B(X ′) of the same dimension concentrated in some real point
and complex conjugated pairs of points. One verifies that the contribution to the signature of
the pairs of complex conjugated points is zero. From the preservation of signature, there follows
the law of conservation of number once one knows that the bilinear form is nondegenerate.

The nondegeneracy of the form < , >B,J is a more general feature. It follows from the fact
that J generates the socle of the algebra B. By definition a socle in an algebra is the minimal
nonzero ideal of the algebra.

In general, let B be a real algebra. Assume that the socle of B is one-dimensional generated by
J ∈ B. We can define a bilinear form < , >B,J as above. Following the proof of Eisenbud-Levine
in [4] one verifies that the form < , >B,J is nondegenerate. Its signature does not depend on the
choice of the linear map L such that L(J) > 0.

Example 3. Consider for instance B =
AR2,0

(x2,y3) . Then the socle is one-dimensional generated by

J = xy2. The bilinear form < , >B,J is a nondegenerate form on the six dimensional space B.

If B =
AR2,0

(x2,xy2,y3) , then the socle is generated by xy and y2. It is not one-dimensional and one

cannot define a nondegenerate bilinear form as above.

5. Bilinear Forms on Local Algebras

Let B =
ARn+1,0

(X0,...,Xn) be a finite dimensional complete intersection algebra. This assures that

its socle is one-dimensional generated by the Jacobian J = det(∂Xi

∂xj
).

In [10], we observed that the Eisenbud-Levine, Khimshiashvili signature generalizes. Let
h ∈ B be arbitrary. Denote Ann(h) = {g ∈ B : gh = 0} the annihilator ideal of h. For B as
above, the algebra B

Ann(h) has a one-dimensional socle generated by the element J
h ∈

B
Ann(h) . The

assumption that (J) is minimal guarantees that J can be divided by h. We define the bilinear
form < , >B,h,J on B

Ann(h) by < b, b′ >B,h,J= L(bb′h), where L : B→ R is a linear mapping such

that L(J) > 0. In other words < b, b′ >B,h,J= Lh(bb′), where Lh(J
h ) > 0 is a linear mapping.

Note that in general the element J
h is not well defined in B. However, the ambiguity is lifted in

the quotient space B
Ann(h) .

We put

(16) sgn(B, h, J) = sgn < , >B,h,J= sgn(
B

Ann(h)
,
J

h
).

5.1. Signatures associated to a singular point of a hypersurface. Let now

f : (Rn+1, 0)→ (R, 0)

be a germ of analytic function having an algebraically isolated singularity at the origin. Let

fi = ∂
∂xi

be the partial derivatives of f . Consider the local algebra A =
ARn+1,0

(f0,...,fn) . It is a finite

complete intersection algebra. Its socle is one-dimensional generated by the Hessian

Hess(f) = det(
∂2f

∂xi∂xj
).

Define a flag of ideals in A

(17) Km = AnnA(f) ∩ (fm−1), m ≥ 1.

Note that

(18) 0 ⊂ K`+1 ⊂ · · · ⊂ K1 ⊂ K0 = A.
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Define a family of bilinear forms < , >f,m: Km ×Km → R by

(19) < a, a′ >f,m=<
a

fm−1
, a′ >, m = 0, . . . , `+ 1,

where < , >A,Hess(f) is the bilinear form defined in (14) for some linear map L with

L(Hess(f)) > 0.

In particular < a, a′ >f,0=< fa, a′ >A,Hess(f). The form < , >f,0 degenerates on AnnA(f), but
on K0/K1 defines a nondegenerate form. We have < a, a′ >f,1=< a, a′ >A,Hess(f). This form
degenerates on K2 = AnnA(f) ∩ (f) etc. In [12], we define

(20) σi = sgn < , >f,i, i = 0 . . . , `.

The signatures σi are intrinsically associated to the singularity 0 of f .

6. Main Result

The following theorem resumes our results [10], [11], [8], [12] about the calculation of the
GSV-index of singularities of real vector fields on hypersurfaces:

Theorem 3. Let f : (Rn+1, 0)→ (R, 0) be a germ of analytic function with algebraically isolated
singularity at the origin. Let X be an analytic vector field in Rn+1 having an algebraically isolated
singularity at the origin. Assume that X is tangent to V = f−1(0). That is X(f) = hf , for
some analytic function h. Then

(i): if (n+ 1) is even,

(21) IndV +,0(X) = IndV −,0(X) = sgn(B, h(X), J(X))− sgn(A, h(X),Hess(f)).

(ii): if (n+ 1) is odd,

(22) IndV ±,0(X) = sgn(B, h(X), J(X)) +K±,

where

(23) K+ =
∑
i≥1

σi, K− =
∑
i≥1

(−1)iσi.

7. Proof of the Main theorem

We give here the main ingredients of the proof of Theorem 3. The GSV-index is determined
by three properties:

(i): Value at smooth points
(ii): The law of conservation of number
(iii): Constants K± depending only on the orientation (side) V± of the variety V = f−1(0)

and not on the vector field.

One verifies easily that at smooth points of V , the formula is valid. Indeed, from the tangency
condition there follows (f) ⊂ Ann(h). In smooth points the converse is also true. Hence
Ann(h) = (f). Next, working in a local chart at smooth points one shows that sgn < , >B,h,J
gives the relative Poincaré-Hopf index of the vector field. Then, one has to show that our
formulas (21) and (22) verify the law of conservation of number. Some parts are easier in the
even case and some other are easier in the odd case.
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7.1. (n + 1) odd case. The law of conservation of number is easy for (n + 1) odd. Indeed, in
this case the complex index, up to a constant depending only of f , is

dimBC − dim
BC

(h)
= dim

BC

Ann(h)

(see Theorem 1). On the other hand on B
Ann(h) there is the non-degenerate form < , >B,h,J .

Make a small deformation X ′ of X, tangent to V . The corresponding local algebra B or rather
its complexification decomposes into a multilocal algebra concentrated in several points corre-
sponding to singular points of X ′. The dimension of the multilocal algebra is equal to the sum
of the dimensions at points in which it is concentrated. On the other hand, by Theorem 1 of

Gomez-Mont, the dimension dim BC(X′)
Ann(h) verifies the law of conservation of number. Hence, the

dimension of the multilocal algebra obtained after deformation X ′ of X is equal to the dimension

of the local algebra dim BC

Ann(h) before the deformation. This permits to extend continuously the

bilinear form < , >h,J from the algebra B
Ann(h) to its deformation. By nondegeneracy of the form

< , >h,J , its signature is unchanged by a small deformation. This gives the law of conservation
of number for the signature of < , >h,J when adding the signatures for all (real or complex)
singular points of X ′ appearing after deformation. Note that from the tangency condition (2),
it follows that (f) ⊂ Ann(h), so only points in V = f−1(0) can contribute to the signature
sgn < , >B(X′),h,J after deformation. At the end, let us note that complex zeros of X ′ come in
pairs. One verifies that the contribution to the signature of each pair is equal to zero. Hence
only real singular points of X ′ belonging to V contribute. The law of conservation of number
(in the real case) for the formula sgn(B, h, J) follows.

The final step in proving the formula in the case (n + 1) odd is to adjust the constant
sgn(A,Hess(f)) + K±. This is difficult in the odd case. We will come back to it in subsection
7.4.

7.2. (n + 1) even case. In the (n + 1) even case Theorem 1 says that in the complex case,

up to a constant, the index is given by dim BC

(f) . There is no natural bilinear form on BC

(f) . We

consider a non-degenerate bilinear form on BC

Ann(h) . We stratify the space of bilinear vector fields

by the dimension of the ideal (h) in the algebra A. The signature sgn(h(X), J(X)) verifies the
law of conservation of number in restriction to each stratum. We show that when changing the
stratum the jump in sgn(B, h, J) is equal to the jump in sgn(A, h,Hess(f)). The two jumps hence
compensate in the index formula (21). In order to show the equality of the jumps it is sufficient
to study the place where all strata meet i.e. the stratum of highest codimension. One has the
highest codimension for the Hamiltonian vector field Xf given by (11), when h = 0. Note that
in this case the two algebras A and B coincide and J(X) = Hess(f).

In this case it is very easy to determine the constant (independent of the vector field) adjusting
the signature formula with index. For that purpose, one studies the Hamiltonian vector field
Xf . Note that the Hamiltonian vector field Xf is tangent to all fibers Vε = f−1(ε). Moreover, it
has the same behavior on the boundary Vε ∩B, for ε 6= 0 as on V ∩B. The Hamiltonian vector
field Xf has no zeros on Vε = f−1(ε), for ε 6= 0. Hence IndV±(Xf ) = 0. On the other hand
sgn(B, h(X), J(X))− sgn(A, h,Hess) = 0, as A = B and J = Hess. It follows that no correction
term has to be added to sgn(B, h(X), J(X))− sgn(A, h,Hess) in order to obtain the formula for
IndV±,0(X).

7.3. Why is IndV+,0(X) = IndV−,0(X) in the (n+ 1) even case and not in the odd case?
We explain here why IndV+,0(X) = IndV−,0(X) in the (n + 1) even case and not in the odd
case. Note first that the index of a vector field in the ambient space is an even function if the
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dimension (n + 1) of the ambient space is even and is an odd function if (n + 1) is odd. We
next use Morse theory. Consider the vector field ∇f. By Morse theory, the Euler characteristic
χ verifes:

(24)
χ(V+) = 1 + Ind(∇f)
χ(V−) = 1 + Ind(−∇f).

Here χ(V+) is the Euler characteristic of Vε ∩ B, for ε > 0 small. The value χ(V−) is defined
analogously.

If (n+ 1) is even, then Ind(∇f) = Ind(−∇f), so χ(V+) = χ(V−) and

IndV+,0(X) = − IndV−,0(X).

If (n+ 1) is odd, then Ind(−∇f) = − Ind(∇f), so χ(V +)− 1 = −(χ(V−)− 1) and

IndV−,0(X) = 2− IndV+,0(X).

7.4. Adjusting the constant K in the (n+ 1) odd case. In order to complete the sketch of
proof of the main theorem, we have to explain how do we calculate the constant K± appearing
in the (n+ 1) odd case (22).

As shown previously, the two signature terms in (22) calculate the GSV-index up to a constant
independent of the vector field. In order to determine the constant, for each V = f−1(0), one
has to take a vector field tangent to V , having an algebraically isolated singularity at the origin.
Contrary to the situation in the (n + 1) even case, in the odd case, there is no such natural
vector field. As in [6], we use the family of vector fields

(25) Xt = (f − t) ∂

∂x0
+

(n+1)/2∑
i=1

[f2i
∂

∂x2i−1
− f2i−1

∂

∂x2i
]

in generic coordinates. The local algebra is B = B(X0) =
ARn+1,0

(f,f1,f2,...,fn) . Note that Xt is tangent

to Vt = f−1(t), for any t. More precisely, Xt(f) = f0f , so h = f0 is the cofactor of Xt. Hence,
by definition

(26) IndV+
(X, 0) =

∑
pt∈Vt∩B

IndVt,pt
(Xt).

But, these indices are calculated using the multilocal algebra Bt and the relative Jacobian J(Xt)
f0

.

That is, the index is given by the signature of the bilinear form < , >Bt
, for t 6= 0 small. For the

index IndV+,0(X0), we have to take it positive and for IndV−,0(X0) it is negative. The problem
is that this form degenerates on AnnBt

(f0), for t = 0.
We prove in [12] a general result for algebras A = A(f) and B = B(X) associated to a vector

field X tangent to V = f−1(0) i.e. verifying (2):

Lemma 1. There exists a natural isomorphism between the algebras AnnB(h) and AnnA(f).

Proof. The isomorphism is given by the mapping g 7→ k if gh = fk. �

Lemma 1 permits to transport all higher order signature vanishing in AnnB0 to a natural
algebra A. We apply it to our vector field Xt. When looking at the signature of the form
< , >Bt

, we have one part which does not degenerate. It is the part in B
AnnB(f0) . The bilinear

form < , >Bt
degenerates at different orders on different parts of AnnBt

(f0). By Lemma 1, we
transport the bilinear form < , >Bt

to a bilinear form in the coordinate independent algebra
AnnA(f). Note that in Bt, we have f = t, so degeneration of < , >Bt at different orders of t
corresponds to multiplication by f in the algebra AnnA(f). For more details see [12].
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8. Open problems

8.1. Geometric interpretation of the signatures σi. Filtration of contributions to the
Euler characteristic of the generic fiber. In Theorem 3 appear higher order signatures σi
defined in (20). These signatures are associated to the singularity f alone. We would like to
give a geometric interpretation of these numbers. We believe that they correspond to parts of
the Euler characteristic of the generic fiber, filtered by the speed of arrival at the singular fiber.

Let us be more precise. In [20] Teissier studies polar varieties in the complex case (see also
[18], [19]). He considers a germ of a function f : (C2, 0)→ (C, 0) having an isolated critical point
at the origin. He considers a Morsification fs = f − sx0 of f in generic coordinates (x0, . . . , xn).
Its critical points are given by

(27) f0 − s = f1 = · · · = fn = 0.

Let Γ be the curve given by f1 = · · · = fn = 0. The curve Γ is called polar curve. In general
it has several branches Γ = ∪`q=1Γq. By Morsification, the critical point 0 of f decomposes in
several critical points arriving along the polar curve to the origin. For each value of s 6= 0,
the critical points of fs belong to f−1

0 (s) ∩ Γ. Each critical point corresponds to a vanishing
cycle contributing to Hn(Vt0). In [20], Teissier observed that, after Morsification, critical points
arrive at different speed at the origin. More precisely, each component Γq of the polar curve Γ
is parametrized as

(28)

x0(tq) = t
mq
q + · · ·

. . . . . . . . .

xn(tq) = λnt
kq,n
q + · · ·

where mq ≤ kq,i. In [20], Teissier calculates the exponent mq. One can use x0 (or the correspond-
ing critical value) as a measure for the speed of approach of a critical point in the Morsification.
One can filter the n-th group of homology of the generic fiber Hn(f−1(t)) i.e. the space of
vanishing cycles, by the speed of arrival of the corresponding critical points. We believe that
this filtration is given by the filtration (18) or rather its complex counterpart. The dimensions

(29) 0 = dim
A
K0
≤ dim

A
K1
≤ dim

A
K`+1

≤ dimA

would measure the dimension of the space of vanishing cycles arriving at a certain minimal
speed.

The signatures σi would be the real counterpart. The signature σ0 is a signature of a bilinear
form on A. It measures the Euler characteristic χ(Vt). We believe that the signatures σi that
we introduced measure the filtered part of the Euler characteristic of the generic fiber χ(Vt), the
filtration being done by taking only the part of the topology of the fiber arriving at a certain
minimal speed. We hope to be able to address this problem in a continuation of our research.

8.2. Generalization to higher codimension. In [2] Bothmer, Ebeling and Gómez-Mont gen-
eralized Gómez-Mont’s formula (Theorem 1) to a formula for the index of a vector field on an
isolated complete intersection singularity in the complex case. A natural problem would be to
extend the result to the real case. Here, as in our Theorem 3, one would certainly have to define
some bilinear forms on the spaces studied in [2].
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INDEX OF REAL VECTOR FIELDS 121
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[6] Gómez-Mont, Xavier An algebraic formula for the index of a vector field on a hypersurface with an isolated

singularity. J. Algebraic Geom. 7 (1998), no. 4, 731–752.
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