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ON SMOOTH DEFORMATIONS OF FOLIATIONS WITH SINGULARITIES

A. MAFRA, B. SCÁRDUA, AND J. SEADE

Abstract. We study smooth deformations of codimension one foliations with Morse and

Bott-Morse singularities of center-type. We show that in dimensions ≥ 3, every small smooth
deformation by foliations of a Morse function with only center type singularities is a defor-

mation by Morse functions. We also show that this statement is false in dimension 2. In the

same vein we show that if F is a foliation with Bott-Morse singularities on a manifold M , all
of center type, and if we assume there is a component N ⊂ sing(F) of codimension m ≥ 3

such that H1(N,R) = 0, then every small smooth deformation {Ft} of F is compact, stable

and given by a Bott-Morse function ft : M → [0, 1] with only two critical values at 0 and 1.
Furthermore, each such foliation {Ft} is topologically equivalent to F . Hence, Bott-Morse

foliations with only center-type singularities and having a component N ⊂ sing(F) of codi-

mension m ≥ 3 such that H1(N,R) = 0, are structurally stable under smooth deformations.
These statements are false in general if we drop the codimension m ≥ 3 condition.

1. Introduction and results

An important problem in geometry and dynamics is studying the stability of singular foliations
under deformations. This is classical for 1-dimensional foliations defined by (real or complex)
vector fields. For higher dimensional foliations, we need to impose some additional structure on
the foliations and/or on the type of singularities, in order to be able to say something about
them.

For instance, in the interesting article [4], the authors give extensions of Reeb’s Stability
Theorem to singular holomorphic foliations of codimension 1 having a meromorphic first integral
and defined on projective manifolds M with H1(M, C) = 0. In doing so, the authors study
foliations defined by Lefschetz pencils, defined by a general meromorphic function, and prove
a stability theorem for these. A key ingredient in the proof of that theorem is looking at the
behavior of the foliation near a Kupka component of its singular set.

Let us recall that given any integrable polynomial homogeneous 1-form ω on Cn+1 with
singular set of codimension ≥ 2, we define the Kupka singular set of ω as

K(ω) = {p ∈ Cn+1\0 | ω(p) = 0, dω(p) 6= 0}.

The Kupka singular set of the corresponding foliation F = F(ω) in CP (n) is K(F) = π(K(ω))
where π is the projectivization map.

We know from [3, 4, 6, 9] that if n ≥ 3, then the Kupka set is a locally closed codimension 2
smooth submanifold of CP (n) which has a local product structure: Given a connected component
K ⊂ K(F) there exist a holomorphic 1-form η, called the transversal type of K, defined on a
neighborhood of 0 ∈ C2 and vanishing only at 0, a covering {Uα} of a neighborhood of K
in CP (n) and a family of holomorphic submersions ϕα : Uα → C2 satisfying that ϕ−1

α (0) =
K ∩ Uα and ϕ∗αη defines F in Uα. Furthermore, K(F) is persistent under small perturbations
of F , namely, fixed any p ∈ K(F) with defining 1-form ϕ∗η as above, and for any foliation F ′
sufficiently close to F , there is a holomorphic 1-form η′ close to η and a submersion ϕ′ close to
ϕ, such that F ′ is defined by (ϕ′)∗η′ near the point p.
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In this work we study a different but somehow similar setting. Here we look at the class
of codimension one real foliations in smooth manifolds, such that at each point the foliation is
locally defined by a Bott-Morse function of center type. The singular set consists of a disjoint
union of submanifolds and one has for these, all the properties mentioned above for the Kupka
set. We also prove that just as in the case of the Kupka set, all these properties are preserved
under appropriate deformations of the foliation.

Before describing with more care what we do, let us recall that probably the most important
foundational result in the theory of foliations is the celebrated Local Stability Theorem of Reeb
(see for instance [3, 10]): A compact leaf of a foliation having finite holonomy group is stable,
i.e., it admits a fundamental system of invariant neighborhoods where each leaf is compact with
finite holonomy group. This is followed in importance by Reeb’s Global Stability Theorem: If
F is codimension one foliation, of class Cr, r ≥ 1, on a closed connected manifold M and F
has a compact leaf with finite fundamental group, then all leaves of F are compact with finite
fundamental group. Moreover, if F is transversely orientable then the leaves of F have trivial
holonomy group and they are the fibers of a locally trivial fibration M → S1. In fact, according
to Thurston ([14]), the same conclusion holds if F is transversely orientable and exhibits a
compact leaf L with zero first Betti number H1(L,R) = 0.

Some interesting questions arise when we consider small perturbations of a given foliation.
For instance the classical Tischler’s fibration theorem ([15]) states that a codimension one folia-
tion induced by a nonsingular closed one-form on a compact manifold, can be approximated by
compact foliations induced by closed one-forms, and hence the manifold fibers over the circle.
The basic idea is to perturb the closed one-form into a closed one-form with rational periods. On
the other hand, it is not true that every compact foliation can be approximated by noncompact
foliations, even if the compact foliation is defined by a closed one-form. This was already con-
sidered by Reeb, who proved the following classical result concerning stability for perturbations,
which strengthens his Local Stability Theorem:

Theorem (Reeb), [3]: Let Folrk(M) be the space of codimension k ≥ 1 foliations of class Cr

on M , 2 ≤ r ≤ ω, endowed with the C0-topology. Let F be an element in Folrk(M) with a
compact leaf L having finite fundamental group. Then for each neighborhood W of L in M and
for each point q ∈ L, there exist an open neighborhood V of q in W and a neighborhood V of F
in Folrk(M), such that for each foliation G ∈ V, the saturated of V by G is contained in W and
it is a union of compact leaves of G, each leaf being a finite covering of L.

Using arguments as in Thurston’s version of Reeb’s Global Stability Theorem, Langevin and
Rosenberg gave in [7] a generalization of the preceding result: Equip the space Folrk(M) with
the C1 topology and assume F ∈ Folrk(M) has a compact leaf L such that H1(L,R) = 0
and Hom(π1(L),GL(k,R)) = Id. Then we have the same conclusions as in Reeb’s theorem of
stability for perturbations. Moreover, the compact leaves of G ∈ V close enough to L have
trivial holonomy and they are diffeomorphic to L. In fact when k = 1 it is enough to assume
H1(L,R) = 0.

On the other hand, foliations with singularities play a significant role in several areas of
mathematics. It is thus natural to search for stability theorems for singular foliations in the
spirit of the preceding results, and that was the motivation for this article.
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Our starting point is Reeb’s Sphere Recognition theorem (see [11]): If a compact manifold M
of dimension m ≥ 3 admits a foliation with Morse singularities all of center type, then all leaves
are compact and diffeomorphic to spheres Sm−1, M is homeomorphic to the sphere Sm and the
foliation is given by the level surfaces of a Morse function having only two centers as singular
set. Such a foliation will be called a Morse-Reeb fibration.

Our first result is:

Theorem 1. In dimension m ≥ 3 Morse-Reeb fibrations on spheres are stable under small
smooth deformations. Moreover, every small enough smooth deformation by foliations of a Morse
function with only center type singularities in dimension ≥ 3, is a deformation by Morse func-
tions.

It is well-known that Morse singularities are stable under deformations as functions. The point
here is proving the persistence of center type Morse singularities under smooth deformations as
foliations. We give an example showing that this condition fails in dimension 2.

The next step we envisage in this article is considering a compact connected manifold M
of dimension m ≥ 2 and a codimension one smooth (i.e., of class C∞) foliation F on M with
Bott-Morse singularities in the sense of [12, 13]. This means that its singular set, sing(F), is

a union of a finite number of disjoint compact connected submanifolds, sing(F) =
t⋃

j=1

Nj , each

of codimension ≥ 2, and for each p ∈ Nj ⊂ sing(F) there exists a neighborhood V of p in
M where the foliation is defined by a Bott-Morse function. That is, there is a diffeomorphism
ϕ : V → D × B, where D ⊂ Rnj , nj = dimNj , and B ⊂ Rm−nj are open balls centered at the
origin, such that ϕ takes F|V into the product foliation D×G, where G = G(Nj) is the foliation
on B given by a Morse function with a singularity at the origin.

Given a point p ∈ Nj , we write ϕ(p) = (x(p), y(p)), so that the discs Σp = ϕ−1(x(p)×B) are
transverse to F outside sing(F) and the restriction F|Σp

is an ordinary Morse singularity, whose
Morse index r = r(Nj) does not depend on the point p in the component Nj . The restriction
G(Nj) = F|Σp

is the transverse type of F along Nj ; it is a codimension one foliation in the disc
Σp with an ordinary Morse singularity at {p} = Nj ∩Σp. A component N ⊂ sing(F) is of center
type (or just a center) if the transverse type G(N) = F|Σq of F along N is a center, i.e., its
Morse index is either 0 or r = dim Σq.

Such a foliation F is transversally orientable if there exists a vector field X on M , possibly
with singularities at sing(F), such that X is transverse to F outside sing(F). Throughout this
paper, all foliations are assumed to be transversely oriented.

Recall that in the classical framework of nonsingular foliations, a compact leaf is stable if
it admits a fundamental system of invariant neighborhoods such that on each neighborhood
the leaves are compact. In codimension one, Reeb’s local stability theorem implies that this is
equivalent to finiteness of the holonomy group of the leaf.

One has the similar notion of stability for a center type component N ⊂ sing(F) of the
singular set of a foliation with Bott-Morse singularities: N is stable if it admits a fundamental
system of invariant neighborhoods such that on each neighborhood the leaves are compact. The
foliation is stable if all its leaves are compact and stable and all components of the singular set
are of center type and stable.

In [12] the authors prove a natural version of Reeb’s global stability theorem in this setting:
Let F be a foliation with Bott-Morse singularities on a closed oriented manifold M of dimension
m ≥ 3 having only center type components in sing(F). Assume that F has some compact leaf Lo
with finite fundamental group, or there is a codimension ≥ 3 component N of sing(F) with finite
fundamental group. Then all leaves of F are compact, stable, with finite fundamental group. If,
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moreover, F is transversely orientable, then sing(F) has exactly two components and there is a
differentiable Bott-Morse function f : M → [0, 1] whose critical values are {0, 1} and such that
f
∣∣
M\sing(F)

: M \ sing(F)→ (0, 1) is a fiber bundle with fibers the leaves of F . According to [8]

the same conclusion holds if we assume that we have a compact leaf or a codimension ≥ 3 center
type component N ⊂ sing(F) with first Betti number zero.

In this article we prove the following stability theorem:

Theorem 2. Let M be a compact oriented connected manifold and F a foliation with Bott-Morse
singularities on M all of center type. Assume there is a component N ⊂ sing(F) of codimension
` ≥ 3 and such that H1(N,R) = 0. Given a smooth deformation {Ft}, t ∈ [0, ε) of F there is
0 < ε1 < ε such that if 0 ≤ t ≤ ε1 then Ft is compact, stable and given by a Bott-Morse function
ft : M → [0, 1] with critical values at 0 and 1.

Just as for Theorem 1, Example ?? below shows that Theorem 2 is sharp in the sense that one
cannot drop the codimension ≥ 3 condition. These two theorems are similar, with the additional
condition of the existence of a smooth deformation, to the fact that the class of Morse functions
is an open subset in the C1-topology.

As a corollary of the proof of Theorem 2 we have:

Corollary 1. Let F be a foliation with Bott-Morse singularities on a manifold M . Assume
there is a center type component N ⊂ sing(F) of codimension ` ≥ 3 such that H1(N,R) = 0.
Given a smooth deformation {Ft}, t ∈ [0, ε], of F there is 0 < ε1 < ε such that if 0 ≤ t ≤ ε1
then Ft also exhibits an stable center type component Nt ⊂ sing(Ft) which is close and isotopic
to N , and therefore it is stable.

Also from the proof of Theorem 2 and from Theorems A, B and C in [12] we have the following
weak structural stability:

Corollary 2. In the situation of Theorem 2 the foliations Ft are topologically conjugate to F
for t small enough.

2. An example

Given a foliation F on M with singular set sing(F) ⊂ M , by a C∞ deformation of F we
mean a family {Ft}t∈[0,ε) of foliations Ft on M , with F0 = F and which is smooth in the sense
that for each point p ∈M , there are an open set p ∈ U ⊂M and a smooth family of differential
one-forms Ωt(x) := Ω(x, t) in U × [0, ε) such that for each t the one-form Ωt is integrable and
defines Ft in U .

Before proving Theorems 1 and 2, let us show that these results are sharp in the sense that
the codimension ≥ 3 condition cannot be dropped. Notice that in [8] examples are given showing
that the conditions on the component N ⊂ sing(F) cannot be dropped without destroying the
stability of the foliation F0.

Let Ω = d(x2 + y2) and Ωλ = xdy − λydx in affine coordinates (x, y) ∈ R2, where λ ∈ R is
not zero. Put

Ωt := Ω + tΩλ = (2x− tλy)dx+ (2y + tx)dy.

Then sing(Ωt) = {(0, 0)}. For

Xt := (2y + tx)
∂

∂x
+ (tλy − 2x)

∂

∂y

we have Ωt ·Xt = 0. Thence

DXt(0, 0) =

(
t 2
−2 tλ

)
.
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The eigenvalues of Xt at (0, 0) are the α given by

0 = Det(DXt(0, 0)− αI) = (t− α)(tλ− α) + 4 .

Thus we have

α =
(1 + λ)t±

√
t2(1 + λ)2 − 4(4 + t2λ)

2
.

For t = 0 we have

α = ±2
√
−1 .

For t ≈ 0 but t 6= 0 we have α = a + b
√
−1 ∈ C where b ≈ 2 and 0 6= a ≈ 0 provided that

λ 6= −1. In this case the quotient of eigenvalues of Xt at the origin is of the form

a+ b
√
−1

a− b
√
−1

=
a2 − b2 + 2

√
−1ab

a2 + b2
/∈ R

and therefore Xt has a hyperbolic singularity at the origin. In particular, thanks to the dynamics
of such a singularity, the leaves of Ωt are not closed and the foliation Ωt = 0 exhibits no continuous
first integral in a neighborhood of the origin (0, 0) ∈ R2.

Now, by gluing two copies of the 2-disk D2 we obtain the 2-sphere S2. Endowing each copy of
D2 with a foliation given by Ωt = 0 we obtain a deformation Ft of the foliation F0 by parallels,
F0 is of Morse type with singularities only at the North and South poles, both of center type.
The foliation Ft (obtained indeed as an extension of the foliation in R2 given by Ωt = 0) exhibits
singularities at the North and South poles either, but these are not of Morse type as seen above.
By taking products with a closed manifold N we obtain a foliation F̃0 with singularities of Bott-
Morse type, all of center type, which is deformed into foliations which are not of Bott-Morse
type. We can of course take N such that H1(N,R) = 0, thus showing that the codimension ≥ 3
condition on the singular component N ⊂ sing(F) in Theorem 2 cannot be dropped.

3. Deformations of Morse singularities by foliations

Let us consider a differential one-form Ω =
m∑
j=1

fj dxj in coordinates (x1, ..., xn) ∈ U ⊂ Rm in

an open subset.

Definition 1. The gradient vector field of Ω is defined as grad(Ω) :=
m∑
j=1

fj
∂
∂xj

.

This is a differentiable vector field which, away from the (singular) zero-set, is orthogonal to
the distribution Ker(Ω). Also sing(grad(Ω)) = sing(Ω).

Theorem 3. Let Ft be a smooth deformation of F in an open neighborhood U of the origin
0 ∈ Rm. Assume F has a Morse singularity of center type at the origin and either m ≥ 3, or
else m = 2 and the leaves of Ωt are compact for t small enough. Then there exist ε > 0, a
neighborhood V ⊂ Rm of 0 and a smooth function ξ : [0, ε)→ V such that:

(i) ξ(0) = 0;
(ii) For t < ε we have sing(Ft) ∩ V = {ξ(t)} and the leaves of Ft close enough to ξ(t) are

compact and diffeomorphic to the sphere Sm−1;
(iii) Moreover, for each such t, ξ(t) is a center type Morse singularity of Ft: there is a

smooth map ρt : V → R with ρt(ξ(t)) = 0, which is a first integral for Ft in V and has
a nondegenerate critical point at ξ(t) of center-type.
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First part of the proof of Theorem 3. Let {Ωt}t∈[0,ε) be a smooth family of integrable one-forms
in the neighborhood U of the origin such that Ft is defined by the one-form Ωt and F0 = F .
Since F has a center-type singularity at 0, there is a neighborhood W ⊂ U of the origin where
we can choose local coordinates (x1, ..., xm) ∈W such that Ω is of the form:

Ω = gd(

m∑
j=1

x2
j ) =

m∑
j=1

2gxjdxj .

We set Ωt(x1, ..., xm) =
m∑
j=1

aj(t, x)dxj , then each aj is smooth. Define a smooth map

F : [0, ε)×W → Rm

by F (t, x) = (a1(t, x), ..., am(t, x)). Then we have

∂

∂(x1, ..., xm)

∣∣∣
t=0

F (t, x) = D(a1(0, x), ..., am(0, x)).

This last is a diagonal matrix and its determinant is (2g(0))m 6= 0. Since F (0, 0) = 0, by the
Implicit Function theorem, if ε > 0 is small enough, there is a smooth map ξ : [0, ε) → W such
that ξ(0) = 0, F (t, ξ(t)) = 0 and sing(Ωt) ∩ W = {ξ(t)}. Moreover, the partial derivative

∂F
∂(x1,...,xm) (t, ξ(t)) is non-singular, so that Ωt has a nondegenerate singularity at ξ(t). In order to

prove that ξ(t) is an stable singularity (i.e, a singularity surrounded by compact leaves with finite
holonomy) of Ωt, we proceed as follows. The leaves of F in W are spheres of dimension m−1 ≥ 2.
Choose a small neighborhood V ⊂W of the origin, invariant by F . Fix a leaf L0 ∈ F such that
L0 bounds a region (a ball) contained in V . By Reeb’s stability for perturbations theorem if
ε > 0 is small enough then Ft exhibits a compact leaf Lt close to L0, contained in W . Denote by
R(Lt) ⊂ W the region (diffeomorphic to a closed ball), containing the origin and therefore the
singularity ξ(t) ∈ sing(Ft), bounded by the leaf Lt. By Reeb’s complete stability theorem all
leaves of Ft in R(Lt) are compact diffeomorphic to Lt. This proves (i) and (ii) in Theorem 3. �

Now we consider the family of vector fields Xt := − grad(Ωt) in W (cf. Definition 1). Then

Xt is a smooth deformation of the vector field X0 = − grad(Ω0) = −2g ~R where ~R is the radial
vector field. Using what we have seen above we have:

Lemma 1. Assume that the dimension m ≥ 3 is odd. Then for t small enough the vector field
Xt exhibits a smooth separatrix through its unique singularity ξ(t) close to the origin.

Proof. Concerning the existence of separatrices, we may indeed assume that g = 1
2 andX0 = −~R.

Denote by ξ(t) the singular point of Xt close to the origin 0 = ξ(0) in Rm. Then the derivative
DXt(ξ(t)) is a perturbation of the derivative DX0(0) = Id ∈ GL(m,R). This implies that its
characteristic equation Pt(λ) = Det(DXt − λ Id) = 0 is a perturbation of the characteristic
equation P0(λ) = Det(DX0 − λI) = (1 − λ)m = 0. By continuity, for t small enough, the
eigenvalues of DXt at ξ(t) have positive real part, in particular Xt has a hyperbolic singularity
at ξ(t) (see Hartman [5]). Since by hypothesis m is odd, there is at least one real eigenvalue and
therefore (by the classical Hartman-Grobman theorem [5]) we have at least one smooth unstable
separatrix through the singular point ξ(t). �

Using now the fact that Xt is transverse to the leaves of Ft which are compact manifolds
filling up a neighborhood of the singularity ξ(t), we obtain the following fact:

Lemma 2. The vector field Xt exhibits a smooth separatrix Γt through the singularity ξ(t).
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Proof. If m is odd then we apply Lemma 1. Assume now that m ≥ 4 is even. The one-form Ωt

defines a compact foliation Ft with a non-degenerate singularity at ξ(t), with Ω0 = g0 d(
m∑
j=1

x2
j )

and ξ(0) = 0. We may assume that for each leaf Lt of Ft, the vector field Xt points inwards
the region R(Lt), bounded by Lt, that contains the singularity ξ(t). Since the regions R(Lt)
form a fundamental system of neighborhoods of ξ(t) we conclude that the singularity ξ(t) is
asymptotically stable with respect to Xt.

Claim 1. The spectrum Spec(DXt(ξ(t))) ⊂ C of Xt at ξ(t) exhibits some real eigenvalue.

Proof. Write Xt = (at1, b
t
1, ..., a

t
n, b

t
n) where n = m/2. Put Yt := X⊥t = (−bt1, at1, ...,−btn, atn).

Then Yt is orthogonal to Xt and therefore its orbits are tangent to the leaves of Ωt. In partic-
ular, the orbits of Yt are contained in compact manifolds. The nonsingular orbits of Yt do not
accumulate at the singularity ξ(t). Suppose by contradiction that the characteristic polynomial

Pt of DXt(ξ(t)) is of the form Pt(λ) =
m/2∏
j=1

(λ2 + ajλ+ bj) in irreducible polynomials over R[λ].

We have several cases to consider.
If there are no multiple eigenvalues then we can write DXt(ξ(t)) as a diagonal matrix of m/2

blocks Bj of the form

Bj =

(
αj βj
−βj αj

)
where βj 6= 0. Assume for simplicity that DXt(ξ(t) = Bj is one block. We write Xt = (at1, b

t
1)

and Yt = X⊥t = (−bt1, at1). Then the same linear coordinates that give DXt(ξ(t)) = Bj give
DYy(ξ(t)) = B⊥j which is defined as

B⊥j =

(
βj −αj
αj βj

)
The linear system

ẋ = DYt(ξ(t)) · x = B⊥j · x
has its solutions given explicitly in terms of exp(βjt) cos(αjt)xj and exp(βjt) sin(αjt)xj so that,
thanks to the terms in exp(βjt) we conclude that the solutions of ẋ = DYt(ξ(t))x cannot be
contained in a compact manifold surrounding the singularity ξ(t), they must instead accumulate
at the singular point ξ(t). By Hartman-Grobman theorem this same statement holds for the
solutions of Yt. This excludes this ”diagonalizable” case.

Now we consider the case where DXt(ξ(t)) is a matrix with blocks of the form(
Bj O
I2 Bj

)
where

I2 =

(
1 0
0 1

)
.

Therefore we have

DYt(ξ(t)) =

(
B⊥j O
J2 B⊥j

)
,

where

J2 =

(
0 −1
1 0

)
.
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Again we conclude that the linear system

ẋ = Yt(x) = B⊥j · x

has solutions that cannot be contained in a compact manifold surrounding the singularity ξ(t).
They must instead accumulate at the singular point ξ(t). By the classical Hartman-Grobman
linearization theorem this gives a final contradiction and proves the claim in this case. The cases
of even dimension ≥ 6 are similar and can be proved in the same way.

�

Let us now finish the proof of Lemma 2. Because the spectrum of DXt(ξ(t)) contains some
real eigenvalue, it contains some negative eigenvalue and then Xt exhibits some smooth stable
separatrix Γt through the singularity ξ(t) thanks to the Stable manifold theorem. This proves
the lemma in the even dimensional case. �

End of the proof of Theorem 3. The trace of Γt is (diffeomorphic to) an interval [0, 1] with the
origin corresponding to the singularity ξ(t), and transverse to each leaf of Ft in R(Lt). We may
take any smooth function ρt : [0, 1]→ R such that ρt(0) = 0 and extend ρt to R(Lt) as constant
through the leaves of Ft in R(Lt). Now, if we choose ρt

∣∣
Γt

such that it has an order two zero

at the origin then we claim that the extension ρt : R(Lt) → R has a nondegenerate singularity
at ξ(t). Indeed, since ρt is a first integral for Ωt we have Ωt ∧ dρt = 0, and since Ωt has a
nondegenerate singularity at ξ(t) we can write dρt = ht.Ωt for some smooth function ht. In

coordinates we have dρt = ht ·
m∑
j=1

aj(t, x)dxj so that ∂ρt
∂xj

= ht · aj(x, t), ∀j = 1, ...,m. Since

aj(t, ξ(t)) = 0 we conclude that ∂2ρt
∂xi∂xj

= ht(ξ(t)) · ∂aj(t,ξ(t))
∂xi

. If ht(ξ(t)) = 0 then D2ρt(ξ(t)) = 0

what is a contradiction to our original choice of ρt as having an order two zero at the origin.
Therefore, ht(ξ(t)) 6= 0 and the Hessian of ρt at ξ(t) is nonsingular. This implies that ρt has a
nondegenerate Morse type singularity at ξ(t) and, since the leaves of Ft in R(Lt) are compact,
this singularity is a center. �

4. Integrable deformations of non-isolated singularities

As for the non-isolated case we have the following version of the first part of Theorem 3.

Lemma 3. Let F be a foliation on M having a Bott-Morse component N ⊂ sing(F) of center
type and codimN = ` ≥ 3. Let now Ft be a C∞ deformation of F = F0, where t ∈ [0, ε). There
are a neighborhood W of N in M and 0 < ε1 < ε such that if t ≤ ε1 then:

(1) sing(Ft) ∩W = Nt is a compact nondegenerate component, diffeomorphic to N0.
(2) Nt is isotopic to N0.
(3) Nt ⊂ sing(Ft) is a Bott-Morse component of center type.

Proof. The same ideas as in the proof of Theorem 3 apply here. Indeed, let N be a codimension
` component of the singular set of F . Given a point p ∈ N there is a neighborhood U of p in
M diffeomorphic to the product D` ×Dm−` of discs D` ⊂ R` and Dm−` ⊂ Rm−`, such that the
restriction F

∣∣
U

is equivalent to the product foliation Dm−` ×F1, where F1 is a foliation on the

disc D` with an isolated Morse type singularity of center type at the origin 0 ∈ D`. At each
disc Dq := {q}×D`, for any point q ∈ Dm−`, F induces an ordinary Morse singularity of center
type, isomorphic to F1. Given any smooth deformation Ft of F = F0, for small t the foliation
Ft is transverse to the discs Dq and induces by restriction a smooth deformation Ft

∣∣
Dq

of F
∣∣
Dq

.

Since dimDq = ` ≥ 3, by Theorem 3 above there is a smooth function ξq(t) of the parameter t
such that ξq(t) is the only singularity of F

∣∣
Dq

. Moreover, this singularity is of Morse center type.
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Finally, the map ξq depends also smoothly on the point q as it follows from the Implicit function
theorem, where we consider q ∈ Dm−` as a parameter on which the coefficients of the map F
(which is just the map having as coordinate functions the coefficients of the form Ω(t, x) = Ωt(x),
in the proof of Theorem 3) depend smoothly. This shows that there is a neighborhood W of N in
U such that for t small enough sing(Ft)∩W = Nt is center type Bott-Morse component, mapped
as the graph of a smooth map ξ(q, t) taking values on the transverse disc Dq. By uniqueness
these maps glue and this shows that for a suitable neighborhood V of N in M and for small t,
the singular set sing(Ft) ∩ V is a nondegenerate component Nt, diffeomorphic (indeed isotopic)
to N0 = N . This shows (1) and (2) in the lemma. Assume now that ` = codimN is odd. Then
the above arguments show, as in the proof of Theorem 3, that for t small enough we may choose
local defining functions ρt for Ft around the points of Nt such that each ρt has a center type
Bott-Morse singularity at the points in Nt. This proves (3). �

Definition 2. Given an integrable one-form Ω in a manifold M we say that Ω has nondegenerate
singularities if its singular set sing(Ω) is a disjoint union of closed submanifolds N ⊂ M such
that for each point p ∈ N ⊂ sing(Ω) there are local coordinates (x1, ..., x`, x`+1, ..., xm) for M ,

centered at p, such that N : (x`+1 = ... = xm = 0) and writing Ω =
m∑
j=1

aj(x)dxj we have

Det
(
∂ai
∂xj

)m
i,j=`+1

(0) 6= 0.

5. Proof of the results

Let us now prove our main results.

Proof of Theorem 1. Let Ft be a smooth deformation of a Morse-Reeb fibration on a compact
manifold M of dimension m ≥ 3. We claim that for t small enough the foliation Ft is a Morse-
Reeb fibration. Indeed, by Theorem 3 , for t small enough, the foliation Ft is a foliation with
nondegenerate singularities of center type, and the leaves close to the singularities are spheres.
By Reeb’s theorem in [11] Ft is a Morse-Reeb fibration. �

The proof of Theorem 2 relies on the following local stability result, similar to Thurston’s
version of Reeb local stability (Corollary 1 in [14]).

Proposition 1 (Proposition 1 in [8]). Let F be a transversely orientable codimension one fo-
liation with Bott-Morse singularities on a manifold M . Assume that N ⊂ sing(F) is a center
type component with H1(N ;R) = 0. Then N is stable. Indeed, there is a fundamental sys-
tem of saturated neighborhoods W of N in M such that each leaf L ⊂ W is compact with
H1(L;R) = 0. Moreover, the holonomy of the component N is trivial and there is a Bott-Morse
function f : W → R, defined in an invariant neighborhood W of N , which defines F in W .

Proof of Theorem 2. Consider a deformation Ft, t ∈ [0, ε), of the Bott-Morse foliation F having
a component N ⊂ sing(F) with H1(N,R) = 0. By Proposition 1 we may apply Lemma 3
and conclude that if ε > 0 is small enough then the singular set of Ft exhibits a center type
component Nt isotopic to N = N0. In particular, for t < ε small enough the foliation Ft is a
Bott-Morse foliation having all singularities of center type and some component Nt ⊂ sing(Ft)
such that H1(Nt,R) = 0. Then, according to Theorem 1 in [8] there is a Bott-Morse function
ft : M → R that defines Ft. �

Proof of Corollary 2. For t small enough in Theorem 2 the foliation Ft is a Bott-Morse foliation
with only center type singularities. Moreover, there is a Bott-Morse function ft : M → R that
defines Ft. From Theorem A in [12] the singular set sing(Ft) has only two components say
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N t
1, N

t
2 and ft

∣∣
M\(Nt

1∪Nt
2)

is a fibre bundle over (0, 1) with fibers the leaves of Ft. Moreover, by

Lemma 3, each component N t
j is isotopic (and therefore homeomorphic) to N0

j = Nj ⊂ sing(F).

Finally, from Reeb stability theorem, all leaves of Ft are diffeomorphic to a (typical) leaf Lt ∈ Ft
and each leaf Lt is homeomorphic to the (typical) leaf L0 ∈ F . Thus the bundles Ft

∣∣
M\(Nt

1∪Nt
2)

and F
∣∣
M\(N1∪N2)

are topologically equivalent. This and the product type of Ft around the

singularities N t
j give the topological equivalence between Ft and F . �
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numérique; C.R.A.S. Paris 222, 1946, p. 847-849.
[12] B. Scárdua, J. Seade, Codimension one foliations with Bott-Morse singularities I, Journal of Differential

Geometry 83 (2009) 189-212.

[13] B. Scárdua, J. Seade, Codimension one foliations with Bott-Morse singularities II, Journal of Topology
(2011) 4(2): 343-382. DOI: 10.1112/jtopol/jtr004

[14] W. P. Thurston: A generalization of Reeb Stability theorem, Topology 13 (1974), 347–352.

DOI: 10.1016/0040-9383(74)90025-1
[15] D. Tischler: On fibering certain foliated manifolds over S1, Topology, vol. 9 (1970), 153-154.

DOI: 10.1016/0040-9383(70)90037-6
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