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VARIETIES OF COMPLEXES AND FOLIATIONS

FERNANDO CUKIERMAN

Dedicated to Xavier Gómez-Mont on his 60th Birthday.

Abstract. Let F(r, d) denote the moduli space of algebraic foliations of codimension one and

degree d in complex projective space of dimension r. We show that F(r, d) may be represented
as a certain linear section of a variety of complexes. From this fact we obtain information on

the irreducible components of F(r, d).

1. Basics on varieties of complexes.

1.1. Let K be a field and let V0, . . . , Vn be vector spaces over K of finite dimensions

di = dimK(Vi).

Consider sequences of linear functions

V0
f1 // V1

f2 // . . .
fn // Vn ,

also written

f = (f1, . . . , fn) ∈ V =

n∏
i=1

HomK(Vi−1, Vi).

The variety of differential complexes is defined as

C = C(V0, . . . , Vn) = {f = (f1, . . . , fn) ∈ V/ fi+1 ◦ fi = 0, i = 1, . . . , n− 1},

It is an affine variety in V , given as an intersection of quadrics. We intend to study the geometry
of this variety (see also e.g., [3], [6]).

1.2. Since the defining equations fi+1 ◦ fi = 0 are bilinear, we may also consider, when it is
convenient, the projective variety of complexes

PC ⊂
n∏
i=1

PHomK(Vi−1, Vi),

as a subvariety of a product of projective spaces.

Denoting V· = ⊕ni=0Vi, each complex f ∈ C may be thought as a degree-one homomorphism
of graded vector spaces f : V· → V· with f2 = 0.

1991 Mathematics Subject Classification. 14M99, 14N99, 37F75.
Key words and phrases. Distribution, foliation, differential complex.

We thank the anonymous referee for suggestions that helped to improve the exposition.

http://dx.doi.org/10.5427/jsing.2014.9e


VARIETIES OF COMPLEXES AND FOLIATIONS 57

1.3. For each f ∈ C and i = 0, . . . , n define

Bi = fi(Vi−1) ⊂ Zi = ker (fi+1) ⊂ Vi,

and

Hi = Zi/Bi.

(we understand by convention that B0 = 0)

From the exact sequences

0→ Bi → Zi → Hi → 0,

0→ Zi → Vi → Bi+1 → 0,

we obtain for the dimensions

bi = dimK(Bi), zi = dimK(Zi), hi = dimK(Hi),

the relations

di = bi+1 + zi = bi+1 + bi + hi,

where i = 0, . . . , n and b0 = bn+1 = 0. Therefore,

Proposition 1. a) The hi and the bj determine each other by the formulas:

hi = di − (bi+1 + bi),

bj+1 = χj(d)− χj(h),

where for a sequence e = (e0, . . . , en) and 0 ≤ j ≤ n we denote

χj(e) = (−1)j
j∑
i=0

(−1)iei = ej − ej−1 + ej−2 + · · ·+ (−1)je0,

the j-th Euler characteristic of e.

b) The inequalities bi+1 + bi ≤ di are satisfied for all i.

Proof. We write down the bj in terms of the hi: from

j∑
i=0

(−1)idi =

j∑
i=0

(−1)i(bi+1 + bi + hi),

we obtain

bj+1 = (−1)j(

j∑
i=0

(−1)idi −
j∑
i=0

(−1)ihi),

as claimed.
�

Notice in particular that since bn+1 = 0, we have the usual relation

n∑
i=0

(−1)idi =

n∑
i=0

(−1)ihi.
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1.4. Now we consider the subvarieties of C obtained by imposing rank conditions on the fi.

Definition 2. For each r = (r1, . . . , rn) ∈ Nn define

Cr = {f = (f1, . . . , fn) ∈ C/ rank(fi) = ri, i = 1, . . . , n}.

These are locally closed subvarieties of C.

Proposition 3. a) Cr 6= ∅ if and only if ri+1 + ri ≤ di for 0 ≤ i ≤ n (we use the convention
r0 = rn+1 = 0)

b) In the conditions of a), Cr is smooth and irreducible, of dimension

dim(Cr) =

n∑
i=0

(di − ri)(ri+1 + ri) =

n∑
i=0

(di − ri)(di − hi) =
1

2

n∑
i=0

(d2
i − h2

i ).

Proof. a) One implication follows from Proposition 1. Conversely, in the given conditions, we
want to construct a complex with rank(fi) = ri for all i. Suppose we constructed

V0
f1 // V1

f2 // . . .
fn−1 // Vn−1 .

We need to define fn : Vn−1 → Vn such that fn ◦ fn−1 = 0 and rank(fn) = rn, that is, a map
Vn−1/Bn−1 → Vn of rank rn. Such a map exists since dim(Vn−1/Bn−1) = dn−1 − rn−1 ≥ rn.

b) Consider the projection (forgeting fn)

π : C(V0, . . . , Vn)r → C(V0, . . . , Vn−1)r̄,

where r = (r1, . . . , rn) and r̄ = (r1, . . . , rn−1). Any fiber π−1(f1, . . . , fn−1) is isomorphic to the
subvariety in Hom(Vn−1/Bn−1, Vn) of maps of rank rn; therefore, it is smooth and irreducible
of dimension rn(dn−1 − rn−1 + dn − rn) (see [1]). The assertion follows by induction on n. The
various expressions for dim(Cr) follow by direct calculations.

Another proof of a): Given r such that ri+1 + ri ≤ di, put hi = di − (ri+1 + ri) ≥ 0 and
zi = di − ri+1 = hi + ri. Choose linear subspaces Bi ⊂ Zi ⊂ Vi with dim(Bi) = ri and
dim(Zi) = zi. Since dim(Vi−1/Zi−1) = dim(Bi), choose an isomorphism σi : Vi−1/Zi−1 → Bi
for each i. Composing with the natural projection Vi−1 → Vi−1/Zi−1 we obtain linear maps
Vi−1 → Bi with kernel Zi−1 and rank ri, as wanted.

�

Remark 4. In terms of dimension of homology, the condition in Proposition 3 a) translates
as follows. Given h = (h0, . . . , hn) ∈ Nn+1, there exists a complex with dimension of homology
equal to h if and only if χi(h) ≤ χi(d) for i = 1, . . . , n− 1 and χn(h) = χn(d).

Remark 5. The group G =
∏n
i=0 GL(Vi,K) acts on V =

∏n
i=1 HomK(Vi−1, Vi) via

(g0, g1, . . . , gn) · (f1, f2, . . . , fn) = (g0f1g
−1
1 , g1f2g

−1
2 , . . . , gn−1fng

−1
n ).

This action clearly preserves the variety of complexes. It follows from the proof above that
the action on each Cr is transitive. Hence, the non-empty Cr are the orbits of G acting on
C(V0, . . . , Vn).

Definition 6. For r, s ∈ Nn we write s ≤ r if si ≤ ri for i = 1, . . . , n.
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Corollary 7. If Cr 6= ∅ and s ≤ r then Cs 6= ∅. Also, dim(Cs) > 0 if s 6= 0.

Proof. The first assertion follows from Proposition 3 a), and the second from Proposition 3
b). �

Proposition 8. With the notation above,

Cr =
⋃
s≤r

Cs = {f ∈ C/ rank(fi) ≤ ri, i = 1, . . . , n}.

Proof. Denote Xr =
⋃
s≤r Cs. Since the second equality is clear, Xr is closed. It follows that

Cr ⊂ Xr. To prove the equality, since Cr ⊂ Xr is open, it would be enough to show that Xr is
irreducible. For this, consider L = (L1, . . . , Ln) where Li ∈ Grass (ri, Vi) and denote

XL = {f = (f1, . . . , fn) ∈ C/ im (fi) ⊂ Li ⊂ ker (fi+1), i = 1, . . . , n}.
Consider

X̃r = {(L, f)/ f ∈ XL} ⊂ G× C,
where G =

∏n
i=0 Grass (ri, Vi). The first projection p1 : X̃r → G has fibers

p−1
1 (L) = XL

∼= Hom(V0, L1)×Hom(V1/L1, L2)× · · · ×Hom(Vn−1/Ln−1, Vn),

which are vector spaces of constant dimension
∑n
i=0(di−ri)ri+1. It follows that X̃r is irreducible,

and hence Xr = p2(X̃r) is also irreducible, as wanted.
�

Remark 9. In the proof above we find again the formula

dim(Xr) = dim(XL) + dim(G) =

n∑
i=0

(di − ri)ri +

n∑
i=0

(di − ri)ri+1.

Remark 10. The fact that p1 : X̃r → G is a vector bundle implies that X̃r is smooth. On the
other hand, since p2 : X̃r → Xr is birational (an isomorphism over the open set Cr), it is a
resolution of singularities.

The following two corollaries are immediate consequences of Proposition 8.

Corollary 11. Cs ⊂ Cr if and only if s ≤ r.

Corollary 12. Cr ∩ Cs = Ct where ti = min (ri, si) for all i = 1, . . . , n.

Definition 13. For d = (d0, . . . , dn) ∈ Nn+1 let

R = R(d) = {(r1, . . . , rn) ∈ Nn/ r1 ≤ d0, ri+1 + ri ≤ di (1 ≤ i ≤ n− 1), rn ≤ dn}.

We consider Nn ordered via r ≤ s if ri ≤ si for all i; the finite set R has the induced order. Notice
that R is finite since it is contained in the box {(r1, . . . , rn) ∈ Nn/ 0 ≤ ri ≤ di, i = 1, . . . , n}.

Proposition 14. With the notation above, the irreducible components of the variety of complexes
C = C(V0, . . . , Vn) are the Cr with r ∈ R(d0, . . . , dn) a maximal element.
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Proof. From the previous Propositions, we have the equalities

C =
⋃
r∈R
Cr =

⋃
r∈R
Cr =

⋃
r∈R+

Cr,

where R+ denotes the set of maximal elements of R. The result follows because we know that
each Cr is irreducible and there are no inclusion relations among the Cr for r ∈ R+ (see Corollary
11).

�

1.5. Morphisms of complexes. Tangent space of the variety of complexes. Now we
would like to compute the dimension of the tangent space of a variety of complexes at each point.

With the notation of 1.1 we consider complexes f ∈ C(V0, . . . , Vn) and f ′ ∈ C(V ′0 , . . . , V ′n) (the
vector spaces Vi and V ′i are not necessarily the same, but the lenght n we may assume is the
same). We denote

HomC(f, f
′),

the set of morphisms of complexes from f to f ′, that is, collections of linear maps gi : Vi → V ′i
for i = 0, . . . , n, such that gi ◦ fi = f ′i ◦ gi−1 for i = 1, . . . , n. It is a vector subspace of∏n
i=0 HomK(Vi, V

′
i ), and we would like to calculate its dimension.

For this particular purpose and for its independent interest, we recall the following from [2]
(§2− 5. Complexes scindés):

For f ∈ C(V0, . . . , Vn), denote as in 1.1

Bi(f) = fi(Vi−1) ⊂ Zi(f) = ker (fi+1) ⊂ Vi.
Since we are working with vector spaces, we may choose linear subspaces B̄i and H̄i of Vi such
that

Vi = Zi(f)⊕ B̄i and Zi(f) = Bi(f)⊕ H̄i.

Then Vi = Bi(f)⊕ H̄i ⊕ B̄i and clearly fi+1 takes B̄i isomorphically onto Bi+1(f). Notice also
that

dim(B̄i) = dim(Bi+1(f)) = rank(fi+1) = ri+1(f),

and
dim(H̄i) = dim(Zi(f)/Bi(f)) = hi(f).

Next, define the following complexes:

H̄(i) the complex of lenght zero consisting of the vector space H̄i in degree i, the vector space
zero in degrees 6= i, and all differentials equal to zero.

B̄(i) the complex of lenght one consisting of the vector space B̄i−1 in degree i − 1, the vector
space Bi(f) in degree i, with the map fi : B̄i−1 → Bi(f), and zeroes everywhere else.

Proposition 15. With the notation just introduced, H̄(i) and B̄(i) are subcomplexes of f and
we have a direct sum decomposition of complexes:

f =
⊕

0≤i≤n

H̄(i) ⊕
⊕

0≤i≤n

B̄(i).

Proof. Clear from the discussion above; see also [2], loc. cit. �

Now we are ready for the calculation of dimK HomC(f, f
′).
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Proposition 16. With the previous notation, we have:

dimK HomC(f, f
′) =

∑
i

hih
′
i + hir

′
i + rih

′
i−1 + rir

′
i + rir

′
i−1

=
∑
i

hi(h
′
i + r′i) + rid

′
i−1

Proof. We may decompose f and f ′ as in Proposition 15:

HomC(f, f
′) = HomC(⊕iH̄(i)⊕⊕iB̄(i),⊕iH̄(i)′ ⊕⊕iB̄(i)′)

= ⊕i,jHomC(H̄(i), H̄(j)′) ⊕ ⊕i,jHomC(H̄(i), B̄(j)′)⊕
⊕i,jHomC(B̄(i), H̄(j)′) ⊕ ⊕i,jHomC(B̄(i), B̄(j)′)

It is easy to check the following:

HomC(H̄(i), H̄(j)′) = 0 for i 6= j

HomC(H̄(i), H̄(i)′) = HomK(H̄i, H̄
′
i)

HomC(H̄(i), B̄(j)′) = 0 for i 6= j

HomC(H̄(i), B̄(i)′) = HomK(H̄i, B̄
′
i)

(the case j = i+ 1 requires special attention)

HomC(B̄(i), H̄(j)′) = 0 for i− 1 6= j

HomC(B̄(i), H̄(i− 1)′) = HomK(B̄i−1, H̄
′
i−1) ∼= HomK(B̄i(f), H̄ ′i−1)

(the case j = i requires special attention)

HomC(B̄(i), B̄(i)′) ∼= HomK(Bi(f), B′i(f))

HomC(B̄(i), B̄(i− 1)′) = HomK(B̄i−1, B
′
i−1) ∼= HomK(Bi(f), B′i−1)

HomC(B̄(i), B̄(j)′) = 0 otherwise

Taking dimensions we obtain the stated formula.
�

Now we deduce the dimension of the tangent space to a variety of complexes at any point.

Proposition 17. For f ∈ C = C(V0, . . . , Vn) we have a canonical isomorphism

TC(f) = HomC(f, f(1)),

where TC(f) is the Zariski tangent space to C at the point f , and f(1) denotes de shifted complex
f(1)i = (−1)ifi+1, i = −1, 0, . . . , n.

Proof. Since C is an algebraic subvariety of the vector space V =
∏n
i=1 HomK(Vi−1, Vi), an

element of TC(f) is a g = (g1, . . . , gn) ∈ V such that f + εg satisfies the equations defining C
(i.e., a K[ε]-valued point of C), that is,

(f + εg)i+1 ◦ (f + εg)i = 0, i = 1, . . . , n− 1 (modulo ε2),
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which is equivalent to
fi+1 ◦ gi + gi+1 ◦ fi = 0, i = 1, . . . , n− 1,

and this means precisely that g ∈ HomC(f, f(1)). �

Corollary 18. For f ∈ C = C(V0, . . . , Vn),

dimK TC(f) =
∑
i

hi(hi+1 + ri+1) + ridi

=
∑
i

(di − ri − ri+1)(di+1 − ri+2) + ridi

Proof. From Proposition 17 we know that dimK TC(f) = dimK HomC(f, f(1)). Next we apply
Proposition 16 with f ′ = f(1), that is, replacing d′i = di+1, r′i = ri+1, h′i = hi+1, to obtain the
result.

�

1.6. Varieties of exact complexes. Now we apply the previous results to the case of exact
complexes.

Let us fix (d0, . . . , dn) ∈ Nn so that

χj(d) = (−1)j
j∑
i=0

(−1)idi ≥ 0, j = 1, . . . , n− 1,

χn(d) = (−1)n
n∑
i=0

(−1)idi = 0.

Denoting χ = χ(d) = (χ1(d), . . . , χn(d)) ∈ Nn, let us consider the variety Cχ of complexes of
rank χ as in Definition 2 . Since χi(d) +χi−1(d) = di for all i, it follows from Proposition 3 that
Cχ is non-empty of dimension

1

2

n∑
i=0

d2
i .

It follows from Proposition 1 that any complex f ∈ Cχ is exact. Also, since χ ∈ R is clearly

maximal, Cχ is an irreducible component of C (see Proposition 14). Let us denote

E = E(d0, . . . , dn) = Cχ = {f ∈ C/ rank(fi) ≤ χi, i = 1, . . . , n},
the closure of the variety Cχ of exact complexes. Denote also, for i = 1, . . . , n

χi = χ− ei = (χ1, . . . , χi−1, χi − 1, χi+1, . . . , χn),

and
∆i = Cχi = {f ∈ C/ rank(f) ≤ χ− ei},

the variety of complexes where the i-th matrix drops rank by one.

Proposition 19. The codimension of ∆i in E is equal to one, and

E = Cχ ∪∆1 ∪ · · · ∪∆n.

Proof. This follows from Proposition 8 and the fact that s ∈ Nn satisfies s < χ if and only if
s ≤ χ− ei for some i = 1, . . . , n. �
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2. Moduli space of foliations.

2.1. Let X denote a (smooth, complete) algebraic variety over the complex numbers, let L be
a line bundle on X and let ω denote a global section of Ω1

X ⊗L (a twisted differential 1-form). A
simple local calculation shows that ω ∧ dω is a section of Ω3

X ⊗L⊗2. We say that ω is integrable
if it satisfies the Frobenius condition ω ∧ dω = 0. We denote

F(X,L) ⊂ PH0(X,Ω1
X ⊗ L),

the projective classes of integrable 1-forms. The map

ϕ : H0(X,Ω1
X ⊗ L)→ H0(X,Ω3

X ⊗ L⊗2),

such that ϕ(ω) = ω ∧ dω is a homogeneous quadratic map between vector spaces and hence
ϕ−1(0) = F(X,L) is an algebraic variety defined by homogeneous quadratic equations.

Our purpose is to understand the geometry of F(X,L). In particular, we are interested in the
problem of describing its irreducible components. For a survey on this problem see for example
[7].

2.2. Let r and d be natural numbers. Consider a differential 1-form in Cr+1

ω =

r∑
i=0

aidxi,

where the ai are homogeneous polynomials of degree d− 1 in variables x0, . . . , xr, with complex
coefficients. We say that ω has degree d (in particular the 1-forms dxi have degree one). Denoting
R the radial vector field, let us assume that

< ω,R >=

r∑
i=0

aixi = 0,

so that ω descends to the complex projective space Pr as a global section of the twisted sheaf of
1-forms Ω1

Pr (d). We denote

F(r, d) = F(Pr,O(d)),

parametrizing 1-forms of degree d on Pr that satisfy the Frobenius integrability condition.
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3. Complexes associated to an integrable form.

Let us denote

H0(Pr,ΩkPr (d)) = Ωkr (d),

and

Ωr =
⊕
d∈N

⊕
0≤k≤r

Ωkr (d),

with structure of bi-graded supercommutative associative algebra given by exterior product ∧
of differential forms.

Definition 20. Gelfand, Kapranov and Zelevinsky defined in [5] another product in Ωr, the
second multiplication ∗, as follows:

ω1 ∗ ω2 =
d1

d1 + d2
ω1 ∧ dω2 + (−1)(k1+1)(k2+1) d2

d1 + d2
ω2 ∧ dω1,

=
d1

d1 + d2
ω1 ∧ dω2 + (−1)(k1+1) d2

d1 + d2
dω1 ∧ ω2,

where ωi ∈ Ωkir (di) for i = 1, 2 and d1 + d2 6= 0. In case (d1, d2) = (0, 0) one defines ω1 ∗ω2 = 0.

It follows that ω1 ∗ ω2 = 0 if d1 = 0 or d2 = 0.

Remark 21. For ωi ∈ Ωkir (di) for i = 1, 2 as above,

a) ω1 ∗ ω2 belongs to Ω
(k1+k2+1)
r (d1 + d2).

b) ω1 ∗ ω2 = (−1)(k1+1)(k2+1)ω2 ∗ ω1.

c) It follows from an easy direct calculation that ∗ is associative (see [5]).

d) For any ω ∈ Ω1
r(d) we have ω ∗ ω = ω ∧ dω. In particular, ω is integrable if and only if

ω ∗ ω = 0.

Definition 22. For ω ∈ Ωkr (d) we consider the operator δω

δω : Ωr → Ωr,

such that δω(η) = ω ∗ η for η ∈ Ωr.

Remark 23. From Remark 21 a), if ω ∈ Ωk1r (d1) then

δω(Ωk2r (d2)) ⊂ Ω(k1+k2+1)
r (d1 + d2).

In particular, if ω ∈ Ω1
r(d1),

δω(Ωk2r (d2)) ⊂ Ω(k2+2)
r (d1 + d2).

Definition 24. For ω ∈ Ω1
r(d) and e ∈ Z we define two differential graded vector spaces

C+
ω (e) : Ω0

r(e)→ Ω2
r(e+ d)→ Ω4

r(e+ 2d)→ · · · → Ω2k
r (e+ kd)→ . . . ,

C−ω (e) : Ω1
r(e)→ Ω3

r(e+ d)→ Ω5
r(e+ 2d)→ · · · → Ω2k+1

r (e+ kd)→ . . . ,

where all maps are δω as in Remark 23.
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Proposition 25. Let ω ∈ Ω1
r(d), e ∈ Z and k ∈ N such that k + 2 ≤ r. Then ω ∗ η = 0 for all

η ∈ Ωkr (e) if and only if ω = 0. In other words, the linear map

δ : Ω1
r(d)→ HomK(Ωkr (e),Ωk+2

r (e+ d)),

sending ω 7→ δω, is injective.

Proof. First remark that ω ∧ η = 0 for all η ∈ Ωkr (e) (with k + 1 ≤ r) easily implies ω = 0. Now
suppose ω ∗ η = 0, that is, d ω ∧ dη + e η ∧ dω = 0, for all η ∈ Ωkr (e). Take

η = xe−ki1
dxi1 ∧ · · · ∧ dxik

(here xi denote affine coordinates and 1 < i1 < . . . ik < n). Since dη = 0, we have

dxi1 ∧ · · · ∧ dxik ∧ dω = 0.

Hence dω = 0 by the first remark. Using the hypothesis again, we know ω ∧ dη = 0 for all
η ∈ Ωkr (e). Now take η = xe−kik+1

dxi1 ∧ · · · ∧ dxik (where 1 < i1 < · · · < ik+1 < n). It follows that

dxi1 ∧ · · · ∧ dxik+1
∧ ω = 0 and hence ω = 0. �

Proposition 26. ω ∈ Ω1
r(d) is integrable if and only if δ2

ω = 0

Proof. The associativity stated in Remark 21 c) implies that δω1
◦ δω2

= δω1∗ω2
. In particular,

δ2
ω = δω∗ω and hence the claim follows from Remark 21 d) and Proposition 25. �

Remark 27. It follows from Proposition 26 that C+
ω (e) and C−ω (e) (Definition 24) are differ-

ential complexes (for any e ∈ Z) if and only if ω is integrable.

Remark 28. To fix ideas we shall mostly discuss C−ω (e), but similar considerations apply to
C+
ω (e). If no confusion seems to arise we shall denote C−ω (e) = Cω(e).

Theorem 29. Fix e ∈ Z. Let us consider the graded vector space

Ωr(e) =
⊕

0≤k≤[ r−1
2 ]

Ω2k+1
r (e+ kd),

(direct sum of the spaces appearing in C−ω (e) above). Define the linear map

δ(e) = δ : Ω1
r(d)→

[ r−1
2 ]∏

k=1

HomK(Ω2k−1
r (e+ (k − 1)d),Ω2k+1

r (e+ kd)),

such that δ(ω) = δω for each ω ∈ Ω1
r(d), and its projectivization

Pδ : PΩ1
r(d)→

[ r−1
2 ]∏

k=1

PHomK(Ω2k−1
r (e+ (k − 1)d),Ω2k+1

r (e+ kd)).

Denote C = C(Ω1
r(e),Ω

3
r(e + d),Ω5

r(e + 2d), . . . ,Ω
2[ r−1

2 ]+1
r (e + [ r−1

2 ]d)) the variety of complexes
as in 1.1 and F(r, d) the variety of foliations as in 2.2. Then

F(r, d) = (Pδ)−1(C).
In other terms, Pδ(F(r, d)) = L ∩ C, that is, the variety of foliations F(r, d) corresponds via
the linear injective map Pδ to the intersection of the variety of complexes with the linear space
L = im(Pδ).



66 FERNANDO CUKIERMAN

Proof. The statement is a rephrasing of Remark 27. �

Proposition 30. Let us denote

dkr (e) = dim Ωkr (e) =

(
r − k + e

r − k

)(
d− 1

k

)
,

(see [8]) and in particular

dk = d2k+1
r (e+ kd) = dim Ω2k+1

r (e+ kd), 0 ≤ k ≤ [
r − 1

2
].

For this d = (d0, d1, . . . , d[ r−1
2 ]) we consider the finite ordered set R = R(d) as in Proposition 14.

Then each irreducible component of the variety of foliations F(r, d) is an irreducible component
of the linear section (Pδ)−1(Cr) for a unique r ∈ R+.

Proof. From Proposition 14, we have the decomposition into irreducible components

C =
⋃
r∈R+

Cr.

From Theorem 29 we obtain:

F(r, d) = (Pδ)−1(C) =
⋃
r∈R+

(Pδ)−1(Cr).

This implies that each irreducible component X of F(r, d) is an irreducible component of
(Pδ)−1(Cr) for some r ∈ R+. This element r is the sequence of ranks of δω for a general
ω ∈ X, hence it is unique. �
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