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SINGULARITY LINKS WITH EXOTIC STEIN FILLINGS

ANAR AKHMEDOV AND BURAK OZBAGCI

ABSTRACT. In [4], it was shown that there exist infinitely many contact Seifert fibered 3-manifolds each

of which admits infinitely many exotic (homeomorphic but pairwise non-diffeomorphic) simply-connected

Stein fillings. Here we extend this result to a larger set of contact Seifert fibered 3-manifolds with many

singular fibers and observe that these 3-manifolds are singularity links. In addition, we prove that the contact

structures induced by the Stein fillings are the canonical contact structures on these singularity links. As

a consequence, we verify a prediction of András Némethi [26] by providing examples of isolated complex

surface singularities whose links with their canonical contact structures admitting infinitely many exotic

simply-connected Stein fillings. Moreover, for infinitely many of these contact singularity links and for each

positive integer n, we also construct an infinite family of exotic Stein fillings with fixed fundamental group

Z⊕ Zn.

1. INTRODUCTION

The link of a normal complex surface singularity carries a Milnor fillable (also known as canonical)

contact structure ξcan which is uniquely determined up to isomorphism [9]. A Milnor fillable contact

structure is Stein fillable since a regular neighborhood of the exceptional divisor in a resolution of the

surface singularity provides a holomorphic filling which can be deformed to be a blow-up of a Stein

surface without changing the contact structure ξcan on the boundary [6]. Moreover, if a singularity

admits a smoothing then the corresponding Milnor fiber is also a Stein filling of ξcan.

In this paper, we generalize the main result in [4] to a larger family of contact Seifert fibered 3-

manifolds admitting many singular fibers. We also observe an additional feature of these contact 3-

manifolds: They appear as the links of some isolated complex surface singularities, and the contact

structures are the canonical ones on these singularity links. The following theorems verify a prediction

of Némethi [26] filling a gap in the literature.

Theorem 4.4. There exist infinitely many Seifert fibered singularity links each of which admits infinitely

many exotic simply-connected Stein fillings of its canonical contact structure.

Theorem 5.3. There exists an infinite family of Seifert fibered singularity links such that for each positive

integer n, each member of this family equipped with its canonical contact structure admits infinitely many

exotic Stein fillings whose fundamental group is Z⊕ Zn.

One should contrast our result with what is known for links of some other isolated complex surface

singularities. For example, Ohta and Ono showed that the diffeomorphism type of any minimal strong

symplectic filling of the link of a simple singularity is unique which implies that the minimal resolution of

the singularity is diffeomorphic to the Milnor fiber [30]. They also showed that any minimal strong sym-

plectic filling of the link of a simple elliptic singularity is diffeomorphic either to the minimal resolution

or to the Milnor fiber of the smoothing of the singularity [29] .

Moreover, Lisca showed that the canonical contact structure on a lens space (the oriented link of some

cyclic quotient singularity) has only finitely many distinct Stein fillings, up to diffeomorphism [22] (see

http://dx.doi.org/10.5427/jsing.2014.8d
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also earlier work of McDuff [25]). Recently, it was shown that these Stein fillings correspond bijectively

to the Milnor fibres coming from all possible distinct smoothings of the singularity [27].

In summary, in all the previously studied examples in the literature, it was shown that an isolated

complex surface singularity with its canonical contact structure admits finitely many diffeomorphism

types of Stein fillings such that each Stein filling is diffeomorphic either to the minimal resolution or to

the Milnor fiber of one of the smoothings of the singularity.

We should mention that in [31, Theorem 1.2] Ohta and Ono showed the existence of singularity links

which admit infinitely many distinct minimal symplectic fillings distinguished by their b+2 . These fillings,

however, are not necessarily Stein or simply-connected.

On the other hand, using log transforms, Akbulut and Yasui [3, Theorem 1.1] constructed contact

3-manifolds admitting infinitely many exotic simply-connected Stein fillings with b2 = 2, inspired by

an earlier paper by Akbulut [1]. In these articles, however, the contact 3-manifolds in question are not

singularity links.

Finally, we would like to point out that in [5], using very different methods, we were able to prove the

statement of Theorem 5.3 by replacing Z⊕ Zn by any finitely presented group G.

2. MILNOR FILLABLE CONTACT STRUCTURES ON SEIFERT FIBERED 3-MANIFOLDS

In this section we identify the isomorphism class of the canonical contact structure on a singularity

link which admits a Seifert fibration. A topological characterization of such 3-manifolds was given by

Neumann [28]: A closed and oriented Seifert fibered 3-manifold is a singularity link if and only if it has

a Seifert fibration over an orientable base such that the Euler number of this fibration is negative.

Proposition 2.1. The isomorphism class of the Milnor fillable contact structure ξcan on a closed and

oriented 3-manifold Y which has a Seifert fibration with negative Euler number over an orientable base

coincides with the unique isomorphism class of the S1-invariant transverse contact structures.

Proof. It is known that any Milnor fillable contact structure ξcan on a singularity link is universally

tight [21]. According to [24, Corollary 4], there exist a locally free S1-action on Y such that ξcan is

either transverse to the orbits or invariant under the S1-action. Moreover, a contact structure which

is both invariant and transverse to the orbits of a locally free S1-action exists on a Seifert fibered 3-

manifold Y exactly when the Euler number of Y is negative (cf. [20, 23]). Furthermore, there is only one

isomorphism class of such contact structures as indicated in the last paragraph on page 1356 in [24] and

hence the result follows since a Milnor fillable contact structure is unique up to isomorphism [9]. �

3. EXTENDING DIFFEOMORPHISMS

Let p = (p1, p2, . . . , pr) denote an r-tuple of positive integers and let Σh denote a closed oriented

surface of genus h ≥ 0. Let Zh,p denote the oriented smooth 4-manifold-with-boundary obtained by

plumbing oriented disk bundles according to the star-shaped graph with r + 1 vertices described as

follows: The central vertex represents Σh ×D2 and if we label the remaining r vertices by i = 1, . . . , r,

the ith vertex—connected by an edge to the central vertex—represents a D2-bundle over S2 whose Euler

number is −pi.

Proposition 3.1. Any orientation preserving self-diffeomorphism of ∂Zh,p extends over Zh,p.

Proof. We sketch the proof of this proposition which is a simple extension of the proof of [4, Lemma

3.1], where the case r = 1 was treated in full details. The strategy of the proof there, was to find the

required extension in two steps, where the first step was to find an extension to the part
◦

Σh × D2 of

the plumbing and then complete the extension on the remaining part. Here
◦

Σh denotes Σh with a disk

removed.
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In order to prove our result, we apply the same strategy, where we remove several disks from Σh and

the second paragraph in the proof of [4, Lemma 3.1] works verbatim as the initial step. To complete the

extension to the r disk-bundles over S2, we rely on a result of Bonahon [7], since the boundary of the

oriented D2-bundle over S2 with Euler number −pi is the oriented S1-bundle over S2 with the same

Euler number, which in turn, is orientation preserving diffeomorphic to the lens space L(pi, 1). �

4. SINGULARITY LINKS WITH SIMPLY-CONNECTED EXOTIC STEIN FILLINGS

The boundary ∂Zh,p has an orientation induced from the orientation on the smooth 4-manifold-with-

boundary Zh,p described in Section 3. Let Yh,p denote ∂Zh,p with the opposite orientation. In other

words, Yh,p is the closed, oriented 3-manifold which is obtained by plumbing of oriented circle bundles

according to the star-shaped graph with r + 1 vertices as illustrated on the left in Figure 1: The central

vertex represents Σh × S1 and if we label the remaining r vertices by i = 1, . . . , r, the ith vertex—

connected by an edge to the central vertex—represents an S1-bundle over S2 whose Euler number is

pi.

Lemma 4.1. The 3-manifold Yh,p is the link of an isolated complex surface singularity.

Proof. The 3-manifold Yh,p is obtained by plumbing of circle bundles according to the star-shaped graph

illustrated on the left in Figure 1 with r + 1 vertices, where the weight on a vertex represents the Euler

number of the corresponding oriented circle bundle as usual.

0

p1

p2

pr

−r

−2

−2

−2

−2

−2

−2

−2

−2

−2

FIGURE 1. All except the central vertex represent circle bundles over S2.

By blowing up and down this plumbing graph several times we see that Yh,p is orientation-preserving

diffeomorphic to the 3-manifold given by the star-shaped plumbing graph depicted on the right in Fig-

ure 1, where there are r legs emanating from the central vertex of weight −r (and genus h) and the

i-th leg is a chain of pi − 1 vertices (excluding the central vertex) each with weight −2. Since the in-

tersection matrix of this last graph is negative definite, we conclude that Yh,p is orientation-preserving

diffeomorphic to the link of a normal and hence isolated surface singularity by Grauert’s theorem. �

Let OBh,p denote the open book on Yh,p whose page is a genus h ≥ 0 surface with r ≥ 1 boundary

components and monodromy is given as

t
p1

1 t
p2

2 . . . tpr

r

where ti is a right-handed Dehn twist along a curve parallel to the i-th boundary component and let ξh,p
denote the contact structure which is supported by OBh,p.

Lemma 4.2. The contact structure ξh,p is the canonical contact structure on Yh,p.
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Proof. First we observe that Yh,p admits a Seifert fibration over a closed oriented surface of genus h

with r singular fibers with multiplicities p1, p2, . . . , pr, respectively. Note that an explicit open book

transverse to the fibers of such a Seifert fibration was constructed in [32], which is indeed isomorphic

to the open book OBh,p on Yh,p. Moreover, it was also shown [32] that the contact structure supported

by this open book is transverse to the Seifert fibration. Furthermore, it is easy to see that this contact

structure is invariant under the natural S1 action induced by the fibration. This is because the pages of

the open book are S1-invariant by construction and contact planes can be perturbed to be arbitrarily close

to tangents of the pages by allowing an isotopy of the contact structure [10]. Therefore ξh,p has to be the

unique Milnor fillable contact structure on Yh,p by Proposition 2.1. �

The following was proved in [2]:

Proposition 4.3. Suppose that the closed 4-manifold X admits a genus h Lefschetz fibration over S2

with homologically nontrivial vanishing cycles. Let S1, S2, . . . , Sr be r disjoint sections of this fibration

with squares −p1,−p2, . . . ,−pr, respectively. Let V denote the 4-manifold with boundary obtained from

X by removing a regular neighborhood of these r sections union a nonsingular fiber. Then V admits a

PALF (positive allowable Lefschetz fibration over D2) and hence a Stein structure such that the induced

contact structure ξh,p on ∂V = Yh,p is compatible with the open book OBh,p induced by this PALF,

where p = (p1, p2, . . . , pr). In other words, V is a Stein filling of the contact 3-manifold (Yh,p , ξh,p).

Now we are ready to state and prove the main result of this section:

Theorem 4.4. There exist infinitely many Seifert fibered singularity links each of which admits infin-

itely many exotic (homeomorphic but pairwise non-diffeomorphic) simply connected Stein fillings of its

canonical contact structure.

Proof. We will give a proof of this result in the following four parts:

Part 1. A genus g Lefschetz fibration on CP 2#(4g + 5)CP 2: Let Σg be a closed orientable surface

of genus g ≥ 1. Let γ1, γ2, . . . , γ2g+1 denote the collection of simple closed curves on Σg depicted in

Figure 2, and ci denote the right handed Dehn twists along the curve γi. Let X(g, 1) denote

CP 2#(4g + 5)CP 2.

The next result is well-known (cf. [15, Exercises 7.3.8(b) and 8.4.2(a)]).

Lemma 4.5. There is a hyperelliptic genus g Lefschetz fibration f1 : X(g, 1) → S2 with global mon-

odromy (c1c2 · · · c2g−1c2gc
2
2g+1c2gc2g−1 · · · c2c1)

2 = 1.

γ1

γ2

γ3

γ4 γ2g−2

γ2g−1

γ2g

γ2g+1

FIGURE 2. Vanishing cycles of the hyperelliptic genus g Lefschetz fibration

f1 : X(g, 1) = CP 2#(4g + 5)CP 2 → S2

The 4-manifold X(g, 1) is diffeomorphic to the desingularization of the double branched cover of

S2 × S2 with branch locus given as two copies of S2 × pt and 2g + 2 copies of pt× S2. Based on this
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description, it is easy to see that X(g, 1) admits a “vertical” genus g fibration with two singular fibers and

a “horizontal” fibration with S2 as a regular fiber. Moreover the vertical fibration can be locally perturbed

so that it becomes isomorphic to the Lefschetz fibration f1 : X(g, 1) → S2 as explained in [15, Exercise

8.4.2(c)]).

Lemma 4.6. [35, Corollary 4.6] For any g ≥ 1, f1 : X(g, 1) → S2 admits at least 4g + 4 disjoint

(−1)-sphere sections.

We claim that the exceptional sphere si of the i-th blow up is a section of the Lefschetz fibration

f1 : X(g, 1) → S2 for 2 ≤ i ≤ 4g + 5. Let h denote the canonical generator of H2(CP
2,Z) and let

[F ] ∈ H2(X(g, 1),Z)

denote the homology class of the fiber F of the Lefschetz fibration f1 : X(g, 1) → S2. Then, by [11,

Lemma 3.3], we have [F ] = (g + 2)h− ge1 − e2 − · · · − e4g+5, where ei = [si] denotes the homology

class of the sphere si. Since, [F ] ·ei = 1 (for 2 ≤ i ≤ 4g+5) and the fiber F and sphere ei can be chosen

to be pseudo-holomorphic (so that they only intersect positively), we conclude that the exceptional sphere

si intersects each genus g fiber of the Lefschetz fibration f1 : X(g, 1) → S2 geometrically ones—which

proves our claim.

Note that the fiber of the horizontal fibration above is a square zero sphere in X(g, 1) given by the

homology class h− e1, which intersects every fiber of f1 : X(g, 1) → S2 twice.

Definition 4.7. We denote the n-fold fiber sum of the genus g Lefschetz fibration f1 : X(g, 1) → S2 by

fn : X(g, n) → S2.

By sewing together the disjoint (−1)-sphere sections of f1 : X(g, 1) → S2 we obtain 4g + 4 dis-

joint (−n)-sphere sections of fn : X(g, n) → S2. In order to prove Theorem 4.4, we just focus

on f2 : X(g, 2) → S2 for g ≥ 2. When we fiber sum two copies of f1 : X(g, 1) → S2 to obtain

f2 : X(g, 2) → S2, we can also glue together square-zero sphere fibers of the horizontal fibrations on

each summand to construct an embedded essential torus T of square zero in X(g, 2). The outcome of

Part 1 of our proof is that

Lemma 4.8. There is an embedded torus T in X(g, 2) with two key properties: (i) T intersects every

fiber of the genus g Lefschetz fibration f2 : X(g, 2) → S2 at two points and (ii) T has no intersection

with the 4g + 4 disjoint (−2)-sphere sections of this fibration.

Part 2. Fintushel-Stern knot surgery: Let X(g, 2)K denote the 4-manifold obtained from X(g, 2)
by performing a Fintushel-Stern knot surgery on the torus T (see Lemma 4.8) in X(g, 2) using a knot

K ⊂ S3 (cf. [12]). More precisely,

X(g, 2)K = (X(g, 2) \ (T ×D2)) ∪ (S1 × (S3 \N(K)),

where we identify the boundary of a disk normal to T with a longitude of a tubular neighborhood N(K)
of K in S3. Next we observe that,

Lemma 4.9. For any genus k fibered knot K , the surgered 4-manifoldX(g, 2)K admits a genus (g+2k)-
Lefschetz fibration with 4g + 4 disjoint (−2)-sphere sections.

Proof. The torus T ⊂ X(g, 2) on which we perform knot surgery intersects every fiber of

f2 : X(g, 2) → S2

twice and a fiber of the Lefschetz fibration X(g, 2)K → S2 is obtained by gluing one copy of the Seifert

surface of the fibered knot K to each puncture of the twice punctured fiber of f2 : X(g, 2) → S2 (cf.

[13]).
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Recall that e2, e3, . . . , e4g+5 denote the homology classes of the disjoint (−1)-sphere sections of

f1 : X(g, 1) → S2. When we fiber sum two copies of f1 : X(g, 1) → S2, we can glue corresponding

(−1)-sphere sections in the two summands to obtain 4g + 4 disjoint (−2)-sphere sections

S2, S3, . . . , S4g+5

of f2 : X(g, 2) → S2. Note that these (−2)-sphere sections will remain as sections of the Lefschetz

fibration X(g, 2)K → S2, since they are disjoint from the surgery torus T . �

Part 3. Construction of the simply-connected Stein fillings:

Definition 4.10. For any 1 ≤ r ≤ 4g+3 and for any genus k fibered knot K in S3, the 4-manifold-with-

boundary V (g, r)K ⊂ X(g, 2)K is obtained by removing a regular neighborhood of r disjoint sections

S2, S3, . . . , Sr+1 union a nonsingular genus g+2k fiber of the Lefschetz fibration X(g, 2)K → S2 given

in Lemma 4.9.

We would like to emphasize that we do not remove the section S4g+5.

Lemma 4.11. The 4-manifold V (g, r)K is simply-connected.

Proof. Observe that, by the Seifert-Van Kampen’s theorem, the fundamental group of V (g, r)K is gen-

erated by the homotopy classes of loops based at some point q ∈ S4g+5 that are conjugate to loops

µ2, µ3, . . . , µr+1 and η normal to S2, S3, . . . , Sr+1, and to the regular fiber we remove, respectively.

Since all the loops µ2, µ3, . . . , µr+1, and η can be deformed to a point using the spheres represented by

the homology classes e4g+5 − e2, e4g+5 − e3, . . . , e4g+5 − er+1 and the section S4g+5, respectively, we

conclude that V (g, r)K is simply-connected. �

For any positive integer r, let r denote the r-tuple (2, 2, . . . , 2) for the rest of this section. Then

Proposition 4.3 coupled with Lemma 4.2 imply that

Lemma 4.12. The 4-manifold V (g, r)K is a Stein filling of (Yg+2k,r , ξg+2k,r), where ξg+2k,r is the

canonical contact structure on the Seifert-fibered singularity link Yg+2k,r .

Part 4. An infinite family of exotic Stein fillings: For k ≥ 2, let Fk = {Kk,i : i ∈ N} denote an infinite

family of genus k fibered knots in S3 with pairwise distinct Alexander polynomials, which exists by [17].

Then the infinite family {X(g, 2)Kk,i
: Kk,i ∈ Fk} consists of smooth 4-manifolds homeomorphic to

X(g, 2) which are pairwise non-diffeomorphic by a theorem of Fintushel and Stern [12]. Now we claim

that for fixed g ≥ 2, k ≥ 2, and 1 ≤ r ≤ 4g + 3, the infinite set

Sg,k,r = {V (g, r)Kk,i
: Kk,i ∈ Fk}

indexed by i ∈ N, includes infinitely many homeomorphic but pairwise non-diffeomorphic simply-

connected Stein fillings of the Seifert fibered singularity link (Yg+2k,r , ξg+2k,r).
In order to prove that these Stein fillings are pairwise non-diffeomorphic we just appeal to Proposi-

tion 3.1, by observing that what we delete fromX(g, 2)Kk,i
to obtain V (g, r)Kk,i

is indeed diffeomorphic

to Zg+2k,r.

Next we prove that infinitely many of the Stein fillings in Sg,k,r are homeomorphic. We first observe

that all of these Stein fillings have the same Euler characteristic by elementary facts and the same signa-

ture by Novikov additivity. It follows that the rank of the second homology group of the fillings is fixed

as well because the fillings are simply-connected. Moreover, since the boundary of any Stein filling in

Sg,k,r is diffeomorphic to Yg+2k,r and H1(Yg+2k,r ;Z) is infinite, we conclude that the determinant of

the intersection form of any filling in Sg,k,r is zero. It follows that intersection forms of all the Stein

fillings in Sg,k,r are isomorphic (see [15, Corollary 5.3.12 and Exercise 5.3.13(f)]). Furthermore, a fixed

symmetric bilinear form is realized as an intersection form by only finitely many homeomorphism types

of simply-connected compact oriented 4-manifolds with a given boundary [8, Corollary 0.4]. Therefore
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the infinitely many Stein fillings in Sg,k,r belong to finitely many homeomorphism types—which finishes

the proof of Theorem 4.4. �

5. EXOTIC STEIN FILLINGS WITH NON-TRIVIAL FUNDAMENTAL GROUPS

Our aim in this section is to explore the existence of non-simply connected exotic Stein fillings of some

singularity links. Let n be a positive integer. In this paper, we only study the case when the fundamental

group of the Stein fillings is Z⊕ Zn.

As an essential ingredient we use the family of non-holomorphic genus g Lefschetz fibrations with

fundamental groupZ⊕Zn constructed in [33] for g = 2 and generalized to the case g ≥ 3 in [18]. For the

purposes of this article we focus on the case where g ≥ 3 is odd and provide the necessary background

for the convenience of the reader.

Definition 5.1. Let W (m) := Σm × S2#8CP 2, where Σm denotes a closed oriented genus m surface.

Note that W (m) is the total space of a genus g = 2m + 1 Lefschetz fibration over S2, which was

proved in [18, Remark 5.2] generalizing a classical result for g = 2 due to Y. Matsumoto. The branched-

cover description of this Lefschetz fibration can be given as follows [13]: Take a double branched cover

of Σm × S2 along the union of four disjoint copies of pt × S2 and two disjoint copies of Σm × pt as

shown in Figure 3.

Σm × pt

pt× S2

FIGURE 3. The branch set in Σm × S2

The resulting branched cover has eight singular points, corresponding to the intersection points of the

horizontal spheres and the vertical genus m surfaces in the branch set. By desingularizing this singular

manifold one obtains W (m). Observe that a generic fiber of the vertical fibration is the double cover of

Σm branched over four points. Thus, a generic fiber is a genus g = 2m+ 1 surface and each of the two

singular fibers of the vertical fibration can be perturbed into 2m+ 6 Lefschetz type singular fibers.

Proposition 5.2. [18] The 4-manifold W (m) admits a genus g Lefschetz fibration over S2 with 2g + 10
singular fibers such that the monodromy of this fibration is given by the relation

(b0b1b2 . . . bga
2b2)2 = 1

where bi denotes a right-handed Dehn twists along βi, for i = 0, 1, . . . , g and a and b denote right-

handed Dehn twists along α and β respectively (see Figure 4).

Also, a generic fiber of the horizontal fibration is the double cover of S2 branched over two points.

This gives a sphere fibration on W (m). We are now ready to state the main result of this section.
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β0

β1β2β3

βg

α

β

FIGURE 4. Vanishing cycles of the genus g = 2m + 1 Lefschetz fibration

W (m) = Σm × S2#8CP 2 → S2 corresponding to (b0b1b2 . . . bga
2b2)2 = 1.

Theorem 5.3. There exists an infinite family of Seifert fibered singularity links such that for each positive

integer n, each member of this family equipped with its canonical contact structure admits infinitely many

exotic (homeomorphic but pairwise non-diffeomorphic) Stein fillings whose fundamental group is Z⊕Zn.

Proof. For g = 2m+1 ≥ 3, let Wn(m) denote the total space of the Lefschetz fibration over S2 obtained

by a twisted fiber sum of two copies of the Lefschetz fibration W (m) → S2 along the regular genus g

fiber (cf. [33, 18]). Notice that twisted fiber sum refers to the fiber sum where a regular neighborhood

of a fixed regular fiber of W (m) → S2 is identified with a regular neighborhood of a fixed regular

fiber of another copy of W (m) → S2 by a non-trivial diffeomorphism of the fiber. As shown in [5],

there is a diffeomorphism involving an n-fold power of a right-handed Dehn twist along a homologically

nontrivial curve on the fiber such that π1(Wn(m)) = Z ⊕ Zn. Since in W (m) the generic fiber of the

vertical fibration intersects the generic fiber of the sphere fibration in two points, after the fiber sum we

have an embedded homologically essential torus T of self-intersection zero in Wn(m). Notice that a

regular fiber of the genus g fibration on Wn(m) intersects T at two points. It was shown in [19] that the

Lefschetz fibration on W (m) admits at least two disjoint (−1)-sphere sections, which implies that the

Lefschetz fibration on Wn(m) admits at least two disjoint (−2)-sphere sections. The torus T above can

be chosen to be disjoint from these (−2)-sphere sections.

Let Wn(m)K denote the result of the Fintushel-Stern knot surgery along the torus T by a knot K in

S3. We observe that by Seifert-Van Kampen’s theorem, π1(Wn(m)K) = Z⊕ Zn, since all the loops on

T are nullhomotopic in Wn(m) and Wn(m)K .

Proposition 5.4. For any pair of positive integers (m,n) and for any knot K in S3, the 4-manifold

Wn(m)K is homeomorphic to Wn(m).

Proof. The branched-cover description of the 4-manifold W (m), whose branch locus in Σm × S2 is

depicted in Figure 3, shows that W (m) admits a sphere fibration, and the generic fiber of the genus g

Lefschetz fibration on W (m) intersects the generic fiber of the sphere fibration in two points. Hence

the untwisted fiber sum of two copies of the Lefschetz fibration W (m) → S2 along the regular genus g

fiber, which we denote by W0(m), admits an elliptic fibration. Alternatively, W0(m) can be viewed as

the fiber sum of Σm × T 2 and the elliptic surface E(2) where we identify pt × T 2 ⊂ Σm × T 2 with

an elliptic fiber of E(2). The elliptic fibration structure on W0(m) over the genus g surface is induced

from the elliptic fibrations of E(2) and Σm × T 2 via this fiber sum. Moreover, the manifold Wn(m) can
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be obtained from W0(m) by a single Luttinger surgery along a Lagrangian torus (for details, see [5]),

disjoint from an elliptic fiber. Therefore, Wn(m) contains a Gompf nucleus C2 of E(2): Use a cusp

fiber of the above mentioned elliptic fibration, and a (−2)-sphere section obtained by sewing together

(−1)-sphere sections of the sphere fibration on W (m). Furthermore, the torus along which we perform

Fintushel-Stern knot surgery can be assumed to lie in this cusp neighborhood.

Next we decompose Wn(m) into C2 ∪Σ(2,3,11) V (n,m) along the homology 3-sphere Σ(2, 3, 11),

where V (n,m) denotes the complement of C2. Then, for any knot K in S3, we have a corresponding

decomposition of Wn(m)K into (C2)K ∪Σ(2,3,11) V (n,m), where (C2)K is an exotic copy of C2 (cf.

[14]). Since ∂C2 is a homology 3-sphere, by [8, Corollary 0.9], there exits a homeomorphism from

(C2)K to C2 which restricts to the identity map on the boundary. As a consequence, we have constructed

a homeomorphism between the 4-manifolds Wn(m)K and Wn(m) which extends the identity map on

V (n,m). �

Suppose that K is a fibered knot in S3 of genus k. Then, a simple argument similar to the one used in

the proof of Lemma 4.9 shows that Wn(m)K admits a genus g+2k = 2(m+ k) + 1 Lefschetz fibration

over S2 with two disjoint (−2)-sphere sections. Recall that, in Part 4 of the proof of Theorem 4.4, for

any k ≥ 2, we denoted an infinite family of genus k fibered knots in S3 with pairwise distinct Alexander

polynomials by Fk = {Kk,i : i ∈ N}.

Now let us fix a triple of positive integers (m,n, k), where k ≥ 2. By removing a tubular neigh-

borhood of a regular fiber and only one of the two (−2)-sphere sections of the genus 2(m + k) + 1
Lefschetz fibration on Wn(m)Kk,i

, we obtain an infinite family (indexed by i ∈ N) of Stein fillings

of the Seifert fibered singularity link Y2(m+k)+1,(2) with its canonical contact structure, such that each

filling has π1 = Z ⊕ Zn. We claim that these Stein fillings are exotic copies of each other, i.e., they

are all homeomorphic but pairwise non-diffeomorphic. The fact that these fillings are pairwise non-

diffeomorphic follows from Proposition 3.1 as in Part 4 in the proof of Theorem 4.4.

Finally, for fixed (m,n, k), we show that the Stein fillings described above with π1 = Z⊕ Zn belong

to the same homeomorphism type. We proved in Proposition 5.4 that for fixed positive integers m and n,

all the smooth 4-manifolds in the infinite family {Wn(m)Kk,i
: Kk,i ∈ Fk} belong to the same home-

omorphism type, independent of the knot Kk,i. Now we simply claim that the knot surgery performed

on Wn(m) to obtain Wn(m)Kk,i
essentially affects the complement of the removed neighborhood of the

regular fiber union the (−2)-sphere section, and hence it does not have any effect on the homeomorphism

type of the “remaining” Stein fillings. So the strategy is to start with a homeomorphism of the closed

4-manifolds including the Stein fillings, and verify that it will “descend” to a homoeomorphism of the

Stein fillings when we remove a piece from each after performing a Fintushel-Stern knot surgery.

More precisely, first note that in Wn(m), a tubular neighborhood of the (−2)-sphere section is disjoint

from the cusp neighborhood (see the proof of Proposition 5.4) including the torus T given above. More-

over, the cusp neighborhood intersects with a tubular neighborhood of a regular fiber along two disjoint

copies of D2×D2. Since the initial homeomorphism in Proposition 5.4 is identity on the complement of

the cusp neighborhood, we can delete these configurations, except the two copies of D2 ×D2, without

affecting our homeomorphism. Performing knot surgery on T turns these two disk bundles into
◦

Σk×D2,

where
◦

Σk denotes a genus k surface with one disk removed. Since any homeomorphism of ∂(
◦

Σk ×D2)

extends, we can delete these two D2 ×
◦

Σk as well so that the homeomorphism descends to the Stein

fillings. �

Corollary 5.5. For each h ≥ 7, the Seifert fibered singularity link Yh,(2) with its canonical contact

structure ξh,(2) admits

• an infinite family of exotic simply-connected Stein fillings,

• for each positive integer n, an infinite family of exotic Stein fillings whose fundamental group is

Z⊕ Zn, and



48 AKHMEDOV AND OZBAGCI

• for each positive integer n, a Stein filling whose first homology group is Zh−2 ⊕ Zn.

In particular, none of the Stein fillings in the last two items are homeomorphic to a Milnor fiber of the

singularity.

Proof. Recall that, with respect to our notation in Section 4, Yh,(2) denotes the plumbing of Σh × D2

with an oriented circle bundle over S2 whose Euler number is 2. It follows that Yh,(2) is a Seifert fibered

3-manifold over a genus h surface with a unique singular fiber of multiplicity 2.

For any h ≥ 6, an infinite family of simply connected, homeomorphic but pairwise non-diffeomorphic

Stein fillings of the singularity link (Yh,(2), ξh,(2)) is given in Theorem 4.4. Similarly, according to

Theorem 5.3, for any h = g + 2k ≥ 7, and for each positive integer n, (Yh,(2), ξh,(2)) admits an infinite

family of homeomorphic but pairwise non-diffeomorphic Stein fillings with fundamental group Z⊕ Zn.

The third family of Stein fillings is given in [33]. In addition, none of the Stein fillings in the last two

items are homeomorphic to any Milnor fiber of the singularity, since a Milnor fiber of a normal surface

singularity has vanishing first Betti number [16]. �
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