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ON THE CLASSIFICATION OF RATIONAL SURFACE SINGULARITIES

JAN STEVENS

Abstract. A general strategy is given for the classification of graphs of rational surface

singularities. For each maximal rational double point configuration we investigate the possible
multiplicities in the fundamental cycle. We classify completely certain types of graphs. This

allows to extend the classification of rational singularities to multiplicity 8. We also discuss
the complexity of rational resolution graphs.

Introduction

The topological classification of complex surface singularities amounts to classifying resolution
graphs. Such a graph represents a complex curve on a surface, and the simplest case is when
this curve is rational; then the singularity is called rational and the graph in fact determines the
analytical type of the singularity up to equisingular deformations.

Classification of singularities tends to lead to long lists, but making them is not a purpose on
its own. Sometimes one wants a list to prove statements by case-by-case checking. If the lists
become too unwieldy, as in the case on hand, their main use will be to provide an ample supply
of examples to test conjectures on. With this objective the most useful description of rational
resolution graphs is as a list of parts, together with assembly instructions, guaranteeing that the
result is a rational graph. For a special class of rational singularities, those with almost reduced
fundamental cycle, such a classification exists [13, 4].

As prototype of our classification and to fix notations we first treat the special case. The
fundamental cycle ([1], see also Definition 1.5) can be seen as divisor on the exceptional set
of the resolution, with positive coefficients (and it is this divisor which should be rational as
non-reduced curve). It is characterised numerically as the minimal positive cycle intersecting
each exceptional curve non-positively, and can therefore be computed using the intersection form
encoded in the graph. The fundamental cycle is called almost reduced if it is reduced at the
non-(−2)’s. So higher multiplicities can only occur on the maximal rational double point (RDP)
configurations. The classification splits in two parts: one has to determine the multiplicities on
the RDP-configurations and how they can be attached to the rest of the graph. The explicit list
of graphs can be found in the paper by Gustavsen [4]. Blowing down the RDP-configurations to
rational double point singularities gives the canonical model or RDP-resolution. Its exceptional
set can again by described by a graph. Our classification strategy in general is to first find
the graphs for the RDP-resolution, and then determine which rational double point (RDP)
configurations can occur.

The first new results in this paper are on graphs, where each RDP-configuration is attached
to at most one non-reduced non-(−2). The possible graphs for the RDP-resolution are easy to
describe, but here a new phenomenon occurs, that not every candidate graph can be realised
by a rational singularity. In particular, if the graph contains only one non-(−2), this vertex has
multiplicity at most 6 in the fundamental cycle. These considerations apply to all multiplicities,
but only for a restricted class of singularities; they cover all singularities of low multiplicity.
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Our result extends the classification of rational singularities of multiplicity 4 [14], and allows to
recover the classification by Tosun et al. for multiplicity 5 [16].

Multiplicity 6 necessitates the study of RDP-configurations, connecting two non-reduced non-
(−2)’s. We first determine the conditions under which the multiplicities in the fundamental cycle
become as high as possible. We do this for each RDP-configuration separately. The existence
depends on the rest of the graph. Then we use the same computations to treat the case that
the non-(−2)’s have multiplicity exactly two. This allows us to complete the classification of
rational singularities of multiplicity 6. The same methods work for multiplicity 7 and 8, but we
do not treat these cases explicitly, except for one new case, of three non-reduced non-(−2)’s,
with which we conclude our classification.

We do not claim that it is feasible to treat all multiplicities with our methods. Our last
result, on multiplicity 8, gives a glimpse of what is needed in general. To use induction over
the number of non-(−2)’s, one needs detailed knowledge on the graphs for lower multiplicity,
and it does not suffice to compute with RDP-configurations separately. We include (at the end
of the first section) a non-trivial example of a rational graph, of multiplicity 37; the graph of
the canonical model is rather simple. This example comes from a paper by Karras [6], which
maybe contains the deepest study of the structure of resolution graphs in the literature. He
proves that every rational singularity deforms into a cone over a rational normal curve of the
same multiplicity. My main motivation for taking up the classification again lies in the same
direction. The ultimate goal is to study the Artin component of the semi-universal deformation.
Over this component a simultaneous resolution exists (or, without base change, a simultaneous
canonical model). This is one motivation of our classification strategy of first finding the graph
for the RDP-resolutions. The analytical type of the total space over the Artin component (up to
smooth factors) is an interesting invariant of the singularity. In his thesis [13] Ancus Röhr turned
the problem of formats around and defined the format as just this invariant. He showed that
the format determines the exceptional set of the canonical model of the singularity. Examples
in this paper cast doubt on our earlier conjecture that the converse holds.

RDP-configurations can be of type A, D and E. Our computations show that one cannot
reach high multiplicities in the fundamental cycle using configurations of type D and E. With
this goal it suffices to look at configurations of type A. Indeed, the picture which arises from
our classifications, is that for most purposes it suffices to look at rather simple configurations of
type A.

One answer to the question how complex a graph can be is that of Lê and Tosun [10], who take
the number of rupture points (vertices with valency at least 3) as measure. We give a simplified
proof of their estimate, that this number is bounded by m−2, where m is the multiplicity of the
singularity. Our argument shows that the highest complexity is attained by graphs with reduced
fundamental cycle.

The structure of this paper is as follows. In the first section we review some properties of
resolution graphs. The next section gives the classification of singularities with almost reduced
fundamental cycle. Section 3 is about complexity in the sense of [10]. Then we discuss the for-
mat of a rational singularity, following [13]. Our computations use a special way to compute the
fundamental cycle, which we explain in Section 5. The case, where each RDP-configuration is
attached to at most one non-reduced non-(−2), is treated in Section 6, while the following section
describes RDP-configurations on general graphs. In the final section we complete the classifica-
tion for multiplicity 6 and treat the case of three non-reduced non-(−2)’s in multiplicity 8.
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1. Rational graphs

In this section we review some properties of resolution graphs. References are Artin [1],
Wagreich [17] and Wall [18], and for rational singularities in addition Laufer [8].

The topological type of a normal complex surface singularity is determined by and determines
the resolution graph of the minimal good resolution [12]. A resolution graph can be defined for
any resolution.

Definition 1.1. Let π : (M,E)→ (X, p) be a resolution of a surface singularity with exceptional
divisor E =

⋃r
i=1Ei. The resolution graph Γ is a weighted graph with vertices corresponding to

the irreducible components Ei. Each vertex has two weights, the self-intersection −bi = E2
i , and

the arithmetic genus pa(Ei), the second traditionally written in square brackets and omitted if
zero. There is an edge between vertices if the corresponding components Ei and Ej intersect,
weighted with the intersection number Ei · Ej (only written out if larger than one).

Other definitions, which record more information, are possible: one variant is to have an edge
for each intersection point P ∈ Ei ∩ Ej , with weight the local intersection number (Ei · Ej)P .
These subtleties need not concern us here, as the exceptional divisor of a rational singularity is
a simple normal crossings divisor.

We call the vertices of the graph Γ also for Ei. This should cause no confusion. From the
context it will be clear whether we consider Ei as vertex or as curve. In fact, we use Ei also in
a third sense. The classes of the curves Ei form a preferred basis of H := H2(M,Z). Following
algebro-geometric tradition the elements of H are called cycles. They are written as linear
combinations of the Ei.

The resolution graph (as defined above) is also the graph of the quadratic lattice H :=
H2(M,Z), in the sense of [11]. The intersection form on M gives a negative definite quadratic
form on H. Let K ∈ H2(M,Z) = H# be the canonical class. It can be written as rational cycle
in HQ = H ⊗Q by solving the adjunction equations Ei · (Ei +K) = 2pa(Ei)− 2. The function
−χ(A) = 1

2A ·(A+K), A ∈ H, makes H into a quadratic lattice [11, 1.4]. We prefer to work with
the genus pa(A) = 1− χ(A). Note that the genus function determines the intersection form, as

pa(A+B) = pa(A) + pa(B) +A ·B − 1 .

The data (H, pa) is equivalent to (H, {Ei · Ej}, {pa(Ei)}), encoded in the resolution graph Γ.
Sometimes we identify H with the free abelian group on the vertex set of Γ, and talk about
cycles on Γ.

Definition 1.2. A cycle A =
∑
aiEi (in H or HQ) is effective or non-negative, A ≥ 0, if all

ai ≥ 0. There is a natural inclusion j : H → H#, given by j(A)(B) = −A · B (note the minus
sign, because of negative definiteness). A cycle A is anti-nef, if j(A) ≥ 0 in H#, i.e., A · Ei ≤ 0
for all i. The anti-nef elements in H form a semigroup E and one writes E+ for E \ {0}.

If A is anti-nef, then A ≥ 0. Indeed, write A = A+ − A− with A+, A− non-negative cycles
with no components in common. Then 0 ≤ −A · A− = A2

− − A+ · A− ≤ A2
−, so by negative

definiteness A− = 0. Furthermore, if A ∈ E+, then A ≥ E, where E =
∑
Ei is the reduced

exceptional cycle. Indeed, if the support of A is not the whole of E, then there exists an Ei

intersecting A strict positively, as A > 0, and E is connected.

Definition 1.3. Given two cycles A =
∑
aiEi, B =

∑
biEi, their infimum is the cycle

inf(A,B) =
∑
ciEi with ci = min(ai, bi) for all i. This definition extends to subsets of E .

Lemma 1.4. Let W ⊂ E+ be a subset. Then inf W ∈ E+.
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Proof. Let W = infW. Fix an i and choose A ∈ W with ai minimal. Then

0 ≥ Ei ·A = Ei · (A−W ) + Ei ·W ≥ Ei ·W,
as A −W ≥ 0 with coefficient 0 at Ei. So W · Ei ≤ 0 for all i. As A ≥ E for all A ∈ W, also
W ≥ E > 0. �

Definition 1.5. The fundamental cycle Z is the cycle inf E+.

In other words, the cycle Z is the smallest cycle such that Ei · Z ≤ 0 for all i. It can be
computed with a computation sequence [8]. Start with any cycle Z0 known to satisfy Z0 ≤ Z;
one such cycle is E. Let Zk be computed. If Zk 6= Z, then there is an Ej(k) with Zk ·Ej(k) > 0.
Define Zk+1 = Zk + Ej(k). Then (Z − Zk) · Ej(k) < 0, so Ej(k) lies in the support of Z − Zk,
giving Ej(k) ≤ Z − Zk. Therefore Zk+1 ≤ Z.

The fundamental cycle depends of course on the chosen resolution, but in an easily controlled
way. Therefore it can be used to define invariants of the singularity [17].

Let σ : M ′ →M be the blow-up in a point of E, with exceptional divisor E′0. The exceptional
divisor of M ′ → X is E′ = E′0 +

∑r
i=1E

′
i, where the E′i, i ≥ 1 are mapped onto the Ei. For a

cycle A =
∑
aiEi on M the pull-back σ∗A is defined as

σ∗A = a0E
′
0 +A# , where A# =

r∑
i=1

aiE
′
i and E′0 · σ∗A = 0 .

In fact, a0 is the multiplicity of A in the point blown up. The main property of the intersection
product in this connection is that σ∗A ·σ∗B = A ·B. This product is then also equal to σ∗A ·B#.

The canonical cycle on M ′ satisfies K ′ = σ∗K + E′0. This gives that

σ∗A ·K ′ = σ∗A · (σ∗K + E′0) = σ∗A · σ∗K = A ·K
and therefore pa(σ∗A) = pa(A).

Lemma 1.6. The fundamental cycle Z ′ on M ′ is σ∗Z, the pull back of the fundamental cycle
on M .

Proof. One has E′0 · Z ′ = 0, for otherwise Z ′ − E′0 is anti-nef. Therefore Z ′ = σ∗Y for some
cycle Y and Y · Ei = σ∗Y · σ∗Ei = Z ′ · E′i ≤ 0, so Z ≤ Y . On the other hand, σ∗Z ∈ E ′, so
σ∗Y = Z ′ ≤ σ∗Z. �

Corollary 1.7. The genus pa(Z) and degree −Z2 of the fundamental cycle are invariants of the
singularity.

Definition 1.8. The fundamental genus of a singularity is the genus pa(Z) of the fundamental
cycle.

A singularity has also an arithmetic genus [17] (the largest value of pa(D) over all effective
cycles D), but this is a less interesting invariant. More important is the geometric genus, which
is h1(OM ), and also the largest value of h1(OD) over all effective cycles D.

Rational singularities were introduced by Artin [1] using the geometric genus of singularities.
He proved the following characterisation, which we take as definition.

Definition 1.9. A normal surface singularity is rational if its fundamental genus pa(Z) is equal
to 0.

Artin also proves that the degree −Z2 of the fundamental cycle is equal to the multiplicity m
of the singularity. The embedding dimension of X is m+1, which is maximal for normal surface
singularities of multiplicity m.
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Theorem 1.10 (Laufer’s rationality criterion). A resolution graph represents a rational singu-
larity if and only if

• each vertex Ei has pa(Ei) = 0,
• if a cycle Zk occurs in a computation sequence and if Zk · Ei > 0, then Zk · Ei = 1.

For the ‘if’-direction it suffices to have the second property for the steps in one computation
sequence, starting from a single vertex. The criterion follows from the fact that the genus cannot
decrease in a computation sequence, as pa(Zk + Ei) = pa(Zk) + pa(Ei) + Zk · Ei − 1.

All irreducible components of the exceptional set have to be smooth rational curves, pairwise
intersecting transversally in at most one point. This shows that minimal resolution of a rational
singularity is a good resolution.

Following Lê–Tosun [10] we call the minimal resolution graph of a rational singularity a
rational graph. It can be characterised combinatorically as weighted tree (with only vertex
weights −bi ≤ −2), representing a negative definite quadratic form, such that the genus of the
fundamental cycle is 0.

The main invariant of a rational graph is its degree −Z2. It is related to the canonical degree
Z ·K by −Z2 = Z ·K + 2, as pa(Z) = 0. Let Z =

∑
ziEi, −bi = E2

i . Then

Z ·K =
∑

zi(bi − 2) .

So the degree is determined by the coefficients zi of the fundamental cycle at non-(−2)-vertices
Ei.

As example of a rational graph we show the one (of degree 37) occurring in the paper of
Karras [6]. Every is a (−3)-vertex. The numbers are the coefficients of the fundamental cycle.

t2 t3 t4 t5 t6 t7 t8 t9 10

t5
t9t8t7t6t5t4t3t2t1

6 t7 8

t4
t7t6t5t4t3t2t1

5 6

t3
t5t4t3t2t1

t4 t2

2. Almost reduced fundamental cycle

As the lists in the classification become unwieldy, we first treat a simple special case, where
only (−2) vertices can have higher multiplicity in the fundamental cycle. Its classification is
contained in the thesis of Röhr [13] as part of more general results. The explicit list (Tables 1,
2 and 3) of graphs of RDP-configurations can be found with Gustavsen [4].
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Table 1. RDP-configurations, attached to one curve

Ak
n: v1 . . . vk−1 vk . . . vk

↓
vk−1

. . . v1
ID2

k: v2 . . .
↓

v2
v1

v1
IIDk

2k: vk
↓

v2k−2 v2k−3
. . .

vk−1

v1
IIDk

2k+1: vk v2k−1 v2k−2
. . .

vk←

v1
E2

6 : v2 v3 v4
v2

v3 v2
↓

E3
7 : v3 v4 v5 v6

v3

v4 v2
↓

Definition 2.1 ([9]). A rational singularity has an almost reduced fundamental cycle if the
fundamental cycle Z =

∑
ziEi on the minimal resolution is reduced at the non-(−2)’s, i.e.,

zi = 1 if bi > 2.

We also talk about rational graphs with almost reduced fundamental cycle.
One can compute the fundamental cycle starting from the reduced exceptional cycle by only

adding curves occurring in rational double point configurations. The computation can be done
for each configuration separately. Therefore we start with these configurations.

Theorem 2.2. A maximal rational double point configuration on a rational graph with almost
reduced fundamental cycle occurs in Tables 1, 2 or 3.

Proof. By rationality at most one vertex in a rational double point configuration can have valency
three in the resolution graph. Furthermore, a non-(−2) can only be attached to a vertex with
multiplicity one in the fundamental cycle of the rational double point. One then computes for
a graph satisfying these restrictions the fundamental cycle. The lists show that all possibilities
occur. �

Remark 2.3. The list of configurations attached to two curves is obtained from the list of Table
1 by replacing a vertex with multiplicity one by a non-(−2).

The numbers on the graphs in the Tables indicate the coefficients in the fundamental cycle.
The squares are not part of the configuration, but stand for the non-(−2)’s, to which the config-
uration is attached. The arrow indicates the curve which intersects the fundamental cycle strict
negatively.
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Table 2. RDP-configurations, attached to two curves

A1,1
n : v1 . . . v1

IA2,k
n : v2 . . . vk−1 vk . . . vk

↓
vk−1

. . . v1
IIAk,2

n : v1 . . . vk−1 vk . . . vk
↓

vk−1
. . . v2

Dk+1,2
2k+1 : vk+1

↓
v2k v2k−1

. . .

vk

v2
Dk,2

2k : vk v2k−1 v2k−2
. . .

vk←

v2

Table 3. RDP-configurations, attached to three curves

A2,k,2
n : v2 . . . vk−1 vk . . . vk

↓
vk−1

. . . v2

Our notation is a combination of that in [14] and Gustavsen’s naming scheme [4], which is
based on that of De Jong [5], who gave the list of Table 1, of configurations attached to only
one curve. Our ID2

k is called DI
k there. Our upper indices give the multiplicity at the vertices,

which are connected to non-(−2)’s. For the D-cases we could do without the upper left I or II,
except that D2

5 can have two meanings.
By blowing down all RDP-configurations on the minimal resolution M → X one obtains

the canonical model, or RDP-resolution, X̂ → X. The only singularities of X̂ are rational
double points. The reduced exceptional set has two types of singularities, normal crossing of
two curves, and three curves intersecting transversally in one point. The last case occurs for an
A2,k,2

n -configuration. Again one can form a dual graph Γ̂, which in this case is a hypertree with
edges for the normal crossing points and T-joints for three curves meeting in one point. The
canonical model does not determine the multiplicities of the fundamental cycle on the minimal
resolution. Therefore we add this multiplicity as second weight (we do not write the weight if it
is equal to 1).

We want to draw ordinary graphs. Observe that given a hypertree Γ̂ for a canonical model,
there exists a smallest ordinary tree (i.e., having minimal number of vertices) giving rise to this

hypertree: one replaces each T -joint by an A2,2,2
1 -configuration, i.e., by a single (−2)-vertex.
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Table 4. Minimal representatives up to degree 6

m = 3 m = 4 m = 5 m = 6

−3 −4 −5 −6

−3 −3 −3 −4 −3 −5

−4 −4

−3 −3 −3 −3 −3 −4

−3 −4 −3

−3 v −3

−3

−3 v −3

−4

−3 −3 −3 −3

−3 −3 −3

−3

−3 v −3

−3

−3

In Table 4 we list the graphs of the minimal representatives up to degree m = 6. Such a
graph has to have an almost reduced fundamental cycle. The necessary and sufficient condition
is that for a non-(−2) vertex Ei the sum of its valency v(i) and the number of (−2)’s attached
to it, is at most bi.

Classification (of graphs with almost reduced fundamental cycle). First classify all hypergraphs
of RDP-resolutions with all multiplicities equal to 1, and canonical degree

∑
(bi − 2) = m − 2.

Each hypertree with bi at least the valency of Ei occurs. Let then Γ̂ be such a hypergraph. Replace
a T-joint by an A2,k,2

n configuration, replace any number of edges by configurations from Table
2 and attach configurations from Table 1 to vertices, in such a way that the total multiplicity in
the fundamental cycle of the neighbours of any vertex vi does not exceed bi. The resulting graph
is a rational graph with almost reduced fundamental cycle, and all graphs can be obtained this
way.

3. Complexity

Lê and Tosun [10] used the number of rupture points (i.e., vertices with valency at least three,
stars in the terminology of [7]) as a measure of the complexity of a rational graph. They showed
that it is bounded in terms of the degree m = −Z2 of the graph (that is, the multiplicity of a
corresponding rational singularity), more precisely by m − 2, if the degree m is at least 3. We
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give here a simplified proof for a sharpened version. It shows that the most complex graphs are
already obtained from singularities with reduced fundamental cycle.

Definition 3.1. The complexity of a rational graph is the weighted number of rupture points,
where each rupture point is counted with its valency minus two as multiplicity.

Theorem 3.2. The complexity of a rational graph of degree m at least 3 is at most its canonical
degree m− 2.

The proof uses the following observation [10, Thm. 8].

Lemma 3.3. The graph, obtained from a rational graph, by making some vertex weights more
negative, is again rational and the fundamental cycle of the new graph is reduced at the changed
vertices.

Proof. We can obtain the new graph as subgraph of the graph of the resolution of the original
singularity, blown up in smooth points of the relevant exceptional curves. Its fundamental
cycle can be computed by first computing the fundamental cycle of the subgraph. By Laufer’s
rationality criterion the remaining curves intersect this cycle with multiplicity one. �

Proof of Theorem 3.2. Step 1: reduction to the case of almost reduced fundamental cycle. Con-
sider the cycle Y , which has multiplicity 1 at the non-(−2)’s and multiplicities on the RDP-
configurations as in Tables 1, 2 and 3. A vertex Ei with Ei · Y > 0 is a non-(−2) and has
coefficient zi > 1 in the fundamental cycle. For those Ei we increase bi by one. By the previous
lemma we get the same underlying graph with the same complexity, but with almost reduced
fundamental cycle, namely Y . The contribution of Ei to the canonical degree Z · K changes
from zi(bi − 2) to bi − 1 and (bi − 1)− zi(bi − 2) = 1− (zi − 1)(bi − 2) ≤ 0 with equality if and
only if zi = 2 and bi = 3. So the degree does not increase.

Step 2: reduction to the case of reduced fundamental cycle. Consider a RDP-configuration,
where Z is not reduced. Make the self-intersection of the unique rupture point in the configu-
ration into −3. This increases the canonical degree by 1. For all non-(−2)’s Ej to which the
configuration is connected we increase the self-intersection by 1 (decrease bj by 1). This decreases
the canonical degree by at least 1 (here we use that m > 2). If bj was equal to 3, then Ej might
be connected to at most one other RDP-configuration, but without rupture point. The result
is a longer chain of (−2)’s. Proceeding in this way we obtain without increasing the degree the
same underlying graph, but with reduced fundamental cycle.

Step 3. For a graph with reduced fundamental cycle the valency of a vertex is at most bi. So
the complexity is bounded by

∑
(bi − 2) = Z ·K. �

4. The format of a rational singularity

If a singularity is not a hypersurface, its equations can be written in many ways, some of
which have a special meaning. The standard example is the cone over the rational normal curve
of degree four, whose equations are the minors of(

z0 z1 z2 z3

z1 z2 z3 z4

)
,

but also the 2× 2 minors of the symmetric matrixz0 z1 z2

z1 z2 z3

z2 z3 z4

 .
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In fact, perturbing these matrices gives two different ways of deforming the singularity, leading
to the two components of the versal deformation. We say that we can write the total spaces in
a determinantal format. In a naive interpretation a format is a way of writing or coding (effi-
ciently) the equations of a singularity. Another point of view is that we have a high-dimensional
variety (like the generic determinantal), from which the singularity is derived by specialising the
equations. This will lead us to the definition of a format, given by Ancus Röhr [13]. We start
with:

Definition 4.1 ([2]). Let Y ⊂ CN be a singularity. A germ X ⊂ CM is a singularity of type Y ,
if there exists a map φ : CM → CN , such that φ∗(Y ) = X, which induces a complete intersection
morphism φ : X → Y .

For a singularity X of minimal multiplicity (in particular, for a rational surface singularity) of
multiplicity at least 3 the existence of a complete intersection morphism X → Y already implies
that X is of type Y [13, 2.4.2]. The singularity Y has the same minimal multiplicity. Indeed, X
is cut out by equations with independent linear part, for otherwise the multiplicity increases.

Deformations of type Y of X are obtained by unfolding the map φ: for every map

Φ: CM × (S, 0)→ CN ,

extending φ, the map π : Φ∗Y → (S, 0) is flat [2, 4.3.4]. In general such deformations will not
fill out a component of the deformation space, but one can turn the problem around and start
from the total space of the deformation over a smooth component. This total space is then rigid
[15, p. 101].

A rational singularity has always a smoothing component with smooth base space. This is the
Artin component, over which simultaneous resolution exists after base change. This simultaneous
resolution is a versal deformation of the resolution M of X. A base change is not needed, if one
considers instead deformations of the canonical model X̂ → X.

We therefore concentrate on the Artin component. As it is smooth, the singularity X itself
is cut out by a regular sequence from the total space Y of the deformation over the Artin
component. Therefore the singularity is of type Y . By a result of Ephraim [3] one can write
every reduced singularity Y in a unique way (up to isomorphism) as product of a singularity F
and a smooth germ of maximal dimension.

Definition 4.2 ([13]). The format F (X) of a rational surface singularity X is the unique germ F
in a decomposition Y = F ×Ck, with k maximal, of the total space Y over the Artin component
of X.

Let π̂ : (X̂, Ẑ) → (X, p) be the RDP-resolution of a rational singularity X of multiplicity

m; it can be obtained by blowing up a canonical ideal. It gives an embedding of X̂ ↪→ Pm−2
X

over X and with it an embedding of the exceptional set Ẑ = π̂−1(p) in Pm−2, as arithmetically

Cohen-Macaulay scheme of genus 0 and degree m− 2 [13, 2.6.3]. Röhr calls the cone over Ẑ the

canonical cone of X. One can also obtain Ẑ by blowing up a canonical ideal of F . This implies
that the canonical cone of a rational surface singularity is determined up to isomorphy by its
format. We conjectured that the converse also holds. This would imply that the singularities in
Remark 6.8 have the same format.

Röhr proves that quasi-determinantal singularities can be recognised from the resolution graph
[13, Satz 4.2.1]. The condition is that the graph contains the graph of a cyclic quotient singularity

of the same multiplicity. Equivalently one can say that the graph Γ̂ of the canonical model is a
chain, with everywhere multiplicity 1. The proof is based on a criterion for RDP-configurations
to be deformed on the resolution without changing the format [13, Satz 3.3.1]. This criterion also
applies to rational singularities with almost reduced fundamental cycle: all RDP-configurations



118 JAN STEVENS

can be deformed away, except A2,2,2
1 . The graph of the resulting singularity is the minimal tree

for the given hypertree Γ̂. Note that the canonical cone can have moduli, so also the formats.
The graph can therefore at most determine an equisingularity class of formats.

5. Computation of the fundamental cycle

In this section we describe, following Röhr [13, 1.3], a special way to compute the fundamental
cycle, for a given rational graph. We single out a vertex E0, which we call central vertex. The
computation is done in steps, where each time the multiplicity at E0 is increased by one.

We decompose the complement of a vertex E0 in a rational graph Γ in irreducible components:
Γ \ {E0} = ∪ki=1Γi. We suppose that k > 1; the case k = 1 can be reduced to it by blowing up
a point of the curve E0.

We construct the fundamental cycle inductively. To start with, let E0 + Y
(1)
i be the funda-

mental cycle on {E0}∪Γi; as k > 1, the support of Y
(1)
i is Γi: one can compute Z starting from

E0 + Y
(1)
i , so the coefficient at E0 is one. Define Z(1) = E0 +

∑
Y

(1)
i . Then Z(1) ·Ej ≤ 0 for all

j 6= 0.
Let Z(s) be constructed with Z(s) ·Ej ≤ 0 for all j 6= 0, with coefficient s at E0 and satisfying

Z(s) ≤ Z. If Z(s) · E0 ≤ 0, then Z(s) is the fundamental cycle Z. Otherwise, consider the set of

vertices Ei,j ∈ Γi such that Z(s) ·Ei,j = 0 and let Γ
(s+1)
i be the connected component of this set

adjacent to E0. Let E0 + Y
(s+1)
i be the fundamental cycle on {E0} ∪ Γ

(s+1)
i . As Y

(s+1)
i ≤ Y (1)

i ,

the support of Y
(s+1)
i does not contain E0. Now define

Z(s+1) = Z(s) + E0 +
∑

Y
(s)
i .

Then Z(s+1) ·Ej ≤ 0 for all j 6= 0, the coefficient at E0 is s+1 and Z(s+1) ≤ Z; indeed Z(s+1) can

be constructed from Z(s) by first adding E0 and then continuing in the manner of a computation
sequence without ever adding E0 again.

This construction ends with the fundamental cycle.
If k = 1, we blow up a point of the curve E0, introducing a Γ2. But this can be avoided,

as in fact the same description as above holds, with the only difference that for k = 1 the

cycle E0 + Y
(s)
1 is not the fundamental cycle on {E0} ∪ Γ

(s)
1 (in particular, E0 + Y

(1)
1 is not the

fundamental cycle on Γ), but Y
(s)
1 is the cycle constructed from Z(s−1) +E0 in the manner of a

computation sequence without ever adding E0.

Let m
(s)
i ≤ m

(1)
i be the coefficient of Y

(s)
i at the vertex in Γi adjacent to E0. As E0 ·Z(s) = 1

for s < l, where Z(l) = Z is the last step of the computation, we have
∑

im
(1)
i = b0 + 1,∑

im
(s)
i = b0 for 1 < s < l and

∑
im

(l)
i < b0.

Example 5.1. Consider an E6-configuration, connected to a non-(−2) vertex E0. We compute
the Z(s). We only write the multiplicities of E0 (in boldface) and of the irreducible components
of the configuration.

1 2 3 4 3 2
2

2 4 5 6 4 2
3

3 4 5 6 4 2
3

The sequence (m
(s)
1 ) is (2, 2, 0) and therefore an E6-configuration can only be connected to a

curve with multiplicity at most 3. We observe that the same sequence can be obtained from
2A1

2, two chains of length two.
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6. One non-reduced curve

The goal of this section is to give the elements for the classification of rational graphs, where
each RDP-configuration is attached to at most one non-reduced non-(−2)-vertex. We first clas-
sify the possible multiplicities at RDP-configurations. These depend only on the multiplicity of
the non-(−2), and the computation can again be done for each configuration separately. The
candidates for graphs of RDP-resolutions can be found from the graphs with almost reduced
fundamental cycle, but not every candidate arises from a rational graph.

Let E0 be a non-reduced non-(−2), with multiplicity z0 in the fundamental cycle. According
to the previous section, we can compute the fundamental cycle in z0 steps, each time increasing
the multiplicity of E0 by one. We add cycles with support on the subgraphs Γi and each subgraph

gives a multiplicity sequence (m
(1)
i , . . . ,m

(z0)
i ). These multiplicities satisfy∑

i

m
(1)
i = b0 + 1,

∑
i

m
(s)
i = b0 for 1 < s < z0,

∑
i

m
(z0)
i < b0.

After the first step we add only cycles with support in RDP-configurations intersecting E0,
as all other non-(−2)-curves, intersecting such configurations, have multiplicity one. Each Γi

contains at most one RDP-configurations adjacent E0. We include the case that there is no such
configuration by calling it A1,1

0 .
For each RDP-configuration from Tables 1, 2 and 3 we compute the multiplicity sequence

(m(1), . . . ,m(j)). The multiplicities satisfy m(1) − 1 ≤ m(s) ≤ m(1) for all s < j. We abbreviate
a sequence k, . . . , k of l equal multiplicities as kl. An exponent l = 0 means that this factor is
absent. If the sequence is infinite, and repeating itself, we underline the repeating section. So
in Table 6 the entry (1n+1, 0, 1n) for LA1,1

n should be read as (1n+1, 0, 1n, 0, 1n, 0, . . . ). The case
n = 0, of two non-(−2)’s intersecting each other, is included. The sequence is then (1, 0, 0, . . . ).

For configurations between several vertices only one of the non-(−2)’s has higher multiplicity,
and we suppose that the other ones have sufficiently negative self-intersection for the graph being
rational.

We have to distinguish which of the two or three attached vertices is the non-reduced one.
We always draw the graphs as in Tables 2 and 3. In a graph of type IA2,k

n , IIAk,2
n or A2,k,2

n

the arrowhead (which indicates the curve intersecting the fundamental cycle of the extended
configuration negatively) is on the right hand side of the graph. So it makes sense to distinguish
between the left, middle or right attached vertex. We denote this by writing an L, M or R
before the name. For type D we use L and R.

It is possible to obtain a multiplicity sequence from different configurations or combinations
of configurations. We then speak about equivalent configurations. For each configuration we
also determine the simplest equivalent combination of configurations.

Proposition 6.1. The multiplicity sequences and the equivalent configurations for the configu-
rations of Table 1 are as given in Table 5. The different cases arising from the configurations
of Table 2 are in Table 6; it gives also the multiplicity at the component attached to the other,
reduced non-(−2). If the sequence is infinite, the multiplicity after step s of the computation is
given. Table 7 gives the results for A2,k,2

n .

Proof. We do here only the case Ak
n, for k > 1, as the other cases involve similar or easier

computations. We write n = lk + r + (k − 1) with l ≥ 1 and 0 ≤ r ≤ k − 1. This is possible
as the number n satisfies n ≥ 2k − 1. There is a chain of lk + r − (k − 1) = (l − 1)k + r + 1
(−2)-vertices with multiplicity k in Z(1), and the end of this chain not intersecting E0 intersects
Z(1) negatively (when l = 1 and r = 0 there is only one vertex with multiplicity k; in this
case the multiplicity sequence is (k, 0) and the format is kA1

1, in accordance with the general
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Table 5.

name mult sequence equivalent to

A1
n (1n, 0)

Ak
(l+1)k+r−1, r < k − 1 (kl, r) (k − r)A1

l + rA1
l+1

A2
2l+2 (2l, 1, 1, 2l, 0)

Ak
(l+2)k−2, k > 2 (kl, k − 1, 1) A1

l + (k − 1)A1
l+1

ID2
k (2, 0) 2A1

1
IIDk

2k, k > 2 (k, 0) kA1
1

IID2
5 (2, 1, 2, 0) A1

1 +A1
3

IIDk
2k+1, k > 2 (k, 1) (k − 1)A1

1 +A1
2

E2
6 (2, 2, 0) 2A1

2

E3
7 (3, 0) 3A1

1

Table 6.

name mult sequence other mult equivalent configuration

LA1,1
n (1n+1, 0, 1n) dn+s

n+1e
LIA2,k

n (2, 1n−k, 0) n−k+2 LA1,1
0 +A1

n−k+1

M IA2,k
(l+1)(k−1)+r (k, (k − 1)l−1, r) d (l+1)(k−1)+r

k−1 e LA1,1
0 +(k−1−r)A1

l +rA1
l+1

k > 2

M IIAk,2
(l+1)k+r−2 (kl, r) 2 LA1,1

l−1+rA1
l+1+(k−1−r)A1

l

0 ≤ r < k−1

M IIAk,2
(l+1)k+k−3 (kl, k − 1, 1) 3 LA1,1

l−1 + (k − 1)A1
l+1

k > 2, l > 1

M IIAk,2
3k−3 (k, k − 1, 1) 3 LA1,1

1 +A1
1 + (k − 2)A1

2

k > 2

M IIA2,2
2l+1 (2l, 12, 2l−1) d l+1+s

l+1 e LA1,1
l +A1

l

RIIAk,2
n (2, 1k−2, 0) k LA1,1

0 +A1
k−1

k > 2

RIIA2,2
n (2, 0) 2 LA1,1

0 +A1
1

LDk+1,2
2k+1 (k + 1, 0) 2 LA1,1

0 + kA1
1

RDk+1,2
2k+1 (2, 1, 1, . . . ) d 2k+s

2 e LA1,1
1 +A1

1

LDk,2
2k (k, 1) 3 (k − 2)A1

1 +A1
2 + LA1,1

0

k > 2

RDk,2
2k (2, 1, 1, . . . ) b 2k+s

2 c LA1,1
1 +A1

1

formula). The set Γ(2) consists of (l− 1)k + r + (k − 1) vertices. If l > 1 this number is at least
2k − 1 and the multiplicities in Z(2) are

2, 4, . . . , 2k, 2k, . . . , 2k, 2k − 1, 2k − 2, . . . , 2, 1 .
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Table 7.

name mult seq mult at L mult at M mult at R

LA2,k,2
n (2, 1n−k+1, 0) n− k + 3 2

MA2,k,2
n (k, (k − 1)l−1, r) dn+1

k−1 e 2

RA2,k,2
n (2, 1k−2, 0) 2 k

Here n = (l + 1)(k − 1)− 1 + r with 0 ≤ r ≤ k − 2 and k > 2.

There are (l − 2)k + r + 1 vertices with multiplicity 2k in Z(2). We continue in this way until
there are r + 1 vertices with multiplicity lk in Z(l); all multiplicities are then

l, 2l, . . . , lk, lk, . . . , lk, lk − 1, lk − 2, . . . , 2, 1 .

The set Γ(l+1) consists of r + (k − 1) vertices (except when r = 0; then Γ(l+1) is empty). We
therefore add the multiplicities

1, 2, . . . , r − 1, r, . . . , r, r − 1, . . . , 2, 1, 0, . . . , 0 .

If r < k − 1 the sequence stops here, the multiplicity sequence is (kl, r) and the equivalent
configuration is (k − r)A1

l + rA1
l+1. If r = k − 1 the multiplicities in Z(l+1) are

l + 1, 2(l + 1), . . . , (k − 1)(l + 1), k(l + 1)− 1, k(l + 1)− 2, . . . , 2, 1 .

We add the multiplicities 0, . . . , 0, 1, . . . , 1. If k ≥ 3 the sequence stops here, the multiplicity
sequence is (kl, k − 1, 1) and the configuration is equivalent to A1

l + (k − 1)A1
l+1. If k = 2, the

sequence continues; as Γ(l+3) consists of n − 1 nodes, the multiplicity sequence is (2l, 12, 2l, 0).
There is no easier equivalent configuration for this A2

2l+2. �

Remark 6.2. The condition k > 2 in the tables is included to avoid duplications. For example,
as MA2,2,2

n = LA2,2,2
n , we can assume that k > 2 for MA2,k,2

n .

Remark 6.3. Note that the tables give the maximal multiplicity sequence for each configuration.
If the computation stops earlier (due to other configurations), one gets a simpler equivalent
singularity.

Corollary 6.4. Every RDP-configuration, attached to only one vertex, is equivalent to a com-
bination of configurations of type A1

n and A2
2l.

Corollary 6.5. An RDP-configuration, attached to two or three vertices, of which only one
has multiplicity greater than one in the fundamental cycle, is equivalent to a combination of
configurations of type A1

n, A2
2l, LA

1,1
n and LA2,2,2

n .

Proof. Table 6 gives the result for configurations between two vertices.
From Table 7 we see that the multiplicities of LA2,k,2

n depend only on n − k, so LA2,k,2
n is

equivalent to LA2,2,2
n−k+2. The multiplicities of RA2,k,2

n depend only on k, so we can take the
smallest n, which is 2k − 3. In that case the left and right chain of (−2)’s are equally long, so

by interchanging L and R we obtain LA2,k,2
2k−3, which is equivalent to LA2,2,2

k−1 .

For MA2,k,2
n we distinguish between the cases r = 0 and 0 < r ≤ k − 2. In the first case

dn+1
k−1 e = l + 1, while dn+1

k−1 e = l + 2 in the second case. For r = 0 an equivalent configuration,

attached to the vertex vM , is MA2,2,2
l + (k − 2)A1

l and, for r > 0, is

MA2,2,2
l+1 + (k − 1− r)A1

l + (r − 1)A1
l+1.

Finally we note that interchanging M and L makes MA2,2,2
n into LA2,2,2

n . �



122 JAN STEVENS

From an arbitrary rational graph we obtain a graph with almost reduced fundamental cycle
and the same underlying graph by making some vertex weights −bi < −2 more negative. This
process can also be inverted. The possible candidates for graphs (or hypergraphs) of RDP-
resolutions with non-reduced fundamental cycle can be obtained from reduced (hyper)-graphs
by replacing a −(bi + 2)-vertex by a −(bi/zi + 2)-vertex with multiplicity zi, but not all graphs
can be realised.

Proposition 6.6. On a rational graph with only one non-(−2) vertex E0 the multiplicity of E0

in the fundamental cycle can at most be 6.

Proof. By Corollary 6.4 it suffices to consider only RDP-configurations of type A1
n and A2

2l. If

z0 > 2, there is exactly one configuration Γi with m
(2)
i = m

(1)
i − 1, so it is either A1

1 or A2
4. In

the last case z0 ≤ 5, as A2
4 gives the sequence (2, 1, 1, 2, 0). Suppose now that there is exactly

one A1
1. If z0 > 3, there is exactly one configuration Γi with m

(3)
i = m

(2)
i − 1 = m

(1)
i − 1, which

is either A1
2 or A2

6. In the last case z0 = 4, as we combine the sequences (2, 2, 1, 1, 2, 2, 0) and
(1, 0, 1, 0, . . . ). The sequence of A1

1 +A1
2 is (1 + 1, 0 + 1, 1 + 0, 0 + 1, 1 + 1, 0 + 0) = (2, 1, 1, 1, 2, 0),

which shows that z0 ≤ 6. �

Remark 6.7. We realise z0 = 6 for a (−3) with A1
1 +A1

2 +A1
4 +A1

5.

Remark 6.8. With A2
4 and E0 a (−3) we can realise z0 = 5 with the configuration A2

4 +A1
3 +A1

4.
Another way to get 5E0 is with A1

1 +A1
2 + 2A1

4. It would be interesting to study the formats of
the corresponding singularities. We remark that neither is a deformation of the other.

Classification (of graphs, where each RDP-configuration is attached to at most one non-reduced

non-(−2)). Start by making a list of all possible hypergraphs Γ̂ of canonical cones, without edges

(or hyperedges) between non-reduced vertices. Given Γ̂, realise this graph (if possible) in all ways,
using only configurations A1

n and A2
2l, A

1,1
n (including n = 0) and LA2,2,2

n . Replace (combinations
of) RDP-configurations with equivalent ones, as given by the Tables 5, 6 and 7.

Remark 6.9. The computations so far also can help to compute the fundamental cycle for
complicated graphs. As example we return to Karras’ graph, given at the end of Section 1. The
graph for the canonical model is rather simple. Note also that only configurations of type A1

n

occur.
10 6 8 5 6

We first simplify the graph. The configuration A1
1 + A1

2 at (−3) on the right implies that its
multiplicity is at most 6. Therefore the A1

5 has no influence on the computation, and we get the
same multiplicities, if we remove it and increase the weight (−3) to (−2). We have then a A2

4

attached to the (−3) of multiplicity 5. The (−3) on the left has multiplicity at most 10 because
of A1

1 + A1
9. Again we can remove the A1

9 and increase the weight (−3) to (−2). We have then
a A2

10 attached to the (−3) of multiplicity 6. By the same argument the A1
7 at the vertex of

multiplicity 8 can be removed, so that we end up with two (−3)-vertices E1 and E2 with a A2,2
3

in between, an A2
10 attached to E1 and A2

4 attached to E2.
It remains to compute the fundamental cycle for this configuration. This is best done with

the rupture point between E1 and E2 as central vertex. We give the total multiplicities at each
step. The multiplicities of the (−3)’s are in bold face, while those of the central vertex are
underlined.

1 1 1
1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1
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2 1 2
1 2 3 4 4 4 4 4 4 2 2 2 2 3 2 1

3 2 2
1 2 3 4 5 6 6 6 6 3 3 3 2 3 2 1

4 2 2
1 2 3 4 5 6 7 8 8 4 4 4 3 4 3 2

5 3 2
1 2 3 4 5 6 7 8 9 5 5 5 3 4 3 2

5 3 3
1 2 3 4 5 6 7 8 9 5 6 6 4 6 4 2

5 4 3
1 2 3 4 5 6 7 8 9 5 6 7 5 6 4 2

5 4 3
2 3 4 5 6 7 8 9 10 6 7 8 5 6 4 2

Karras computes in a different way, as his goal is to find a smoothable subcycle.

7. RDP-configurations on general graphs

In this section we determine the maximal multiplicities that most can occur on an RDP-
configuration. We continue to compute for each RDP-configuration separately. For some con-
figurations the multiplicities can become arbitrary high, but what actually happens, depends on
the rest of the graph. We do not investigate the exact conditions.

The results apply to the classification of graphs, in which two or three non-reduced non-
(−2)’s are connected to each other by a single RDP-configuration, but not connected to any
other non-reduced non-(−2). In particular, we determine the conditions that the multiplicity of
the non-(−2)’s does not exceed two. This suffices to give a complete classification of rational
graphs of degree 6. We indicate this in the next section.

We first treat configurations attached to exactly two vertices, both of higher multiplicity.
Then there are two vertices Ea and Eb, of self-intersection −a and −b, which are connected by
a RDP-configuration ∆. The fundamental cycle Ea + Z∆ + Eb on {Ea} ∪∆ ∪ {Eb} is given in
Table 2. Let n∆,a be the coefficient of the vertex of ∆, adjacent to Ea. Furthermore, let Γa be
the union of the connected components of the complement of the graph, which are connected to
Ea. Let Ea +Za be the fundamental cycle on {Ea} ∪ Γa, let na be the sum of the multiplicities
of Za at the vertices of Γa, adjacent to Ea. Define the corresponding objects for Eb.

Definition 7.1. In the above situation Ea is a bad vertex if n∆,a + na = a+ 1.

We borrow the term bad from Tosun, see [10, Definition 3.4] and [16, Definition 3.14], where
it is used without multiplicities: Tosun calls a vertex bad if its valency is one less then its vertex
weight b. Karras [6] calls it a basic center. If Ei ·Z∆ = 0 for every vertex of ∆, then exactly one
of Ea and Eb is a bad vertex (in our sense).
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7.1. A1,1
n . We call the two vertices EL and ER, and denote the numbers defined above corre-

spondingly; the vertex weight of EL is −bL, and that of ER is −bR. Then n∆,L = n∆,R = 1
and there is exactly one bad vertex, which we suppose to be EL. This means that nL = a, and
ΓL is non-empty. We claim that the multiplicity of ∆ in the fundamental cycle can be arbi-

trarily high. We compute the fundamental cycle with EL as central vertex. We set Y
(1)
L = ZL,

Y
(1)
∆,R = Z∆ + ER + ZR. Then Z(1) = Y

(1)
L + EL + Y

(1)
∆,R, and EL is the only vertex with

Ei · Z(1) = 1. In each next step Y
(s)
L ≤ Y (1)

L and Y
(s)
∆,R ≤ Y

(1)
∆,R. In particular, the multiplicity of

the fundamental cycle at ER does not exceed that at EL. We describe the case that the compu-

tation never stops. For the sum n
(s)
L of multiplicities in ΓL, adjacent to EL, and the multiplicity

n
(s)
R,∆ we have then either n

(s)
L = a − 1 and n

(s)
∆,R = 1, or n

(s)
L = a and n

(s)
∆,R = 0. As remarked

earlier, we do not investigate the conditions which this assumption imposes on ΓL and ΓR.

Let Z∆ = E1+· · ·+En with E1 ·EL = 1 and En ·ER = 1. Suppose the coefficient of ER in Y
(s)
∆,R

is 1, and the coefficient of ER in Z(s) is k. If ER ·Z(s) = −sk < 0, then Y
(s+1)
∆,R = E1 + · · ·+En,

Y
(s+2)
∆,R = E1 + · · ·+ En−1, . . . , y

(s+n)
∆,R = E1 and Y

(s+n+1)
∆,R = ∅. Then ER · Z(s+n+1) = −sk + 1.

We continue by adding only cycles with support on ∆ until ER intersects the total computed
cycle trivially. In the next step the coefficient of ER in the added cycle will again be 1. At this
stage the coefficients of the total cycle in the neighbourhood of ∆ are as follows.

The coefficient of EL is s = k + (n+ 1)
∑
si, the sum of the n

(j)
L is

(a− 1)(n
∑

si + k − 1) + a(1 +
∑

si),

the coefficient of E1 is k + n
∑
si, that of Et is k + (n+ 1− t)

∑
si, that of En is k +

∑
si, the

coefficient of ER is k, and the sum of the multiplicities of the vertices in ΓR, adjacent to ER, is
k(b− 1)−

∑
si.

We remark that the formulas also work, if n = 0. This means that ∆ = ∅ and EL is adjacent
to ER. Furthermore, if

∑
si = 0, the multiplicities at EL and ER are independent of n.

7.2. IA2,k
n . In this case, and also for IIAk,2

n and A2,k,2
n , it is more convenient to compute the

fundamental cycle with the rupture point in the chain of (−2)’s as central vertex E0. We
therefore use a slightly different notation, consistent with the description of the computation in

Section 5. Let m
(s)
L , m

(s)
M and m

(s)
R be the multiplicities in step s at the vertices directly to the

left, below or to the right of the central vertex. The non-(−2) vertices are EL with weight −bL,
and EM with weight −bM .

We have m
(1)
L +m

(1)
M +m

(1)
R = 3, m

(s)
L +m

(s)
M +m

(s)
R ≤ 2 for s > 1, and the computation stops

at the first s where this sum is less than 2.
We start by computing the sequence (m

(s)
R ). We apply Proposition 6.1: as we have a A1

n−k+1-

configuration, the sequence is (1n−k+1, 0, 1n−k+1, 0, . . . ). So m
(s)
R = 1 for s 6= l(n − k + 2) and

m
(l(n−k+2))
R = 0 for all l.

Next we look at (m
(s)
M ). Let ZM be the fundamental cycle on the connected component

ΓM of Γ \ {E0}, containing EM . For the first step Z(1) of the computation we determine the

fundamental cycle Y
(1)
M on {E0} ∪ ΓM : it is E0 + ZM . The condition that EM is a bad vertex

translates into EM ·ZM = 1− k, so EM ·Z(1) = 2− k. Therefore we put EM ·Z(1) = 2− k− t1,

where t1 ≥ 0 with equality if and only if EM is a bad vertex. In the next steps Y
(s)
M is empty. We

find that EM ·Z(k+t1−1) = 0, so EM is in the support of Y
(k+t1)
M . We set EM ·Z(k+t1) = 2−k−t2,

with t2 ≥ t1. Proceeding this way we find the sequence

(1, 0k+t1−2, 1, 0k+t2−2, 1, 0k+t3−2, . . . ) .
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On the left side EL ·Z(1) = −s1 with s1 = 0 if and only if EL is a bad vertex. If s1 > 0, then

EL is not contained in the support of Y
(2)
L , which is the Ak−2-configuration between EL and

E0. We continue in the manner of A1
k−2, until EL ·Z(s1(k−1)+1) = 0 and EL is in the support of

Y
(s1(k−1)+2)
L . Then EL · Z(s1(k−1)+2) = −s2 with s2 ≥ s1. The sequence is

(1, (1k−2, 0)s1 , 1, (1k−2, 0)s2 , 1, (1k−2, 0)s3 , . . . ) .

Exactly one of EL and EM is a bad vertex. If k = 2, both EL and EM are connected to
E0, so upon relabeling we may assume that the bad vertex is EL. We first treat the other
case, that EM is the bad vertex. Then t1 = 0, and, as just said, we make the assumption that

k > 2. To obtain a high multiplicity we need that m
(s)
L + m

(s)
M = 1 for 1 < s < n − k + 2, and

m
(n−k+2)
L + m

(n−k+2)
M = 2. We achieve m

(s)
L + m

(s)
M = 1 for s > 1 by taking t1 = · · · = ts1 = 0,

ts1+1 = 1, ts1+2 = · · · = ts1+s2 = 0, ts1+s2+1 = 1, ts1+s2+2 = · · · = ts1+s2+s3 = 0, . . . .

The only possibility to get m
(s)
L = m

(s)
M = 1 is by taking ts1+···+sp+1 = 0: this gives s =

p+
∑p

i=1 si(k−1)+k−1. We therefore put n−k+2 = p+
∑p

i=1 si(k−1)+r with r < 1+sp+1(k−1).
If r 6= k − 1, the computation stops with s = n − k + 2. If r = k − 1, we go one step further,

as then m
(n−k+2)
L = m

(n−k+2)
M = 1 and m

(n−k+2)
R = 0, but m

(n−k+3)
L = m

(n−k+3)
M = 0. So the

computation always stops.
Suppose now that EL is the bad vertex; here k = 2 is allowed. In this case the computation

need not end. We have si = 0, 1 for all i. As m
(p(k−1)+

∑
ti+1)

M = 1, we obtain m
(s)
L + m

(s)
M = 1

for s > 1 by taking s1 = · · · = st1 = 0, st1+1 = 1, st1+2 = · · · = st1+t2 = 0, st1+t2+1 = 1,

st1+t2+2 = · · · = st1+t2+t3 = 0, . . . . We need m
(s)
L + m

(s)
M = 2 for s = l(n − k + 2). This is

possible if p(k − 1) +
∑m

i=1 ti + 1 = l(n− k + 2). In case l = 1 we then do not set s∑ ti+1 = 1,
but continue with s∑ ti+1 = s∑ ti+2 = · · · = 0. This gives a shift in the indices of the si, which
we do not compute here.

7.3. IIAk,2
n . In this case the non-(−2) vertices are EM and ER. The sequence (m

(s)
L ) is

(1k−1, 0, 1k−1, 0, . . . ).

So m
(s)
L = 1 for s 6= lk and m

(lk)
L = 0 for all l. As in the previous case the sequence (m

(s)
M ) is

(1, 0k+t1−2, 1, 0k+t2−2, 1, 0k+t3−2, . . . ) .

We have ER · Z(1) = −u1 with u1 = 0 if and only if ER is a bad vertex. If u1 > 0, then ER

is not contained in the support of Y
(2)
R , which is the An−k between ER and E0. The sequence

(m
(s)
R ) is

(1, (1n−k, 0)u1 , 1, (1n−k, 0)u2 , 1, (1n−k, 0)u3 , . . . ) .

The computation stops when m
(s)
L +m

(s)
M = 0, or when m

(s)
R = 0, except when m

(s)
L +m

(s)
M = 2

for that value of s. We achieve that m
(s)
L + m

(s)
M = 1 for s > 1 by taking t1 = 0 and ti = 1 for

i > 1. It is possible to have m
(lk)
L = m

(lk)
M = 1 for some l > 1, while m

(pk)
L +m

(pk)
M = 1 for p < l,

by setting tl = 0. If k > 2, then m
(lk+1)
L = m

(lk+1)
M = 0, so the computation stops at that point.

Therefore the computation stops when m
(s)
R =0, or if s = lk, in the next step. The computation

never stops if ui = 0 for all i. Note that in that case both EM and ER are bad vertices.

If k = 2, the situation is a bit different. The sequence (m
(s)
L ) is (1, 0, 1, 0, . . . ), (m

(s)
M ) is

(1, 0t1 , 1, 0t2 , 1, 0t3 , . . . ) and (m
(s)
R ) is

(1, (1n−2, 0)u1 , 1, (1n−2, 0)u2 , 1, (1n−2, 0)u3 , . . . ) .
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We always take t1 = 0, and ti ≤ 1. By taking suitable consecutive ti equal to zero we can get

m
(2s)
L + m

(2s)
M = 2, with this sum always equal to one for odd indices. It is possible that the

computation never stops. If n is odd, we need u2l−1 = 0 for all l, while the u2l may be arbitrary.
If n is even, then ui ≤ 1. If ui = 0 then also ui+1 = 0. If n = 2, we see no difference between

EM and ER, and indeed the sequences (m
(s)
M ) and (m

(s)
R ) are of the same shape.

7.4. Dk+1,2
2k+1 . The configuration is connected to vertices ER and EL. We claim that the coefficient

zL of EL in the fundamental cycle can be at most two. We compute the fundamental cycle with

EL as central vertex. The relevant information on the cycle Y
(1)
∆,R is given in the entry for

RDk+1,2
2k+1 in Table 6. If the coefficient of ER is s, then the multiplicity of the vertex adjacent

to EL is m
(1)
L = b 2k+1+s

2 c. We assume that EL · Z(1) = 1. If s = 2t + 1, then Y
(2)
∆,R = ∅ and

the computation stops with zL = 2 and zR = 2t + 1. If s = 2t + 2, then Γ
(2)
∆,R has only an

A1,1
2k -configuration between EL and ER, so ER is not a bad vertex for Y

(2)
∆,R and m

(2)
L = 1. As

b 2k+1+s
2 c = k + 1 + t ≥ 3, the computation again stops with zL = 2. Depending on whether

ER · Z(1) = 0 or less, zR = 2t+ 3 or zR = 2t+ 2.

7.5. Dk,2
2k . In this case only one of the vertices EL and ER is bad. In the symmetric case k = 2 we

assume that ER is the bad vertex. We compute as in the previous case with EL as central vertex.

If the coefficient of ER in Y
(1)
∆,R is s (with s > 1 if and only if ER is bad), then m

(1)
L = b 2k+s

2 c.
If s = 2t− 1, then m

(2)
L = 1. If k ≥ 3, then b 2k+s

2 c = k + t− 1 ≥ k ≥ 3. For k = 2 we assumed
s > 1, so t > 1 and again k+ t− 1 ≥ 3. So the computation stops with zL = 2, and zR = 2t− 1

or zR = 2t. If s = 2t, then Y
(2)
∆,R = ∅ and the computation stops with zL = 2 and zR = 2t.

7.6. A2,k,2
n . As in the cases IA2,k

n and IIAk,2
n we compute with the rupture point in the A2,k,2

n -

configuration as central vertex E0. The sequence (m
(s)
L ) is

(1, (1k−2, 0)s1 , 1, (1k−2, 0)s2 , 1, (1k−2, 0)s3 , . . . ) ,

the sequence (m
(s)
M ) is

(1, 0k+t1−2, 1, 0k+t2−2, 1, 0k+t3−2, . . . ) .

and finally (m
(s)
R ) is

(1, (1n−k+1, 0)u1 , 1, (1n−k+1, 0)u2 , 1, (1n−k+1, 0)u3 , . . . ) .

First suppose EM is a bad vertex, i.e., t1 = 0. We may assume that k > 2. Then EL is not
a bad vertex, s1 > 0, except possibly if n has the lowest possible value 2k − 3, when there is
an arrowhead between EM and EL at E0. In that case the chains from E0 to EL and ER are
equally long. As n − k + 1 = k − 2, not all three of s1, t1 and u1 are zero, so upon relabeling
we may assume also here that s1 > 0. As in the case IA2,k

n we find that the computation stops

with the first 0 in the sequence (m
(s)
R ), or in the step immediately after. It is however possible

that there is no 0 in this sequence; this happens if ui = 0 for all i.
If t1 > 0, then s1 = 0, and if n = 2k − 3, also u1 = 0. For most values of s we will have

m
(s)
L +m

(s)
R = 2, but we want that m

(s)
L +m

(s)
R = 1 for s = p(k−1)+

∑p
i=1 ti+1 for all p ≥ 1. We

determine on which places in the sequence (m
(s)
L ) there are zeroes. Let

∑i−1
j=1 sj < r ≤

∑i
j=1 sj .

Then the r-th zero is on place r(k − 1) + i. Similarly the r-th zero in the sequence (m
(s)
R ) is on

place r(n− k + 2) + i, if
∑i−1

j=1 uj < r ≤
∑i

j=1 uj .
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If k = 2, we may upon relabeling assume that t1 > 0. Then the same description holds. In
particular, if n = 1, we have the sequences

(1, 0s1 , 1, 0s2 , . . . ), (1, 0t1 , 1, 0t2 , . . . ), and (1, 0u1 , 1, 0u2 , . . . ).

Once again we stress that we do not investigate, which values of si, ti and ui are possible.

7.7. Multiplicity at most two. In the previous subsections we have tried to make the multi-
plicity of the fundamental cycle at non-(−2)’s as large as possible. The computations above also
tell us when the multiplicity does not exceed two. Now we make the conditions explicit in terms
of the multiplicities of the other components of the graph, attached to the two non-(−2)’s. Let
Ea be one of these vertices. Then as before Γa is the union of connected components, attached

to Ea. Let Ea +Y
(1)
a be the fundamental cycle on {Ea}∪Γa, and denote by n

(1)
a the sum of the

multiplicities of Y
(1)
a at the vertices of Γa, adjacent to Ea. At the stage of the computation of

the fundamental cycle, when the multiplicity of Ea has increased to 2, we need the fundamental

cycle Ea + Y
(2)
a on {Ea} ∪ Γ

(2)
a , where Γ

(2)
a is a connected component with vertices satisfying

Ei · (Ea + Y
(1)
a ) = 0; then E

(2)
a is the sum of the multiplicities of Y

(2)
a , adjacent to Ea.

7.7.1. A1,1
n . As before we assume that EL is the bad vertex. The computation with EL as central

vertex should stop at s = 2, so EL · Z(1) = 1 and EL · Z(2) ≤ 0. As the multiplicity of ER also
should be two, we need ER · Z(1) = 0. This gives us

n
(1)
L = bL,

n
(2)
L ≤ bL − 2,

n
(1)
R = bR − 1,

n
(2)
R ≤ bR − 1.

7.7.2. IA2,k
n . First consider the case that EM is the bad vertex, so t1 = 0 and s1 > 0. If s1 > 1,

then the computation stops before the multiplicity zL becomes two, or zM becomes at least three.
Therefore s1 = 1. We have the sequences (1, 1k−2, 0, 1, 1k−2, 0, . . . ) and (1, 0k−2, 1, 0k+t2−2, 1, . . . ).
As n− k+ 1 ≥ k we have n− k+ 2 ≥ k+ 1. The condition that the multiplicities do not exceed
two depend on n. If n − k + 2 ≤ 2k − 2, the computation always stops at s = n − k + 2. If
n− k + 2 = 2k − 1, then we need t2 ≥ 1 and if n− k + 2 ≥ 2k, then we t2 ≥ 2. Thus

n
(1)
L = bL − 2,

n
(2)
L ≤ bL − 2,

n
(1)
M = bM − k + 1,

n
(2)
M ≤


bM − k + 1, if n ≤ 3k − 4,

bM − k, if n = 3k − 3,

bM − k − 1, if n ≥ 3k − 2.

If EL is the bad vertex, we have s1 = 0 and we need t1 = 1. Furthermore s2 ≥ 1.
If n− k+ 2 = k+ 1, the computation stops at s = n− k+ 2. Otherwise we need s2 > 1. This

gives

n
(1)
L = bL − 1,

n
(2)
L ≤

{
bL − 2, if n = 2k − 1,

bL − 3, if n ≥ 2k,

n
(1)
R = bR − k,

n
(2)
R ≤ bR − k.

7.7.3. IIAk,2
n . If u1 > 0, so t1 = 0, the computation stops too early or the coefficient of EM

becomes too high. We need u2 > 0. The value of t2 depends again on n. The results also hold
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for k = 2.

n
(1)
M = bM − k + 1,

n
(2)
M ≤


bM − k + 1, if n ≤ 3k − 5,

bM − k, if n = 3k − 4,

bM − k − 1, if n ≥ 3k − 3,

n
(1)
R = bR − 1,

n
(2)
R ≤ bR − 2.

7.7.4. Dk+1,2
2k+1 . In the notation of 7.4 we need that s = 2 and ER · Z(1) < 0. This gives us

n
(1)
L = bL − k,

n
(2)
L ≤ bL − k,

n
(1)
R = bR − 1,

n
(2)
R ≤ bR − 3.

7.7.5. Dk,2
2k . In this case s ≤ 2 and zR = 2. We first assume k > 2. This gives two possibilities.

If s = 1 we obtain

n
(1)
L = bL − k + 1,

n
(2)
L ≤ bL − k + 1,

n
(1)
R = bR − 2,

n
(2)
R ≤ bR − 2

and for s = 2

n
(1)
L = bL − k,

n
(2)
L ≤ bL − k,

n
(1)
R = bR − 1,

n
(2)
R ≤ bR − 2.

The last formula also works for the symmetric case k = 2, if we assume that ER is the bad
vertex.

7.7.6. A2,k,2
n . We have to determine the conditions that at least two multiplicities become 2,

whereas none may become 3. We argue as in the cases IA2,k
n and IIAk,2

n . If ER (t1 = 0) is bad
we may assume that k > 2. If s1 > 1, the multiplicity of EL remains 1, which is seen by the

absence of the entry for n
(2)
L :

n
(1)
L ≤ bL − 3, n

(1)
M = bM − k + 1,

n
(2)
M ≤

{
bM − k + 1, if n ≤ 3k − 6,

bM − k, if n ≥ 3k − 5,

n
(1)
R = bR − 1,

n
(2)
R ≤ bR − 2.

If s1 = 1 and u1 < 0 (so n
(1)
R < bR − 1), then n > 2k− 3; for n = 2k− 3 one has, if necessary, to

interchange EL and ER. We get

n
(1)
L = bL − 2,

n
(2)
L ≤ bL − 2,

n
(1)
M = bM − k + 1,

m
(2)
M ≤


bM − k + 1, if n ≤ 3k − 5,

bM − k, if n = 3k − 4,

bM − k − 1, if n ≥ 3k − 3,

n
(1)
R ≤ bR − 2.

It is also possible that all three multiplicities are 2:

n
(1)
L = bL − 2,

n
(2)
L ≤ bL − 2,

n
(1)
M = bM − k + 1,

n
(2)
M ≤


bM − k + 1, if n ≤ 3k − 6,

bM − k, if n = 3k − 5,

bM − k − 1, if n ≥ 3k − 4,

n
(1)
R = bR − 1.

n
(2)
R ≤ bR − 2.



ON THE CLASSIFICATION OF RATIONAL SURFACE SINGULARITIES 129

If EM is not bad, we allow that k = 2.

n
(1)
L = bL − 1,

n
(2)
L ≤ bL − 2

n
(1)
M = bM − k − 1, n

(1)
R = bR − 1.

n
(2)
R ≤ bR − 2.

Also now it is possible that all three multiplicities are 2:

n
(1)
L = bL − 1,

n
(2)
L ≤

{
BL − 2, if n = 2k − 3,

bL − 3, if n ≥ 2k − 2,

n
(1)
M = bM − k,

n
(2)
M ≤ bM − k,

n
(1)
R = bR − 1.

n
(2)
R ≤ bR − 2.

8. Low degree

The classification of rational graphs of degree three was given by Artin [1], degree four by the
author [14] and degree five by Tosun et al. [16]. In these cases there is at most one non-reduced
non-(−2), so the classification can be written using the results of Sections 2 and 6. For degree
six one new case arises, with two non-reduced non-(−2)’s; here the results of Subsection 7.7
suffice, as we presently shall make explicit. For degree 7 one can use the same methods; we
do not go into detail. Things become more complicated for degree 8, where possibility of three
non-reduced non-(−2)’s appears. We classify the occurring graphs in this section.

8.1. Degree six. We start with the classification of graphs of canonical models. The ones with
reduced fundamental cycle are given in Table 4. From it one can also infer the other possibilities:
just replace some vertices with weight −b with a vertex of weight −3 and multiplicity b− 2, or
the (−6) by a (−4) of multiplicity 2. We do not treat all cases, where there is only one non-(−2)
with higher multiplicity, but We give partial results for some cases and as example we list the
complete classification in the case of highest multiplicity.

The new case in degree 6 is that there are two (−3)-vertices with multiplicity two in the
fundamental cycle. The possible configurations are described in Section 7.7. We have to specialise
to the case that the vertex weights are 3.

We write C(m1,m2) for any combination of RDP-configurations realising the multiplicity
sequence (m1,m2), and C(m1,≤ m2) for configurations where the total second multiplicity is
at most m2. The notation C(0, 0) stands for the empty configuration. These combinations can
be found from Table 5; e.g., (3,≤ 1) stands for 2A1

1 + A1
n (n ≥ 1), A3

5, A3
6, ID2

k + A1
1, A2

3 + A1
1,

A2
4 +A1

1, IID2
5 +A1

1, IID3
6, IID3

7 and E3
7 .

Proposition 8.1. Suppose the graph of the RDP-resolution consist of two (−3)-vertices, both
with multiplicity 2. Then they are connected by one of the RDP-configurations, listed in Table 8
together with the the other configurations at the left and the right vertex.

Proposition 8.2. Suppose the graph of the RDP-resolution consist of one (−3)-vertex, with
multiplicity 4. The following combinations of RDP-configurations are possible.

A2
4 + 2A1

3, A2
4 +A2

7, A1
1 +A2

6 +A1
≥3,

IID2
5 +A2

6, A1
1 +A1

2 +A2
8, A1

1 +A1
2 +A1

3 +A1
≥3,

IID2
5 +A1

2 +A1
≥3, A1

1 +A3
10, A1

1 +A1
2 +A2

7.

Proof. We argue as in the proof of Proposition 6.6. We first consider only RDP-configurations
of type A1

n and A2
2k. We need either A1

1 or A2
4. As A2

4 gives the sequence (2, 1, 1, 2, 0), we need
the sequence (2, 2, 2, 0), so the configuration 2A1

3. If there is exactly one A1
1, we further need A1

2

or A2
6. In the first case we can complete with A2

8 or A1
3 +A1

n with n ≥ 3, in the second only with
A1

n, n ≥ 3. Table 5 gives the possible equivalent configurations. �
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Table 8.

name left right

A1,1
n C(3,≤ 1) C(2,≤ 2)

IA2,2
3 C(2,≤ 1) C(1,≤ 1)

IA2,2
≥4, C(2, 0) C(1,≤ 1)

IA2,3
5 C(2,≤ 1) C(0, 0)

IA2,3
≥6 C(2, 0) C(0, 0)

IA2,3
5 C(1,≤ 1) (1,≤ 1)

IA2,3
6 C(1,≤ 1) C(1, 0)

IA2,4
7 C(1,≤ 1) C(0, 0)

IA2,4
8 C(1,≤ 1) C(0, 0)

IIA2,2
2 C(2,≤ 1) C(2,≤ 1)

IIA2,2
≥3 C(2, 0) C(2,≤ 1)

name left right

IIA3,2
4 C(1,≤ 1) C(2,≤ 1)

IIA3,2
5 C(1, 0) C(2,≤ 1)

IIA4,2
6 C(0, 0) C(2,≤ 1)

IIA4,2
7 C(0, 0) C(2,≤ 1)

D2,2
4 C(1,≤ 1) C(2,≤ 1)

D3,2
5 C(1,≤ 1) C(2, 0)

D3,2
6 C(0, 0) C(2,≤ 1)

D3,2
6 C(1,≤ 1) C(1,≤ 1)

D4,2
7 C(0, 0) C(2, 0)

D4,2
8 C(0, 0) C(1,≤ 1)

Next we consider the case that the hypertree for the RDP-resolution has a T -joint. The
smallest tree realising it looks as follows. v

2

As drawn, the vertex EM has multiplicity two. The other cases are also possible, and occur in
the classification, but they give basically the same graph.

Proposition 8.3. If the hypertree of the RDP-resolution has a T -joint and EM is the vertex of
higher multiplicity, the configurations

MA2,3,2
3 +C(1,≤ 1), MA2,3,2

4 +C(1,≤ 1), MA2,3,2
≥5 +C(1, 0), MA2,4,2

5 , MA2,4,2
6 , and MA2,4,2

≥7

can be attached to EM ; at ER an A1
n is possible and also at EL in the symmetric case of

minimal n = 2k − 3. To ER of higher multiplicity the configurations RA2,2,2
n + C(2,≤ 2) and

RA2,3,2
n +C(2,≤ 1) can be attached; at EL an A1

n is possible and also at EM in the case k = 2.

The last possibility is LA2,2,2
≥2 + C(2,≤ 1) with an optional A1

n at ER.

Proof. We use Table 7. The only thing to note is that we stop the computation earlier, at step
two, so in the case LA2,2,2

≥3 the multiplicity at EM does not reach the value n + 1, but remains
3. �

For two other cases, with the following graphs for the RDP-resolution,

3 2

we only show how they can be realised, using configurations of type LA1,1
n for the connection

to other (−3)’s, and configurations C(m1,≤ m2) and C(m1,m2,≤ m3); as before this notation
stands for any combination of configurations, realising a multiplicity sequence.

Proposition 8.4. Suppose the graph of the RDP-resolution consist of two (−3)-vertices, one
with multiplicity 3. This type can be realised by attaching to the curve of multiplicity 3 a combi-
nation LA1,1

0 + C(3, 3,≤ 2), LA1,1
1 + C(3, 2,≤ 2) or LA1,1

≥2 + C(3, 2,≤ 1).
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Two reduced (−3)’s with a (−3) of multiplicity 2 in between can be realised by attaching, to
the vertex of multiplicity 2,

LA1,1
0 + LA1,1

0 + C(2,≤ 2), LA1,1
≥1 + LA1,1

0 + C(2,≤ 1), or LA1,1
≥1 + LA1,1

≥1 + C(2, 0).

The three remaining cases are easier.

8.2. Degree eight. We consider here only the cases that there are three (−3)-vertices, all with
multiplicity two in the fundamental cycle. Either all three are connected by a single A2,k,2

n

configuration, or they form a chain. The first possibility is a special case of Section 7.7.6.

Proposition 8.5. Suppose the graph of the RDP-resolution consist of three (−3)-vertices, all
with multiplicity 2, connected by a single A2,k,2

n configuration. Then following values for n and
k are possible, with the given other configurations at each vertex.

name left middle right

A2,2,2
1 C(2,≤ 1) C(1,≤ 1) C(2,≤ 1)

A2,2,2
n C(2, 0) C(1,≤ 1) C(2,≤ 1)

A2,3,2
3 C(2,≤ 1) C(0, 0) C(2,≤ 1)

A2,3,2
n C(2, 0) C(0, 0) C(2,≤ 1)

A2,3,2
3 C(1,≤ 1) C(1,≤ 1) C(2,≤ 1)

A2,3,2
n C(1,≤ 1) C(1, 0) C(2,≤ 1)

A2,4,2
5 C(1,≤ 1) C(0, 0) C(2,≤ 1)

A2,4,2
6 C(1,≤ 1) C(0, 0) C(2,≤ 1)

Finally we consider a chain of non-reduced (−3)’s. Let the vertices be called EL, EM and
ER. We compute the fundamental cycle as described in Section 5 with EM as central vertex.
The complement Γ \ {EM} decomposes into the connected components ΓL and ΓR, contain-
ing respectively EL and ER, and the union ΓM of the remaining components. We consider

the multiplicity sequences (m
(s)
L ) = (m

(1)
L ,m

(2)
L ), (m

(1)
M ,m

(2)
M ) and (m

(1)
R ,m

(2)
R ). We need that

m
(1)
L +m

(1)
M +m

(1)
R = 4 and m

(2)
L + m

(2)
M + m

(2)
R ≤ 2. Upon interchanging EL and ER we may

assume that m
(1)
L ≥ m(1)

R .

Proposition 8.6. For a chain of three (−3)’s with multiplicity 2 in the fundamental cycle the
following multiplicity sequences are possible, when computing with the middle vertex as central
vertex.

(m
(s)
L ) (m

(s)
M ) (m

(s)
R )

(3,≤ 1) (0, 0) (1, 1)
(2,≤ 2) (0, 0) (2, 0)
(2, 1) (0, 0) (2, 1)

(m
(s)
L ) (m

(s)
M ) (m

(s)
R )

(2, 0) (1,≤ 1) (1, 1)
(2, 1) (1, 0) (1, 1)
(1, 1) (2, 0) (1, 1)

The configurations giving the required values for (m
(1)
M ,m

(2)
M ) can be read off from Table 5.

We have C(1, 0) = A1
1, C(1, 1) = A1

n, n > 1, and C(2, 0) can be 2A1
1, A2

3 or ID2
k. For (m

(1)
L ,m

(2)
L )

and (m
(1)
R ,m

(2)
R ) we use Table 6. It suffices to describe the possible configurations for EL. The

result is given in Table 9.
We have to distinguish cases depending on whether EL is a bad vertex for ΓL ∪{EM} or not.

If bad, then the multiplicity of EL in Y
(1)
L is two, and the multiplicity does not increase in the

second step. This means that Ei ·Z(1) < 0 for some vertex Ei on the chain between EL and EM .
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This is an extra condition, which excludes a number of cases from Table 6. If EL is not bad,

then its multiplicity in Y
(1)
L is one, and Ei ·Z(1) = 0 for all vertices Ei on the chain between EL

and EM , including EL. In this case m
(2)
L ) ≥ 1.

Table 9.

(m
(1)
L ,m

(2)
L ) EL bad EL not bad

(1, 1) LA1,1
n + C(2,≤ 2)

(2, 0) LA1,1
n + C(3,≤ 1)

(2, 1) M IIA2,2
2 + C(2,≤ 1) LIA2,2

3 + C(1,≤ 1)

M IIA2,2
3 + C(2, 0) LD2,2

4 + C(1,≤ 1)

M IIA3,2
4 + C(1,≤ 1) M IA2,3

5 + C(0, 0)

M IIA3,2
5 + C(1, 0) LD3,2

6 + C(0, 0)

M IIA4,2
6 + C(0, 0)

M IIA4,2
7 + C(0, 0)

(2, 2) RIIA2,2
≥3 + C(2,≤ 2) LIA2,2

≥4 + C(1,≤ 1)

LD2,2
5 + C(1,≤ 1) M IA2,3

≥6 + C(0, 0)

LD3,2
7 + C(0, 0)

(3, 0) LIA2,2
3 + C(2, 0)

LD2,2
4 + C(2,≤ 1)

M IA2,3
5 + C(1, 0)

LD3,2
6 + C(1,≤ 1)

M IA2,4
7 + C(0, 0)

LD4,2
8 + C(0, 0)

(3, 1) LIA2,2
≥4 + C(2, 0) LIA2,3

5 + C(1,≤ 1)

RIIA3,2
4 + C(2, 0) RD3,2

6 + C(1,≤ 1)

RD3,2
5 + C(2, 0)

M IA2,3
6 + C(1, 0)

M IA2,4
8 + C(0, 0)

We give the graphs for the simplest ways to realise a chain of three (−3)’s with multiplicity
2, depending on EL or ER being bad. Again it would be interesting to know whether these
singularities have the same format.

u
u
u

u
u

u u
u
u u u

u u
u

u u u
u
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