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SINGULARITIES OF ABEL–JACOBI MAPS AND GEOMETRY OF
DISSOLVING VORTICES

NUNO M. ROMÃO

Abstract. Gauged vortices are configurations of fields for certain gauge theories in fibre
bundles over a surface Σ. Their moduli spaces support natural L2-metrics, which are Kähler,
and whose geodesic flow approximates vortex scattering at low speed. This paper focuses on
vortices in line bundles, for which the moduli spaces are modeled on the spaces Σ(k) of effective
divisors on Σ with a fixed degree k; we describe the behaviour of the underlying L2-metrics
in a “dissolving limit” where the L2-geometry simplifies. In such limit, the metrics degenerate
precisely at the singular locus of the Abel–Jacobi map AJ of Σ at degree k, and their geometry
can be understood in terms of the variety Wk = AJ(Σ(k)) inside the Jacobian of Σ. Some
intuition about the behaviour of the geodesic flow close to a singularity is provided through
the study of the simplest example (resolution of a double point on a surface), corresponding
to two dissolving vortices moving on a hyperelliptic curve of genus three.

1. Introduction

The vortex equations originate in the Ginzburg–Landau theory of superconductivity [4] and
describe static, stable solutions of certain (2+1)-dimensional gauge theories [13, 9, 33, 23]. In the
simplest example, the equations relate a connection da on a principal U(1)-bundle over a smooth
surface with Kähler structure (Σ, jΣ, ωΣ), which we will assume to be compact, and a section φ of
an associated line bundle L → Σ. As part of the geometric setup, one fixes a Hermitian structure
on this line bundle, which equips each fibre LP ∼= C with a symplectic structure preserved by
the U(1)-action. This action is Hamiltonian, and a moment map µ : L → u(1)∗ ∼= R is specified
globally as

(1.1) µ(w) =
1

2
(〈w,w〉 − τ), for w ∈ LP , P ∈ Σ

where τ ∈ R is a constant (which remains arbitrary a priori). In this setup, the vortex equations
read

∂̄aφ = 0 ,(1.2)
Fa + (µ ◦ φ)ωΣ = 0 .(1.3)

The first equation expresses that the section φ : Σ → L is holomorphic, i.e. annihilated by the
operator ∂̄a : Ω0(Σ,L) → Ω1(Σ,L) defined from the unitary connection da and the complex
structure on Σ [8], while the second equation relates the curvature Fa = da of the connection to
the moment map evaluated on the values of the section and the area form ωΣ.

By integrating (1.3) over Σ, one finds that the squared L2-norm ||φ||2L2 :=
∫

Σ
〈φ, φ〉ωΣ satisfies

(1.4) ||φ||2L2 = τV − 4πk
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where V :=
∫

Σ
ωΣ is the total area of the surface and k = 1

2π

∫
Σ
Fa is the first Chern class

(or degree) of the line bundle. Sometimes, k is referred to as the vortex number. Since the
squared L2-norm is nonnegative, (1.4) implies that a necesssary condition for solutions of the
vortex equations to exist is τ ≥ 4πk

V . A theorem of Bradlow [6] (see also [10]) asserts that, if
we take τ > 4πk

V , one can find for any effective divisor D of degree k on Σ a unique solution of
the equations up to gauge equivalence which satisfies (φ) = D; this is what is called a k-vortex.
The moduli spaceMk of k-vortices is therefore the symmetric product Σ(k) = Σk/Sk, a smooth
complex manifold with complex dimension k.

The divisor of zeroes (φ) is the most basic object one can assign to a k-vortex and it gives the
precise location of k individual vortex cores, but these objects should be thought of as extending
over Σ and interacting with each other. Interesting information about vortex interactions is
encoded in a natural metric on the moduli space, which is induced from the trivial L2-metric
on the space of all fields (da, φ) by an infinite-dimensional analogue of symplectic reduction.
The induced metric is nontrivial and also Kähler with respect to the complex structure on Σ(k)

induced from jΣ. We use the term ‘L2-geometry’ to refer to this family of Kähler structures on
eachMk, which is parametrised by τ ∈ ] 4πk

V ,∞[.
To be more precise, the L2-metrics are defined at each k-vortex solution (da, φ) by

(1.5) ||(ȧ, φ̇)||2(da,φ),L2 =

∫
Σ

(
1

2
ȧ ∧ ?ȧ+ 〈φ̇, φ̇〉ωΣ

)
where ȧ ∈ Ω1(Σ) and φ̇ ∈ Γ(Σ,L) are fields representing tangent vectors in T(da,φ)Mk (they
satisfy the linearisation of the vortex equations about (da, φ) and are L2-orthogonal to the orbit
of the gauge group through this point), and ? is the Hodge star of the Kähler metric on Σ.
Integrals over Σ such as (1.5) would seem hopeless to compute directly, but it turns out that
they localise onto the support of the divisor (φ) associated to the vortex [30, 29]. This feature
has been invaluable to understand the L2-metrics and their physical content. Even though an
explicit calculation of the metrics seems to be beyond reach as yet, some results have been
obtained in certain regimes, adding to our intuition about the geometry underlying the vortex
equations. For example, formulas for the symplectic volume of the moduli spacesMk have been
established by Manton and Nasir [21] exploring localisation:

(1.6) Vol(Mk) = (2π)2k

min{k,g}∑
n=0

g!

n!(k − n)!(g − n)!

(
τV

4π
− k
)k−n

.

The L2-metrics encode precious information about infinite-dimensional dynamical models that
incorporate solitons. For instance, their geodesic flow is of direct physical interest, since it gives a
good approximation to the slow dynamics in the Abelian Higgs model in 2+1 dimensions [23, 31].

One regime in which the L2-geometry becomes somewhat tractable is what we call the dis-
solving limit, which corresponds to taking

(1.7) τ → 4πk

V

for Σ compact. This was considered in [32] and [3] when Σ has genus g = 0; and for genus
g ≥ 1 first by Nasir [26], and then by Manton and Romão [22]. In the following, we shall give an
account of the results in [22] — we will add little to the presentation in the original paper, and
shall focus on the k > 1 (multivortex) case, which brings in some interesting issues that relate
to the theory of singularities.
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2. Vortices in the dissolving limit

We would like to understand the geometry of the moduli space of vortices in the dissolving
limit (1.7), which will turn out to be a simplification of the full L2-geometry. It is instructive
to look first at the space of solutions of the equations when one sets τ = 4πk

V . Then equation
(1.4) implies that φ = 0, so the first vortex equation (1.2) is trivially satisfied: the zero section
is always holomorphic. Note that the action of ? on Ω1(Σ) depends on jΣ alone, so when φ→ 0
we expect that the L2-metric, defined by the expression (1.5), will only depend on the conformal
class of the metric given on Σ. In the following, we shall make this observation more precise.

The second vortex equation (1.3) simplifies to

(2.1) Fa = da =
τ

2
ωΣ ,

which says that the curvature of the connection da is a constant multiple of the area form ωΣ.
Notice that the constant of proportionality τ

2 = 2πk
V is determined by the topology and the

normalisation V . This is still a crude approximation to the degeneration of the moduli space of
k-vortices that we are interested in; we introduce the following terminology:

Definition 2.1. A dissolved k-vortex is a solution da to equation (2.1) in a line bundle of degree
k.

Dissolved vortices correspond to “constant curvature” or “projectively flat” connections with
respect to the 2-form ωΣ, and they are parametrised by the dual to the Jacobian variety of Σ, a
complex g-torus if Σ has genus g. Recall that the Jacobian is defined by [11]

(2.2) Jac(Σ) = H0(Σ,KΣ)∗/H1(Σ,Z).

Here, KΣ denotes the (canonical) sheaf of holomorphic 1-forms, and the inclusion H1(Σ,Z) ↪→
H0(Σ,KΣ)∗ is provided by integration over 1-cycles: λ 7→

∮
λ
. If we are given a solution da (in a

unitary trivialisation, da = d− ia for a real 1-form a) of equation (2.1), for example constructed
out of local symplectic potentials of ωΣ obtained from Kähler potentials, we can write any other
solution modulo gauge transformations as da+α where α is a global harmonic 1-form (in other
words, through twisting by a flat line bundle with connection dα); α satisfies

(2.3) dα = 0 and d ? α = 0.

The first equation in (2.3) follows from (2.1), while the second equation provides a section from
the space of gauge orbits.

Different dissolved vortices have the same curvature 2-form but different holonomies around
1-cycles in Σ. In fact, one should identify dissolved vortices if they have the same holonomies,
and this corresponds to quotienting the real 2g-dimensional vector space of harmonic 1-forms α
by the lattice of rank 2g defined by the relations

(2.4)
∮
λ

α ∈ 2πZ, ∀λ ∈ H1(Σ,Z),

thus we end up with the dual torus to Jac(Σ), as claimed. For some purposes, it is useful to
think of a harmonic 1-form as the real part of a holomorphic 1-form on Σ, and so there is also a
complex structure involved (more explicitly, ? plays the role of complex structure at each point
of the torus). Thus we are really dealing with the geometry of Abelian varieties [11].

Now the dual space H0(Σ,KΣ)∗ has a canonical inner product, namely the polarisation of
the Jacobian [11]. One can think of it as the flat Kähler metric associated to the natural
complex structure induced by jΣ, together with the symplectic form obtained by extending the
intersection pairing on H1(Σ,Z) to real coefficients (note that H1(Σ,Z) ⊗Z R = H0(Σ,KΣ)∗,
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cf. (2.2)); of course, this structure is invariant under translations. We shall denote by ΩJ the
(1, 1)-form of this Kähler metric on Jac(Σ). The map

(2.5) ω 7→ 1

2π

∫
α ∧ ω

provides an isomorphism relating infinitesimal flat connections α and elements of the dual space
H0(Σ,KΣ)∗, and therefore a pull-back of the polarisation to a Kähler structure on the dual torus
to Jac(Σ), yielding a metric at each point

(2.6) (α, β) 7→
∫

Σ

α ∧ ?β.

It is not hard to see that this induced metric coincides with the natural L2-geometry on the
space of dissolved vortices (see Section 3 of [22] for the explicit argument). This geometry on
the dual Jacobian is independent of the first Chern class k, the vortex number of the dissolved
vortex.

To understand the L2-geometry of k-vortices in the dissolving limit (1.7), a more insightful
notion is the following.

Definition 2.2. A dissolving k-vortex is a unitary connection da on a line bundle of degree k
whose induced holomorphic structure ∂̄a has nontrivial kernel.

In other words, for a dissolving vortex one requires the existence of a nonzero holomorphic section
for the induced holomorphic structure. So to a dissolving vortex one can always associate a
dissolved vortex, but not conversely, and we should be able to think of it as a limit (da, 0) of a
sequence of k-vortices as τ → 4πk

V .
Recall that the Jacobian variety Jac(Σ) plays another important role, namely that of clas-

sifying holomorphic line bundles over Σ of a given degree [11]. Holomorphic line bundles are
determined by divisor classes (i.e. divisors on Σ modulo linear equivalence, where two divi-
sors of the same degree are identified if their difference is the divisor of zeroes and poles of a
global meromorphic function on Σ). The relation between divisors on Σ and Jac(Σ) is achieved
via the Abel–Jacobi map, which depends on the choice of a basepoint P0 ∈ Σ: to a divisor
D = D+ −D−, where D+ =

∑
i Pi and D− =

∑
j Qj are effective divisors, AJ(D) is defined by

a linear functional on holomorphic 1-forms via the Abelian integrals

AJ(D) : ω 7→
∑
i

∫ Pi

P0

ω −
∑
j

∫ Qj

P0

ω.

The value determined by this quantity in the Jacobian variety does not depend on the choice
of paths connecting each Pi or Qj to P0 since the ambiguity lies on the image of H1(Σ,Z) in
H0(Σ,KΣ)∗. Moreover, a different choice of basepoint P0 simply leads to a translation in the
Jacobian. We will be interested in the restriction of the Abel–Jacobi maps AJk to the spaces of
effective divisors of degree k > 0, which are the symmetric products Σ(k) and can be identified
with moduli spaces of k-vortices.

Note that the maps AJk are holomorphic. Their images

(2.7) Wk := AJk(Σ(k)) ⊂ Jac(Σ)

are complex subvarieties of dimension min{k, g}, and they can be regarded as the spaces of
dissolving k-vortices. It is a classical theorem of Abel [11] that the map

AJ1 : Σ(1) = Σ −→ Jac(Σ)
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is an embedding. So the flat Kähler structure associated to the polarisation of the Jacobian
variety, discussed above, induces a Kähler structure AJ∗1ΩJ on Σ. In [22], the following result is
proven:

Theorem 2.3. In the dissolving limit (1.7), the L2-metric on M1 converges to a natural
Bergman metric on Σ, regarded as the moduli space of one dissolving vortex. It coincides with
the Kähler metric obtained by pulling back the polarisation of the Jacobian via the Abel–Jacobi
embedding AJ1 : Σ ↪→ Jac(Σ).

The idea of the proof is to relate Hecke modifications performing shifts of the line bundle as-
sociated to a dissolving 1-vortex to complex gauge transformations; such a shift can also be
described by addition of harmonic 1-forms at the level of the connections associated to the holo-
morphic structures, and their length for an infinitesimal shift describes the L2-metric, which can
be computed in holomorphic coordinates. For our purposes, a Bergman metric [18, 14] on a
compact Riemann surface of genus g ≥ 1 is a Riemannian structure of the form

(2.8) ds2 =

g∑
j=1

ωjω̄j ,

which is associated to any basis {ω1, . . . , ωg} of H0(Σ,KΣ) ∼= Cg; see Appendix A in [22]. Note
that (2.8) is constant on U(g)-orbits of the space of bases. The particular Bergman metric in our
result is the one coming from an orthogonal basis with respect to the metric on 1-forms given
by (2.6), up to the global factor of (2π)2.

3. Geometry of dissolving multivortices

Important details about the complex geometry of the Riemann surface Σ are captured by
the dissolving limit of the L2-geometry of the moduli spaces of vortices. We have argued that
the limit Kähler structure should depend only on the intrinsic complex structure of Σ, and it
would be interesting to understand how this dependence is reflected qualitatively in its curvature
properties and the geodesic flow, for example. In the k = 1 case, the Bergman metric onM1 = Σ
in Theorem 2.3 is known to have nonpositive Gauß curvature [19]. This follows from general facts:
the image of a holomorphic embedding Σ ↪→ Jac(Σ) of a complex curve in a Kähler manifold
must be a minimal surface, so its principal curvatures at each point must be symmetric. If g > 1,
it turns out that the curvature vanishes at most at a finite number of points, which are precisely
the Weierstraß points [11] of Σ if X is hyperelliptic (otherwise the curvature never vanishes) [19].
For Kähler structures of dissolving multivortices, one should be able to obtain results in this
spirit, but the geometry in higher dimensions will be richer.

In what follows, we shall explore the dissolving limit (1.7) for multivortices, assuming that
the two inequalities

(3.1) 1 < k < g

hold. We have already stated that the image (2.7) of the moduli space of vortices Mk = Σ(k)

under the Abel–Jacobi map (well defined once a base point P0 ∈ Σ is chosen, and holomorphic)
is a complex subvariety of the Jacobian. However, as we will make more precise in a moment, for
large enough k this map is no longer an embedding, in contrast to the k = 1 case, and then the
images Wk in (2.7) are singular subvarieties. Among these objects, perhaps the most familiar
one is Wg−1, which is a translation of the Θ-divisor [11] in Jac(Σ) and has singularities if g > 3
(see Example 3.2 below for a discussion of the g = 3 case).

Whenever the Abel–Jacobi map has singular points, the (1, 1)-form AJ∗kΩJ obtained as pull-
back of the polarisation of the Jacobian is degenerate, i.e. its rank drops down. Then one is left
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with a degenerating Kähler metric on Σ(k), for which the existence and uniqueness of geodesics
associated to any point and direction may not hold. (The corresponding (1, 1)-form is still closed,
as it is the pull-back of the closed 2-form ΩJ). We argue in Section 7 of [22], following essentially
the same steps of the proof of Theorem 2.3, that AJ∗kΩJ describes once again the dissolving limit
of the L2-geometry on the moduli space of k-vortices.

In the multivortex case, over the sets of regular points of each AJk one thus obtains Käh-
ler metrics that can be regarded as higher-dimensional generalisations of the Bergman metric
described above. Effective divisors on the subset where the metrics are regular represent line
bundles that do not admit independent holomorphic sections (with different divisors of zeroes).
In contrast, in the language of algebraic geometry [1], the induced metric of dissolving vortices
is degenerate over special effective divisors, which run or move in nontrivial linear systems. The
directions of degeneracy on Σ(k) are precisely those along the complete linear system associ-
ated with a special divisor D. The sets of special divisors D, sitting on exceptional fibres of
the Abel–Jacobi map, are complex projective spaces whose dimension ` can be related to sheaf
cohomology via the Riemann–Roch theorem [11]:

` = dimC P(H0(Σ,O(D)))(3.2)
= dimCH

1(Σ,O(D)) + degD − g + 1− 1(3.3)
= dimCH

1(Σ,O(D)) + k − g .(3.4)

The divisor D is special precisely when the following strict inequality holds:

(3.5) dimCH
1(Σ,O(D)) = dimCH

0(Σ,O(KΣ −D))∗ > g − k .
The relations among the geometry of linear systems on Σ, exceptional fibres of the Abel–

Jacobi map, and singularities of the subvarieties Wk ⊂ Jac(Σ) are summarised in the beautiful
Riemann–Kempf theorem, which essentially says that a point w ∈ Wk is a singularity of multi-
plicity

(
g−k+`
`

)
, its tangent cone being the union of images of the tangent spaces TDΣ(k) by the

differential of the Abel–Jacobi map, where the effective divisor D runs over the complete linear
system associated with (i.e. is the fibre over) w. The subvarieties Wk ⊂ Jac(Σ) are locally given
by determinantal equations, and their structure is an important topic in the modern algebraic
geometry of curves [1].

In particular, the answer to the natural question of whether Wk(Σ) ⊂ Jac(Σ) will happen to
be singular or not (i.e. whether special divisors exist) depends on k, the genus g of Σ and the
complex structure on Σ, and it is part of a rich subject that goes under the name of Brill–Noether
theory [1]. A sufficient condition for existence of singularities is given by in following result:

Theorem 3.1. If the inequality k ≥ g
2 + 1 is satisfied, then Wk is a singular algebraic variety,

irrespective of the complex structure of Σ.

The first proof of this statement was presented by Meis [24] and used complex analysis on
Teichmüller spaces, resorting to certain specific models of Riemann surfaces in separate cases
of odd and even genus. Subsequently, a number of more conceptual and algebraic proofs were
given, some of them generalising Meis’s result to linear systems of higher dimension. Kleiman
and Laksov constructed a very clean proof [16] that should appeal most to singularity theorists.
It makes crucial use of Porteous’ formula [27] for the Thom polynomial giving the class of the
scheme parametrising special divisors inside the Chow ring of Σ(k), under weaker assumptions [15]
than the transversality conditions assumed in the original paper [27].

To illustrate more concretely the behaviour of the Abel–Jacobi map for k > 1 and the structure
of its image Wk as a complex k-fold inside the Jacobian, we briefly describe examples of the
possible behaviours at low vortex number k. Typically, the qualitative behaviour at a given
genus depends crucially on the complex structure of Σ, e.g. on whether Σ is hyperelliptic, and
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on what kind of linear systems the geometry of Σ allows. Needless to say, the situations at higher
k and g will be considerably more complicated than these examples. For more information, the
reader is referred to the textbooks [1, 25].

Example 3.2. For k = 2, the lowest-genus case where (3.1) is satisfied is g = 3. Note that these
values of k and g do not obey the inequality in Theorem 3.1. In this situation there are two
subcases. If Σ is a nonhyperelliptic curve (the generic situation), the image W2 ⊂ Jac(Σ) of the
Abel–Jacobi map is smooth, and just a copy of the moduli spaceM2 = Σ(2) inside the Jacobian.
In fact, this is the only case with k > 1 where the 2-form AJ∗2ΩJ is globally nondegenerate on a
Θ-divisor, and the dissolving limit metric is regular everywhere. If g = 3 but Σ is hyperelliptic,
then W2 already has a singularity. W2 is the singular complex surface got from the smooth
surface Σ(2) by blowing down a copy of CP1 to a point, which is a double point in W2 [28]. The
exceptional CP1 fibre that is blown down is the pencil of degree two divisors that are orbits of
the hyperelliptic involution (a g1

2); the space of orbits is the quotient of Σ by the hyperelliptic
involution, which is a CP1 that embeds in Σ(2) holomorphically with noncontractible image.
This exceptional fibre has an analogue for any moduli space of 2-vortices on a hyperelliptic
curve Σ [5].

Example 3.3. If k = 3, the simplest situation requires g = 4. Since 3 ≥ 4
2 + 1, Theorem 3.1

guarantees thatW3 will always contain singularities. In fact, there are three subcases to consider.
If Σ is not hyperelliptic, one can show that it can be obtained as an intersection of a quadric Q
and a cubic C in CP3. The first subcase is when Q is smooth, hence biholomorphic to CP1×CP1.
Then C meets each projective line of the form {P1} × CP1 or CP1 × {P2} in Q at three points,
so Σ = Q ∩ C projects to either of the two CP1 factors of Q as a 3-cover. The pre-images of
points in CP1 by the two projections form effective divisors of degree 3 moving in two pencils (i.e.
parametrised by two projective lines), and describe two copies F1, F2 of CP1 inside Σ(3), which
are g1

3 ’s on Σ . These are the exceptional fibres of the Abel–Jacobi map. The image W3 can be
obtained by blowing down these rational curves F1, F2 to two points, which are ordinary double
points of the 3-fold. The second subcase is when Σ is not hyperelliptic, hence Σ = Q ∩ C as
before, but now Q is singular (a quadric cone); then Q can be described as a family of projective
lines parametrised by a CP1 and all meeting at the singular point. Each line in the family again
meets C at three points, and so Σ inherits one pencil of degree 3 effective divisors (a g1

3), which
is the only exceptional fibre of the Abel–Jacobi map. The image W3 in this case is again got by
blowing down this CP1 fibre, and this results in a double point in the 3-fold which has higher
multiplicity. The third and last subcase occurs when Σ is hyperelliptic. The exceptional fibres
here form a complex surface inside Σ(3), namely, the locus of effective divisors on Σ consisting
of adding any point of Σ to the CP1 of hyperelliptic orbits described in the previous example;
this can be described as a family of pencils (i.e. g1

3 ’s) parametrised by Σ. Then W3 is obtained
from Σ(3) by blowing down this surface to a curve isomorphic to Σ.

4. Dissolving multivortices near a singularity

One peculiar aspect of the geometry of multivortices is the degeneration of the underlying
Kähler structures at the singularities of the Abel–Jacobi map, as described above, and this will
be our focus in the present section. To understand the behaviour of the geodesic flow in a
neighbourhood of a singularity, we shall analyse in detail the simplest situation, which occurs in
the scattering of two dissolving vortices on a hyperelliptic Riemann surface of genus three.

We start by recalling that the image W2 of the Abel–Jacobi map for degree two effective
divisors

(4.1) AJ2 : Σ(2) −→ Jac(Σ)
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on a hyperelliptic curve Σ with g = 3 has a double point, whose blow-up is the exceptional
fibre in Σ(2), which is a projective line (see Example 3.2). This fact essentially goes back to
Klein [17]; see e.g. [7] for a modern perspective. Since we are only interested in the leading local
behaviour near this critical locus, we will not need to use theta-functions, and will instead take
the standard algebraic model

(4.2) t23 = t1t2

for the double point, using local coordinates ti : U → C centred at the singularity; so (4.2) gives
a local equation for the image of W2 ∩ U ⊂ Jac(Σ) under the coordinate system, which we may
regard as a hypersurface W ′2 in an open neighbourhood U ′ of the origin of C3. Now we blow
up (0, 0, 0) ∈ U ′, to obtain a 3-fold Ũ ′ together with a holomorphic map π : Ũ ′ → U ′ which
has π−1(0, 0, 0) = P(T(0,0,0)U

′) ∼= CP2 but is one-to-one everywhere else. For the benefit of the
reader, we recall how this is constructed [2].

The manifold Ũ ′ can be regarded as the subset of U ′ ×CP2 defined by the incidence relation

(4.3) tivj = tjvi for all i, j ∈ {1, 2, 3}

where vj are homogeneous coordinates on the projectivisation CP2 of the tangent space at the
origin, and the map π is simply the projection prU ′ onto the first factor. In the open set of
U ′ × CP2 where v3 6= 0, for example, Ũ ′ is described by the system of equations

(4.4) t1 =
v1

v3
t3, t2 =

v2

v3
t3

which has constant rank 2, and this determines a 3-dimensional submanifold. Since the incidence
relation (4.3) is trivially satisfied for (t1, t2, t3) = (0, 0, 0), we get indeed the whole of the CP2

factor as exceptional fibre.
Imposing the equation (4.2), we obtain a surface W̃ ′2 ∩ Ũ ′ which is smooth; the singularity

is replaced by the conic v2
3 = v1v2 in the exceptional fibre CP2, which is itself a projective line

CP1, and the restriction

(4.5) π|
W̃ ′

2∩Ũ ′ : W̃ ′2 ∩ Ũ ′ →W ′2 ∩ U ′

provides a local resolution of the double point on the surface. To find the resolution map
explicitly, we should use a system of two local coordinates where a dense subset of the exceptional
fibre is visible; for example, an affine coordinate on the CP1 factor, say q = v3

v1
, together with

one of the coordinates on the first factor, say p = t1. In these coordinates, the projection is
given by

(4.6) (p, q) 7→ (t1, t2, t3) = (p, pq2, pq) ∈ U ′ .

Working on such local patches, it is not hard to see that the projection of W̃ ′2 ∩ Ũ ′ onto the
second factor of Ũ ′ × CP2 can be understood as a restriction of the standard projection

(4.7) T∗CP1 −→ CP1

to a neighbourhood of the (image of the) zero section, which gives a very concrete picture of the
resolution. The exceptional fibre of AJ2 is identified with the zero section, parametrised by q,
and our complex coordinate p parametrises the cotangent fibres.

We want to understand the effect of pulling back a Kähler metric on U ′ to the blow-up
Ũ ′, and in particular the behaviour of the geodesic flow near the exceptional fibre where the
metric becomes degenerate. The Kähler metric we consider is the standard euclidean metric
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on U ′, g0 = |dt1|2 + |dt2|2 + |dt3|2, as the qualitative behaviour of the flow will not depend on
anisotropy factors. Pulling back to Ũ ′ we obtain

g̃ = π∗g0 = (1 + |q|2 + |q|4)dp dp̄+ |p|2(1 + 4|q|2)dq dq̄

+p̄q(1 + 2|q|2)dp dq̄ + pq̄(1 + 2|q|2)dq dp̄ .(4.8)

As expected, this tensor defines a Kähler metric in the complement of the complex line with
equation p = 0, but its rank (over R) drops from 4 to 2 on this line, which corresponds to an affine
piece of the exceptional CP1 fibre of the Abel–Jacobi map. To understand the geodesic flow, we
should first compute the Christoffel symbols. For a Kähler metric this calculation simplifies, and
moreover Christoffel symbols mixing holomorphic and anti-holomorphic directions automatically
vanish [2]. We find:

Γ̃qpq = Γ̃qqp =
1

p
, Γ̃ppq = Γ̃pqp = Γ̃qpp = Γ̃ppp = 0 ,(4.9)

Γ̃pqq = − 2pq̄2

1 + 4|q|2 + |q|4
, Γ̃qqq =

2q̄(2 + |q|2)

1 + 4|q|2 + |q|4
.(4.10)

These lead to the following geodesic equations:

(4.11) p̈− 2pq̄2q̇2

1 + 4|q|2 + |q|4
= 0 ,

(4.12) q̈ +
2ṗq̇

p
+

2q̄(2 + |q|2)q̇2

1 + 4|q|2 + |q|4
= 0 ,

where the derivatives are with respect to a parameter s, say.
An obvious integral of motion is the kinetic energy of the geodesic flow (up to a constant

factor),

(4.13) (1 + |q|2 + |q|4)|ṗ|2 + |p|2(1 + 4|q|2)|q̇|2 + (1 + 2|q|2)(p̄qṗ ˙̄q + pq̄ ˙̄pq̇) ,

and there are further integrals of motion arising from the invariance of g̃ under phase rota-
tions of p and of q. The conservation of the kinetic energy already implies that the motion
on the exceptional fibre CP1 (parametrised by the coordinate q) is suppressed in its tangent
directions: as p → 0, all the kinetic energy must be transferred to motion along the transverse
directions parametrised by the complex coordinate p. In particular, any geodesic intersecting
the exceptional fibre must do so at isolated points of the fibre.

To demonstrate that there are indeed geodesics crossing the exceptional fibre, we note that
the geodesic equations above are satisfied by the rays of the tangent cone to W ′2, i.e. paths of
the form s 7→ (p, q) = (c1s, c2) for constants c1 ∈ C∗ and c2 ∈ C. These correspond to lifts
of real straight lines on U ′ towards the singularity, which hit a point on the exceptional fibre
corresponding to the complex tangent direction their velocity represents, and then continue along
the same real direction. Since the exceptional fibre is reached in finite time, the metric on the
complement of the exceptional fibre in W̃2 is not complete.

In fact, such straight ray geodesics are the only geodesics reaching the exceptional fibre CP1.
To see this, note first that, as long as ṗ is not constant, (4.11) implies that q̇ cannot be zero.
Dividing equation (4.12) by q̇ (assumed to be nonzero) and extracting the real part of the
resulting equation, we obtain a new differential equation,

(4.14)
q̈

q̇
+

¨̄q
˙̄q

+
2ṗ

p
+

2 ˙̄p

p̄
+

2(2 + |q|2)(q̄q̇ + q ˙̄q)

1 + 4|q|2 + |q|4
= 0,
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which can be integrated to conclude that

(4.15) (1 + 4|q|2 + |q|4)|p|4|q̇|2

is another integral of motion. Thus for p to reach zero, q̇ would have to blow up, which cannot
happen. Initial conditions that try to reach the exceptional fibre with initial velocities having
nontrivial tangent component along the CP1 will be forced to flow rapidly around this 2-sphere
as they approach it transversely.

In terms of vortex motion, the effect of the singularity is that motion along the special linear
system is suppressed. So whenever two vortices reach points on the surface that are related by
the hyperelliptic involution, they will be unable to move to neighbouring pairs of points that are
also related by the involution. In particular, in the dissolving limit it will be impossible to make
vortices collide head-on onto a Weierstraß point of the surface: these are precisely the branch
points of the two-fold holomorphic branched cover σ : Σ → CP1, and geodesics through them
are tangentially preserved by the hyperelliptic involution near the branch point. More precisely,
we know from the discussion above that the only geodesics through the CP1 with equation p = 0
must cross with q̇ = 0, whereas we have:

Proposition 4.1. A frontal collision of two vortices at a fixed point W ∈ Σ of the hyperelliptic
involution occurs at right angles and with q̇ 6= 0.

Proof. Let z ∈ OΣ,W denote a local parameter in Σ at the point W , a generator of the maximal
ideal nΣ,W in the local ring [20]. We have been using q to denote any coordinate on the excep-
tional fibre CP1 of the Abel–Jacobi map, and now we shall also assume without loss of generality
that its image in the local ring OCP1,σ(W ) is a local parameter. Since the map σ has ramification
index two at W , one has σ∗q = uz2 for some unit u ∈ O×Σ,W .

We denote by ∆ the natural embedding via the diagonal inclusion

∆ : Σ ↪→ Σ× Σ
π̃−→ Σ(2) = Σ2/S2.

Note that z induces local parameters z1, z2 in Σ2 at (W,W ) in the obvious way, and from them
one obtains a system of local parameters s1, s2 on Σ(2) at ∆(W ) via the fundamental theorem on
symmetric functions, i.e. the map of local rings induced by π̃ relates π̃∗(s1) = z1 + z2, π̃

∗(s2) =
z1z2. The image ∆(Σ) is described by the equation s2

1 − 4s2 = 0 locally at ∆(W ) in Σ(2), and
we can compute

T∗∆(W )∆(Σ) = nΣ(2),∆(W )/(n
2
Σ(2),∆(W ) + (s2

1 − 4s2))

= (s1, s2)/(s2
1, s

2
2, s1s2, s

2
1 − 4s2)

= (s1)/(s2
1).

Let ι : CP1 ↪→ Σ(2) denote the inclusion of the g1
2 . It induces a surjective map of local rings

ι∗ : OΣ(2),∆(W ) → OCP1,σ(W ). Since the intersection of the images ∆(Σ) and ι(CP1) is transverse
at ∆(W ) ∈ Σ(2) , the calculation above implies that ι∗s2 must be a local parameter; so there is
also a unit v ∈ O×CP1,σ(W )

with ι∗s2 = vq. Hence we obtain in OΣ,W

(4.16) z2 = ũ (ι ◦ σ)∗s2

with ũ = u σ∗v ∈ O×Σ,W .
A collision of two vortices at W ∈ Σ can be described by a parametrisation t 7→ (z1(t), z2(t))

with t ∈ (−ε, ε), ε > 0 and z1(0) = z2(0) = 0; the collision is frontal if moreover ż1(0) =
−ż2(0), which implies ṡ1(0) = 0. Then necessarily ṡ2(0) 6= 0. From equation (4.16) we obtain
infinitesimally close positions of the vortices by taking square roots, which justifies the assertion
on the scattering at right angles. (We note in passing that scattering at right angles is a
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well-known feature of the frontal scattering of vortices for regular L2-metrics on their moduli
spaces [12].) Finally, we obtain in the local ring at σ(W ) (or the pull-back to Σ(2))

q̇(0) = v̇(0)s2(0) + v(0)ṡ2(0) = v(0)ṡ2(0) 6= 0.

�
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