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EQUIVARIANT CHERN CLASSES AND LOCALIZATION THEOREM

ANDRZEJ WEBER

ABSTRACT. For a complex variety with a torus action we propose a new method of computing Chern-
Schwartz-MacPherson classes. The method does not apply resolution of singularities. It is based on the
Localization Theorem in equivariant cohomology.

This is an extended version of the talk given in Hefei in July 2011.

Equivariant cohomology is a powerful tool for studying complex manifolds equipped with a torus
action. The Localization Theorem of Atiyah and Bott and the resulting formula of Berline-Vergne allow
to compute global invariants, for example invariants of singular subsets, in terms of some data attached
to the fixed points of the action. We will concentrate on the equivariant Chern-Schwartz-MacPherson
classes. The global class is determined by the local contributions coming from the fixed points. On
the other hand, the sum of the local contributions divided by the Euler classes is equal to zero in an
appropriate localization of equivariant cohomology. Especially for Grassmannians we obtain interesting
formulas with nontrivial relations involving rational functions. We discuss the issue of positivity: the
local equivariant Chern class may be presented in various ways, depending on the choice of generating
circles of the torus. For some choices we find that the coefficients of the presentation are nonnegative.
Also the coefficients in the Schur basis are nonnegative in many examples, but it turns out that not always.

We begin with §1 which contains a review of the results concerning the equivariant fundamental class
of an invariant subvariety in a smooth G-manifold M . The first two chapters are valid for any algebraic
group, but further we will consider only torus actions. The equivariant fundamental class lives in the
equivariant cohomology H∗G(M). The invariant subvarieties contained in a vector space V , on which
the torus G = T = (C∗)n acts linearly, are of particular interest. If the weights of the torus action
are nonnegative then the equivariant fundamental class is a nonnegative combination of monomials in
H∗T (V ) = Q[t1, t2, . . . , tn].

In §2 we discuss the equivariant version of the Chern-Schwartz-MacPherson class, denoted by cT ,
which is a refinement of the equivariant fundamental class. To give the precise definition, following [33],
one has to introduce equivariant homology. Eventually we will assume that the variety is contained in
a smooth manifold. By Poincaré duality it is enough for our purpose to consider the equivariant Chern-
Schwartz-MacPherson classes as the elements of equivariant cohomology of the ambient space.

The main tool of the equivariant cohomology for a torus action is the Localization Theorem of Atiyah-
Bott or Berline-Vergne formula. It says that the equivariant cohomology class can be read from certain
data concentrated at the fixed points of the action. The precise formulation of the Localization Theorem
is recalled in §3.

The section §4 is a kind of interlude for fun. We give some examples of calculations based on the Lo-
calization Theorem for torus acting on projective spaces and Grassmannians. For example we show how
the formula for Gysin map for the Grassmann bundle immediately follows from the Laplace determinant
expansion.
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Next, in §5 we discuss equivariant Chern-Schwartz-MacPherson classes of toric varieties. From the
Localization Theorem we deduce that the equivariant class of an orbit cT (Tx) is equal to the fundamental
class of its closure [Tx]. Exactly the same formula holds in the nonequivariant setting, by [7].

The section §6 is important for whole inductive procedure of computations of equivariant Chern
classes. The key statement is the following:

Theorem 1. Suppose that X is a T -variety, not necessarily smooth, contained in a T -manifold M . Let
p ∈ X be an isolated fixed point. Then the zero degree of the class cT (X) restricted to {p} is Poincaré
dual of the product of weights appearing in the tangent representation TpM .

It is also convenient to consider a version of the Localization Theorem in which we express the global
cohomology class by its restriction to an arbitrary submanifold containing the fixed point set. The main
example is the projective space Pn. The class which we want to compute is the equivariant Chern-
Schwartz-MacPherson class of the projective cone over a subvariety in Pn−1. In §7 from partial localiza-
tion we deduce the following:

Proposition 2. Suppose that X is a T -invariant cone in a linear representation V of T . Let h =
cT1 (OP(V )(1)) ∈ H2

T (P(V )) be the equivariant Chern class. If

cT (P(X)) =
( dim(V )−1∑

i=0

bi(t)h
i
)
∩ [P(V )] ∈ HT

∗ (P(V ))

for bi(t) ∈ H∗T (pt) then
cT (X) = (b0(t) + e0) ∩ [V ] ∈ HT

∗ (V )

where e0 is the product of weights appearing in the representation V .

Even a seemingly trivial application of this result (discussed in §8) is meaningful. If T = C∗ acts by
scalar multiplication on Cn, then T -invariant subvariety is just a cone in Cn. The characteristic classes
of cones were already considered by Aluffi and Marcolli. In their paper [4] there was given a formula
for the Chern-Schwartz-MacPherson class of an open affine cone in Pn. It is not a coincidence, that their
computation agrees with our result about the equivariant class in H∗T (Cn):

Proposition 3. Suppose X a cone in Cn. Let x = c1(OPn−1(1)) ∈ H2(Pn−1) and let t ∈ H2
T (pt) be

the generator corresponding to the identity character. If

cSM (P(X)) =
( n−1∑
i=0

aix
i
)
∩ [Pn−1] ∈ H∗(Pn−1)

then

cT (X) =
( n−1∑
i=0

ait
i + tn

)
∩ [Cn] ∈ HT

∗ (Cn) .

The result follows from the previous one since the equivariant Chern class h = cT1 (OPn−1(1)) is equal
to

1⊗ x− t⊗ 1 ∈ H∗T (Pn−1) = H∗T (pt)⊗H∗(Pn−1) .

By the product property of equivariant Chern-Schwartz-MacPherson classes we obtain for free ,,Feynman
rule” for the polynomial GX introduced [4, Lemma 3.10].

In the next section §9 we propose a new method of computing equivariant Chern-Schwartz-MacPherson
classes which does not involve resolution of singularities. It is based on the fact, that the sum of the
equivariant Chern-Schwartz-MacPherson classes localized at fixed points and divided by Euler classes
is equal to zero, except from the zero degree. A similar observation was already made by Féher and
Rimányi in [16, §8.1] for computation of Thom polynomials. On the other hand the zero degree of the
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equivariant Chern class is given by the result of §7 (stated before as Theorem 1). This way often we can
compute local Chern classes by induction on the depth of the singularity.

Our main example in §10 is the determinant variety, the subset of square matrices n × n defined
by the equation det = 0. We study its compactification, the Schubert variety of codimension one in
Grassn(C2n). We discuss computational problems appearing for that example. The concrete formula for
the equivariant Chern class is a huge sum of fractions. Surprisingly all the difficulties lie in simplifying
that expression. We compute the equivariant Chern class for the determinant variety for n ≤ 4. It turns
out that it is a nonnegative combination of monomials with suitable choice of generators ofH2

T (pt). This
supports the conjecture of Aluffi-Mihalcea that the Chern-MacPherson-Schwartz class of the Schubert
varieties are effective. On the other hand for n = 4 the local equivariant Chern-Schwartz-MacPherson
class expanded in the Schur basis has negative coefficients in few places. We present the result of calcu-
lations in §12.

The connection of our local formulas with the calculations of [5] and [23] is not clear. The formula
for the global class can be read from the local contributions by Theorem 11. Nevertheless the shape of
this relation seems to be combinatorially nontrivial due to presence of the denominators.

I would like to thank Magdalena Zielenkiewicz for correcting some errors appearing in formulas of
the preliminary version of the paper. Also I would like to thank the Referee for his useful comments,
suggestions and questions that helped a lot to improve the manuscript.

1. EQUIVARIANT FUNDAMENTAL CLASS

Let M be a complex manifold and X ⊂ M a closed complex subvariety. The fundamental class of
X , which is the Poincaré dual of the cycle defined by X is denoted by

[X] ∈ H2 codim(X)(M) .

When the ambient manifold M is contractible, for example when M is an affine space, there is no use of
[X] since the cohomology of M is trivial. An interesting situation appears when an algebraic group G
acts on M and X is preserved by the action. In that case there is an equivariant fundamental class of X
which belongs to the equivariant cohomology of M

[X] ∈ H2 codim(X)
G (M).

Now even if M is contractible we obtain a remarkable invariant of the pair (M,X). For contractible M
its equivariant cohomology coincides with the equivariant cohomology of a point

H
2 codim(X)
G (M) ' H2 codim(X)

G (pt)

and the cohomology of a point is the ring of characteristic classes for G. In particular
• if G = (C∗)n then H∗G(pt) = Q[t1, t2, . . . , tn]
• if G = GLn then H∗G(pt) = Q[σ1, σ2, . . . , σn] = Q[t1, t2, . . . , tn]Σn

• in general the ring of characteristic classes coincides with the invariants of the Weyl group acting
on the characteristic classes for the maximal torus

H∗G(pt) = H∗T (pt)W .

(We consider here only cohomology with rational coefficients.)
For a torus G = T we identify H∗T (pt) with the polynomial algebra spanned by characters of T , i.e.

H∗T (pt) = Q[T∨] =

∞⊕
k=0

Symk[T∨ ⊗Q] .

A character λ : T → C∗ corresponds to an element of H2
T (pt).
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We will briefly recall the construction of equivariant cohomology in §2. The reader can find its basic
properties in [36]. For a review of equivariant cohomology in algebraic geometry see e.g. [18]. An
extended discussions of different names for the equivariant fundamental class can be found in [9, §2.1].

For G = GLn equivariant cohomology and the equivariant fundamental classes [X] ∈ H∗GLn(pt) has
turned out to be an adequate tool for studying the Thom polynomials of singularities of maps. Here X is
a set of singular jets in the space of all jets of maps. Its equivariant fundamental class [X] is the universal
characteristic class which describes cohomological properties of singular loci of maps. In the last decade
there appeared a series of papers by Rimányi and his collaborators (starting from [37]) and Kazarian (see
e.g. [25]). Powerful tools allowing effective computations were developed and some structure theorems
were stated. The geometric approach to equivariant cohomology leads to positivity results [34, 31, 32].
The source of these results is the following principle:

Theorem 4. If X ⊂ CN is a cone in a polynomial representation of GLn, then [X] is a nonnegative
combination of Schur functions.

The examples of polynomial representations are the following: the natural representation, its tensor
products, symmetric products, exterior products and in general quotients of the sums of tensor products.
The Schur functions constitute a basis of the ring of characteristic classes

H∗GLn(pt) = H∗(Grassn(C∞))

corresponding to the decomposition of the infinite Grassmannian into Schubert cells. For an algebraic
treatment of Schur functions see [28].

A version of Theorem 4 holds forG being a product of the general linear groups. We will be interested
in torus actions. Theorem 5 stated in [35] reduces to:

Theorem 5. Let T = (C∗)n and let t1, t2, . . . , tn ∈ Hom(T,C∗) be the characters corresponding to
the decomposition of T into the product. Suppose V =

⊕
Vλ is a representation of T such that each

weight λ appearing in V is a nonnegative combination of ti’s. Let X ⊂ V be a variety preserved by
T -action. Then the equivariant fundamental class [X] ⊂ H∗T (V ) = Q[t1, t2, . . . , tn] is a polynomial
with nonnegative coefficients.

2. EQUIVARIANT CHERN CLASS

Our goal is to study more delicate invariants of subvarieties in representations of algebraic groups, the
invariants which are refinements of the equivariant fundamental class. In most of the interesting cases
the subvarieties to study are singular. Our first choice is the equivariant version of the Chern-Schwartz-
MacPherson classes. We recall that the usual Chern-Schwartz-MacPherson classes, introduced in [29]
and denoted by cSM , live in homology, they are Poincaré duals of the Chern classes of the tangent bundle
when the variety is smooth. These classes are functorial in a certain sense, and therefore usually they are
computed via resolution of singularities.

The equivariant version of Chern-Schwartz-MacPherson classes was developed by Ohmoto [33]. To
define these classes one has to recall the Borel construction of the equivariant cohomology. Let G be
a topological group. Denote by EG → BG = EG/G the universal principal G-bundle. This bundle
is defined up to G-equivariant homotopy. For a topological G-space the equivariant cohomology is by
definition the cohomology of the associated X-bundle EG ×G X . Now we apply this construction to
G being an algebraic reductive group and X a complex algebraic G-variety. With the exclusion of the
case of the trivial group, EG does not admit a finite dimensional model. Instead, EG always has an
approximation by algebraic G-varieties, see [39]. For example if G = C∗, then EG = C∞ − {0}
and BG = P∞. It can be approximated by U = Cn − {0} with U/G = Pn−1. In general as the
approximation of EG we take an open set U in a linear representation V of G satisfying

• U is G-invariant,
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• G acts freely on U and the action admits a geometric quotient,
• V − U has a sufficiently large codimension in V .

If we are interested only in the cohomology classes of degrees bounded by d we take an approximation
with 2 codim(V − U) > d+ 1. Then

Hk
G(X) = Hk(U ×G X)

for k ≤ 2d. The equivariant Chern classes of a smooth G-variety coincides with the equivariant Chern
class of the tangent bundle. By Borel construction it is the usual Chern class of the tangent bundle to
fibers of the fibration EG×G X → BG. Using an approximation it can be written as

cG(X) = p∗c(U/G)−1 ∪ c(U ×G X) ∈ H∗(U ×G X) ' H∗G(X) ,

where p : U ×G X → U/G is the projection. If X is singular we apply the same formula with obvious
modifications. First of all U ×G X is singular and we have the homology Chern-Schwartz-MacPherson
class

cSM (U ×G X) ∈ HBM
∗ (U ×G X) .

(The superscript BM stands for Borel-Moore homology.) We are forced to use less known equivariant
homology HG

∗ (X), [12, 14], which can be defined via approximation:

HG
k (X) = HBM

k+2 dim(U/G)(U ×
G X)

for 2n− k < 2 codim(V − U)− 1, i.e. for k > 2n− 2 codim(V − U) + 1.

Definition 6. The equivariant Chern-Schwartz-MacPherson class of X is defined by the formula

cG(X) = p∗c(U/G)−1 ∩ cSM (U ×G X) ∈ HBM
∗+2 dim(U/G)(U ×

G X) ' HG
∗ (X) .

The definition can be extended to the equivariant constructible functions on X .

Note that HG
∗ (X) can have nontrivial negative degrees, but the equivariant Chern-Schwartz-

MacPherson class lives in HG
≥0(X).

We will not use the long name equivariant Chern-Schwartz-MacPherson classes. Hopefully say-
ing just equivariant Chern classes in the context of possibly singular algebraic G-varieties or con-
structible functions will not lead to any confusion. Additionally we will always write cG(11X) instead of
cG(X). Later, in §§9-10, where we compute the equivariant Chern classes of a subvariety in a smooth
manifold M , for convenience we skip the cap-product ∩[M ] in the notation identifying HT

∗ (M) with
H

2 dim(M)−∗
T (M).

The definition of equivariant Chern classes is in fact irrelevant. All what we need follows from the
formal properties.

• Normalization: if X is smooth, then cG(11X) is Poincaré dual of the usual equivariant Chern
class of the tangent bundle.
• Functoriality: for a G-constructible function α and a proper G-map f : X → Y we have
cG(f∗α) = f∗c

G(α).
• Product formula: if X is G-variety and Y is G′-variety, then

cG×G
′
(11X×Y ) = cG(11X)⊗ cG

′
(11Y )

under the Küneth isomorphism HG×G′
∗ (X × Y ) ' HG

∗ (X) ⊗HG′

∗ (Y ). In particular when X
is a trivial G-space, then

cG(11X) = 1⊗ cSM (11X) ∈ HG
∗ (X) ' H−∗G (pt)⊗HBM

∗ (X) .

• Functoriality with respect toG: Let φ : G′ → G be a group homomorphism andX aG-space.
The induced map φ∗ : HG

∗ (X)→ HG′

∗ (X) sends cG(11X) to cG
′
(11X).
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All five properties easily follow from the corresponding properties of the usual Chern-Schwartz-
MacPherson classes. The equivariant Chern class carries more information than nonequivariant Chern-
Schwartz-MacPherson class. There is a natural map HG

∗ (X) → HBM
∗ (X) which is induced by the

inclusion of the trivial group into G. It transports the equivariant Chern class to the nonequivariant one.
Let us focus on the case when G = T is a torus and V is a complex linear representation. The equi-

variant homologyHT
∗ (V ) is a free rank one module overH∗T (pt) generated by [V ] ∈ HT

2 dim(V )(V ). The
action of a character λ ∈ H2

T (pt) lowers the degree by 2. By Poincaré duality we have the isomorphisms

HT
2k(V ) ' H2(dim(V )−k)

T (V ) ' H2(dim(V )−k)
T (pt) ' Symdim(V )−k(T∨ ⊗Q) .

We start with the basic example.

Example 7. Let V be a complex linear representation of a torus T . Suppose that V decomposes as the
sum of the weight spaces

V =
⊕
λ

Vλ .

Then
cT (11V ) =

(∏
λ

(1 + λ)dim(Vλ)
)
∩ [V ] ∈ HT

∗ (V ) ' Symdim(V )−∗(T∨ ⊗Q)

and
cT (11{0}) = [{0}] =

(∏
λ

λdim(Vλ)
)
∩ [V ] ∈ HT

0 (V ) ' Symdim(V )(T∨ ⊗Q) .

The last formula follows from covariant functoriality.

Now let us see what the equivariant Chern class means for conical sets in affine spaces.

Example 8. Let T = C∗ acts on Cn by scalar multiplication. Consider a nonempty cone X ⊂ Cn. We
will compute its equivariant Chern class with respect to the action of T . Denote by P(X) ⊂ Pn−1 the
projectivization of X . Let h = c1(O(1)) ∈ H2(Pn−1) and let t ∈ H2

T (pt) be the element corresponding
to the identity character. Suppose that

cSM (11P(X)) = (a0 + a1h+ · · ·+ an−1h
n−1) ∩ [Pn] ∈ H∗(Pn) .

We will show in §8 that the equivariant Chern class of the cone is equal to

cT (11X) = (a0 + a1t+ · · ·+ an−1t
n−1 + tn) ∩ [Cn] ∈ HT

∗ (Cn) .

This formula agrees with computation of Aluffi-Marcolli who calculated the invariant of conical sets
defined as the Chern-Schwartz-MacPherson class of the constructible function 11X considered not in Cn
but in Pn.

Now suppose G = T = (C∗)n is acting on a vector space V as in Theorem 5. We pose a question:

Question. When does cT (11X) ∈ HT
∗ (V ) ' Q[t1, t2, . . . , tn] have nonnegative coefficients?

This is a special property ofX since in general the answer is negative. If the equivariant Chern classes
are effective, i.e. represented by an invariant cycle, then the answer is positive. Also it is easy to find a
counterexample: if T = C∗ acts on V = Cn by scalar multiplication and let X be a cone over a curve of
genus g > 1 and of degree d. Then

cT (11X) = ([X] + 2(1− g)tn−1 + tn) ∩ [Cn] = d[C2] + 2(1− g)[C1] + [C0]

is a counterexample. On the other hand we have a bunch of positive examples: local equivariant Chern
classes have nonnegative coefficients for

• toric singularities (see Corollary 18),
• generic hyperplane arrangements with a small number of hyperplanes [2],
• banana Feynman motives [3].
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3. LOCALIZATION THEOREM

For the moment we leave the question of positivity. Our current goal is to develop a calculus which
would allow to compute equivariant Chern classes avoiding resolution of singularities. Our main tool
is the Localization Theorem for torus action. The topological setup is the following: suppose the torus
T = (S1)n or (C∗)n acts on a compact space M (decent enough, e.g. equivariant CW-complex). The
equivariant cohomology H∗T (M) is a module over equivariant cohomology of the point

H∗T (pt) = Q[t1, t2, . . . tn] .

The following theorem goes back to Borel.

Theorem 9 ([36], [6]). The restriction to the fixed set

ι∗ : H∗T (M) −→ H∗T (MT )

becomes an isomorphism after localizing in the multiplicative set generated by the nontrivial characters

S = T∨ − 0 ⊂ H2
T (pt) .

If M is a manifold, then the inverse of the restriction map is given by the Atiyah-Bott/Berline-Vergne
formula. To explain that let us fix a notation. We decompose the fixed point set into components MT =⊔
α∈AMα. Each Mα is a manifold and denote by eα ∈ H∗T (Mα) = H∗(Mα) ⊗ Q[t1, t2, . . . tn] the

equivariant Euler class of the normal bundle. The following map is the inverse of the restriction to the
fixed points

(1)
S−1H∗T (MT ) =

⊕
α∈A S

−1H∗T (Mα)
'−→ S−1H∗T (M)

{xα}α∈A 7→
∑
α∈A ια∗

(
xα
eα

)
,

where ια : Mα ↪→ M is the inclusion. The key point in the formula (1) is that the Euler class eα is
invertible in S−1H∗T (Mα).

Remark 10. Note that ifM is a smooth compact algebraic variety and the action of the torus is algebraic,
then H∗T (M) is a free module over H∗T (pt), so we do not kill any class inverting nontrivial characters.

I other words we can state the theorem:

Theorem 11 ([6, 15]). Let M be an algebraic variety with algebraic torus action, then with the previous
notation

x =
∑
α∈A

ια∗

(
x|Mα

eα

)
∈ H∗T (M) .

Therefore we can say that x is a sum of local contributions. Although one has to understand that this
statement is a bit misleading. In fact it is not possible to extract individual summands in H∗T (M). This
can be done only in the localized ring. How a single fixed point component contributes to the global class
is obscured by the weights of the tangent representation.

Furthermore consider the push-forward, i.e. the integration along M

p∗ =

∫
M

: H∗T (M)→ H
∗−2 dim(M)
T (pt)

where p : M → pt is the constant map. Another form of the Localization Theorem allows to express the
integration along M by integrations along components of the fixed point set.
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Theorem 12 (Berline-Vergne [10]). For x ∈ H∗T (M) the integral can be computed by summation of
local contributions

(2)
∫
M

x =
∑
α∈A

∫
Mα

x|Mα

eα
.

In particular, when the fixed point set is discrete MT = {p0, p1, . . . pn} then the Euler class is the
product of weights

ep =
∏
λ∈Λ

λdim(Vλ) ∈ H∗T ({p}) ∈ Q[t1, t2, . . . , tn] ,

provided that TpM , the tangent space at p is the sum of weight spaces

TpM =
⊕
λ∈Λ

Vλ .

The integral along M is equal to the sum of fractions:∫
M

a =
∑
p∈MT

a|p

ep
.

Remark 13. The Berline-Vergne formula (2) can be formulated for singular spaces embedded into a
smooth manifold. The local factor 1

eα
is replaced by [X]|Mα

eα
, see [15, 9]. There is a generalization of the

Theorem (11) for equivariant homology (or Chow groups) of singular spaces, but one needs an additional
assumption allowing to define ι∗, [15, Proposition 6].

4. SOME CALCULI OF RATIONAL FUNCTIONS

Before examining equivariant Chern classes of Schubert varieties let us look closer at some compu-
tations based on the Localization Theorem for Grassmannians. Let us start with the projective space
M = Pn with the standard torus T = (C∗)n+1 action. The fixed point set is discrete and consists of
coordinate lines

MT = {p0, p1, . . . pn} .
The tangent space at the point pk decomposes into one dimensional representations:

TpkM =
⊕
` 6=k

Ct`−tk .

The Euler class is equal to

epk =
∏
6̀=k

(t` − tk) .

Let us integrate powers of c1 := c1(O(1)). Of course∫
Pn
cm1 =

{
0 for m < n
1 for m = n

Applying Berline-Vergne (2) formula we get the identity

(3)
n∑
k=0

(−tk)m∏
` 6=k(t` − tk)

=

{
0 for m < n
1 for m = n ,

which is not obvious at the first sight. For example we encourage the reader to compute by hand the sum

t20
(t1−t0)(t2−t0)(t3−t0) +

t21
(t0−t1)(t2−t1)(t3−t1) +

t22
(t0−t2)(t1−t2)(t3−t2) +

t23
(t0−t3)(t1−t3)(t2−t3) .
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This is exactly the expression (3) for m = 2, n = 3. Replacing

t0 = 0 , t1 = 1 , t2 = 2 , . . . , tn = n

(i.e. specializing to a subtorus) the sum (3) is equal to
n∑
k=0

(−1)m+kkm

k!(n− k)!

Multiplying by n! we obtain
n∑
k=0

(
n

k

)
(−1)m+kkm =

{
0 for m < n
n! for m = n .

which is a good exercise for students.
The integral of higher powers of c1 is even more interesting: Let us see what we do get for m > n?

For example n = 2, m = 4 we have

t40
(t1 − t0)(t2 − t0)

+
t41

(t0 − t1)(t2 − t1)
+

t42
(t0 − t2)(t1 − t2)

It takes some time to check that the sum is equal to

t20 + t21 + t22 + t0t1 + t0t2 + t1t2, .

In terms of the elementary symmetric functions it is equal to

σ2
1 − σ2 .

Proposition 14. In general

(−1)k
∫
Pn
cn+k
1

is equal to the Schur function Sk (which corresponds to the Segre class of vector bundles).

Proof. By Jacobi-Trudy formula (which is the definition of the Schur function)

Sk(t0, t1, . . . , tn) =

∣∣∣∣∣∣∣∣∣∣∣

tn+k
0 tn−1

0 tn−2
0 . . . t10 1

tn+k
1 tn−1

1 tn−2
1 . . . t11 1

tn+k
2 tn−1

2 tn−2
2 . . . t12 1

...
...

...
...

...
tn+k
n tn−1

n tn−2
0 . . . t1n 1

∣∣∣∣∣∣∣∣∣∣∣∏
i<j(ti − tj)

.

To prove the proposition it is enough to use Laplace expansion with respect to the first column and watch
carefully the signs. 2

Remark 15. It is wiser to use the dual Grassmannian of hyperplanes, then one gets rid of the factor
(−1)k. The general formula with positive signs for Grassmannians is given by Theorem 16.

We will have a look now at the calculus on Grassm(Cn). The fixed point set consists of coordinate
subspaces:

Grassm(Cn)T = {pλ : λ = (λ1 < λ2 < · · · < λm), 1 ≤ λ1, λm ≤ n}

The tangent space at the fixed point pλ decomposes into distinct line representations of T :

TpλGrassm(Cn) =
⊕

k∈λ, 6̀∈λ

Ct`−tk .
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The Euler class is equal to

epλ =
∏

k∈λ, ` 6∈λ

(t` − tk) .

Let us integrate a characteristic class of the tautological bundle Rm. Suppose that the class φ(Rm) is
given by a symmetric polynomial in Chern roots W (x1, x2, . . . , xm). Then∫

Grassm(Cn)

φ(Rm) =
∑
λ

W (ti : i ∈ λ)∏
k∈λ, ` 6∈λ(t` − tk)

It looks like a rational function, but we obtain a polynomial in ti’s of degree deg(W )−dim(Grassm(Cn)).
This expression can be written as the iterated residue1

(4)
1

m!
Resz1=∞Resz2=∞ . . . Reszm=∞

W (z1, z2, . . . zm)
∏
i 6=j(zi − zj)∏n

i=1

∏m
j=1(ti − zj)

,

see [8]. Of course if deg(W ) < dim(Grassm(Cn)) = (n−m)m, then∑
λ

W (ti : i ∈ λ)∏
k∈λ, ` 6∈λ(t` − tk)

= 0

If deg(W ) = dim(Grassm(Cn)), then we get a constant. For example for W = c
dim(Grassm(Cn))
1 =

(
−

(x1+x2+· · ·+xm)
)(n−m)m

we obtain the degree of the Plücker embedding Grassm(Cn) ⊂ P(Sm(Cn))
(or the volume of Grassm(Cn)). According to Hook Formula [19, §4.3]

deg(Grassm(Cn)) =
(m(n−m))!∏

(i,j)∈λ h(i, j)
,

where h(i, j) denotes the length of the hook with vertex at (i, j) ∈ λ contained in the rectangle m× (n−
m). For Grass3(C7) the hook lengths are the following

6 5 4 3
5 4 3 2
4 3 2 1

Hence the degree is equal to

12!

6 · 5 · 4 · 3 · 5 · 4 · 3 · 2 · 4 · 3 · 2 · 1
= 462.

It would be interesting to find an immediate connection of the Hook formula and the residue method
given by the formula (4).

Let us now formulate a generalization of Proposition 14. For a partition I = (i1 ≥ i2 ≥ in) the Schur
function is defined by Jacobi-Trudy formula [28, §I.3]

SI(t1, t2, . . . , tn) =

∣∣∣∣∣∣∣∣∣∣∣∣

tn−1+i1
1 tn−2+i2

1 tn−3+i3
1 . . . t

1+in−1

1 tin1
tn−1+i1
2 tn−2+i2

2 tn−3+i3
2 . . . t

1+in−1

2 tin2
tn−1+i1
3 tn−2+i2

3 tn−3+i3
3 . . . t

1+in−1

3 tin3
...

...
...

...
...

tn−1+i1
n tn−2+i2

n tn−3+i3
n . . . t

1+in−1
n tinn

∣∣∣∣∣∣∣∣∣∣∣∣∏
1≤i<j≤n(ti − tj)

.

1More general formulas were found recently by Magdalena Zielenkiewicz for Grassmannians of all classical groups.
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The definition of Schur function is extended to characteristic classes of vector bundles. Expanding the
determinant with respect to the first block column containing m × m minors we find the formula for
push-forward:

Theorem 16. Consider the quotient bundle Q and the tautological bundle R over Grassm(Cn). Let
J = (j1 ≥ j2 ≥ · · · ≥ jn−m) and K = (k1 ≥ k2 ≥ · · · ≥ km) be partitions. Suppose jn−m −m ≥ k1.
Then ∫

Grassm(Cn)

SJ(Q)SK(R) = SI(t1, t2, . . . , tn) ,

where I = (j1 −m ≥ j2 −m ≥ · · · ≥ jn−m −m ≥ k1 ≥ k2 ≥ · · · ≥ km).

A suitable modifications of Theorem 16 can be easily formulated for the partitions not satisfying the
inequality jn−m −m ≥ k1. The integral is equal up a sign to the Schur function for another partition or
it is zero. By the splitting principle Theorem 16 implies the corresponding statement for Grassmannian
bundles over any base, not necessarily over the classifying space BT . This way we obtain a proof of the
Gysin homomorphism formula [24], [20, §4.1].

The equivariant Schubert calculus was studied by a number of authors: Knutson–Tao [26], Laksov–
Thorup [27], Gatto–Santiago [21] and others. Some formulas can be obtained by taking residue at infinity
[8, 9]. Concluding this section I would like to say that it seems that still the calculus of rational symmetric
functions is not developed enough. In §10 we will present a method of computation of equivariant Chern
classes of Schubert varieties. Unfortunately I do not know (maybe except Theorem 16) a tool which
would allow us to simplify the expressions which appear in computation.

5. TORIC VARIETIES

We keep in mind that our purpose is to compute equivariant Chern classes. From the Localization
Theorem it follows that equivariant Chern classes are determined by local equivariant Chern classes
belonging to the homologies of the components ofMT . In the beginning let us consider the toric varieties,
which are quite easy, but unfortunately not very general from our point of view.

Theorem 17. Let X be a toric variety. Consider the cycle ΞX which is equal to the sum of the closures
of orbits. Then ΞX represents the equivariant Chern class cT (11X) ∈ HT

∗ (X).

Proof. First we consider the case whenX is a smooth toric variety. IfX = C1 with the standard action of
T = C∗ then, indeed, the equivariant Chern class is equal [C] + [0] = [ΞX ]. By Whitney formula and the
product property of sets the statement holds for X = Cn with the standard action of T = (C∗)n. Every
smooth toric variety locally looks like Cn with the standard action of the torus, therefore the equation
cT (1X) = [ΞX ] holds locally, i.e. after restriction to each fixed point. Let X be a complete smooth toric
variety. Then HT

∗ (X) is free over H∗T (pt). By the Localization Theorem cT (11X) = ΞX holds globally.
The noncomplete case follows since any smooth toric variety can be compactified equivariantly.

The singular case can be deduced as usual by functoriality. One sees that for smooth toric varieties the
equivariant Chern class of the constructible function supported by a single orbit is exactly the fundamental
class of the closure of that orbit without boundary cycles. The equality is preserved by the push-forward.
2

Note that the theorem holds in equivariant homology of X and we do not have to use any embedding
into a smooth manifold. The non-equivariant case was proven by Ehlers and Barthel-Brasselet-Fieseler
[7] and it also follows immediately from [1].

The cycle representing the equivariant Chern class of a toric variety is effective. Therefore for the
embedded case by Theorem 5 we have the corollary:
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Corollary 18. Let V be a representation of T . Suppose an affine T -variety X (possibly singular) is em-
bedded equivariantly into V . If the weights of the torus acting on V are nonnegative then the coefficients
of cT (11X) ∈ H∗T (V ) = Q[t1, t2, . . . , tn] are nonnegative.

The situation described in the Corollary 18 appears when

X = Xσ = Spec(C(σ∨ ∩N))

is presented in the usual way: the embedding into

V = Spec(C[x1, x2, . . . , xn])

is given by a choice of the generators of the semigroup σ∨ ∩N , see [17, §1.3].

Remark 19. All the singularities of the Schubert varieties in Grassmannians of planes Grass2(Cn) are
toric. Therefore the local equivariant Chern classes are nonnegative combinations of monomials for a
suitable choice of a basis of H2

T (pt).

The global positivity of Chern classes of Schubert varieties in Grass2(Cn) seems not to follow auto-
matically. Except from the case of projective spaces only the Schubert varieties with isolated singularities
(the partitions (n − 3, k) for k ≤ n − 4, according to the standard convention) are toric. Nevertheless
it was shown in [5, §4.3] that the nonequivariant Chern classes of Schubert varieties in Grass2(Cn) are
indeed effective.

6. EQUIVARIANT CHERN CLASS OF DEGREE ZERO

The following Theorem 20 is the key to the inductive procedure for computing equivariant Chern
classes. The theorem says that the degree zero component of the equivariant Chern class localized at a
fixed point does not depend seriously on the set itself, but only on wether the point belongs to the set or
not.

Theorem 20. Suppose that X is a T -variety, not necessarily smooth, contained in a T -manifold M . Let
p ∈ X be an isolated fixed point. Then the degree zero component of the class cT (11X) restricted to {p}
is Poincaré dual to the product of weights appearing in the tangent representation TpM(

cT (11X)(0)

)
|p = ep ∩ [p] .

By additivity of equivariant Chern classes it follows that if p 6∈ X then (cT (11X)(0))|p) = 0.
The core of the proof is the basic equation of Euler characteristics

χ(X) = χ(XT ) .

Nevertheless the argument demands some formal manipulations. First of all we note the following fact.

Proposition 21. Let N be a complete manifold with a torus action. Let us decompose the fixed point
set NT = tα∈ANα into connected components. Let iα : Nα → N be the inclusion. The equivariant
cohomology top Chern class of N is equal to the sum

(5) cTtop(N) =
∑
α∈A

(iα)∗ (ctop(Nα)) ∈ H2 dim(N)
T (N) .

Dually we have

(6) cT (11N )(0) =
∑
α∈A

(iα)∗
(
cSM (11Nα)(0)

)
∈ HT

0 (N) .
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Proof. The proof is the straightforward application of the Theorem (11) since

i∗α(cTtop(N)) = eα · ctop(Nα) ∈ H∗T (Nα) = H∗T (pt)⊗H∗(Nα) .

2

Proof of Theorem 20. Denote by ιp : {p} → M the inclusion of the point. We will argue that for any
equivariant constructible function α : M → Z the equality holds

ι∗p(c
T (α)) = α(p) ep ∩ [p] ∈ HT

−2 dim(M)({p}) .

It is enough to show that statement for M complete and the constructible function of the shape α =
f∗(11N ) for an equivariant map f : N →M from a smooth complete variety N . (We can assume that N
is smooth by the usual argument which is available thanks to equivariant completion [38] and equivariant
resolution of singularities [11].) It remains to prove that

(7) ι∗pf∗(c
T (11N )(0)) = χ(f−1(p)) ep ∩ [p] ∈ HT

−2 dim(M)({p}) .

Let iα be as in Proposition 21 and fα = f iα : Nα → M . We compute the push-forward of the zero
degree component:

f∗c
T (11N )(0) =

∑
α∈A

f∗(iα)∗
(
cSM (11Nα)(0)

)
=
∑
α∈A

(fα)∗
(
cSM (11Nα)(0)

)
∈ HT

0 (M) .(8)

Let B ⊂ A be the set of components of NT which are mapped to p. Then

ι∗p
(
f∗c

T (11N )(0)

)
= ι∗p

(∑
β∈B

(fβ)∗c(11Nβ )(0)

)
= ι∗p

∑
β∈B

χ(Nβ) [p]

=
∑
β∈B

χ(Nβ) ep ∩ [p] .(9)

We conclude that the equation (7) holds because χ(f−1(p)) = χ(f−1(p)T ) and f−1(p)T =
⊔
β∈B Nβ .

2

7. PARTIAL LOCALIZATION

There exists the following modification of the localization formula: we can replace MT by any in-
variant submanifold or even arbitrary invariant subset) Y containing the fixed point set MT . Then the
restriction map

H∗T (M)→ H∗T (Y )

becomes an isomorphism after inversion of nontrivial characters S. Also the Berline-Vergne formula
holds, but it makes sense only for Y being a submanifold. Suppose that Y = Y1 t {p}. It follows that
for any x ∈ H∗T (M) we have

(10)
x|p

ep
+

∫
Y1

x|Y1

eY1

= 0

for degree smaller than dim(M). We will apply this formula for Poincaré dual of cT (11X). The integral
of the zero degree Chern-Schwartz-MacPherson class (which corresponds to the top degree of the coho-
mology class) is equal to the Euler characteristic and the same holds for the equivariant Chern class by
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the commutativity of the diagram:

cT (11X)(0) ∈ HT
0 (M) −→ H0(M) 3 c(X)(0)

↓ ↓∫
M
cT (11X)(0) ∈ HT

0 (pt)
'−→ H0(pt) 3 χ(X) .

We apply the partial localization and we find that

(11)
(cT (X)(0))|p

ep
+

∫
Y1

(cT (X)(0))|Y1

eY1

= χ(X) .

Here eY1
is the equivariant Euler class of the normal bundle of Y1. (Of course it may be of different

degrees over distinct components of Y1.)

Example 22. The partial localization allows us to compute the equivariant Chern class of the affine cone
over a projective variety. Suppose T acts on Cn with nonzero weights

w1, w2, . . . , wn .

First recall that the equivariant cohomology ring of Pn−1 is the quotient of the polynomial algebra

H∗T (pt)[h] = Z[t1, t2, . . . , tn, h]

by the relation
n∏
i=1

(h+ wi) = 0.

Using the elementary symmetric functions σi the relation takes form

(12)
n∑
i=0

σi(w•)h
n−i = 0 .

Let X ⊂ Cn be a nonempty T -invariant cone and P(X) ⊂ Pn−1 its projectivization. We consider
X = X −P(X) as a constructible set in Pn and we will compute its equivariant Chern class in H∗T (Pn).
In this example we skip the Poincaré duals in the notation. Denote by ι : Pn−1 → Pn the inclusion. The
equivariant Chern class of X restricted to Pn−1 is equal to

ι∗cT (11X) = ι∗cT (11X)− ι∗ι∗cT (11P(X))

= (1 + h) · cT (11P(X))− h · cT (11P(X))

= cT (11P(X)) .

Suppose that the equivariant Chern class of P(X) is written as

cT (11P(X)) =

n−1∑
i=0

bi(t)h
i ∈ H∗T (Pn−1)

for some polynomials bi(t) ∈ H∗T (pt) of degree ≤ n − 1 − i. To compute the local equivariant Chern
class at 0 we will apply the formulas (10) and (11) to M = Pn, Y = {0} ∪ Pn−1 and Y1 = Pn−1. We
compute ∫

Pn−1

cT (11X)

eY1

=

∫
Pn−1

n−1∑
i=0

bi(t)h
i−1 .
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Except from i = 0 the summands are integral (belong to H∗T (Pn−1)) and they are of degree smaller than
n− 1. Therefore ∫

Pn−1

cT (11X)

eY1

=

∫
Pn−1

b0(t)

h
.

An easy calculation using (12) shows that the inverse Euler class of the normal bundle to Pn−1 is equal
to

h−1 = −
n∑
i=1

σn−i(w•)

σn(w•)
hi−1 .

Hence ∫
Pn−1

cT (11X)

eY1

= −
∫
Pn−1

b0(t)

n∑
i=1

σn−i(w•)

σn(w•)
hi−1 = − b0(t)

σn(w•)

By the formulas (10) and (11) and since σn(w•) = ep we find that

cT (11X)|p

ep
− b0(t)

ep
= χ(X) = 1 .

Therefore
cT (11X)|p = b0(t) + e0 ∈ H∗T ({p})

We obtain the following result:

Proposition 23. Suppose that X is a nonempty T -invariant cone in a linear representation V of T . Let
h = cT1 (OP(V )(1)) be the equivariant Chern class. If

cT (11P(X)) =
( dim(V )−1∑

i=0

bi(t)h
i
)
∩ [P(V )] ∈ HT

∗ (P(V ))(13)

then
cT (11X) = (b0(t) + e0) ∩ [V ] ∈ HT

∗ (V )

where e0 is the Euler class of the representation V .

Proof. First note, that restriction H∗T (V )→ H∗T (pt) is an isomorphism. We apply the calculation of the
previous example. The degree of b0 is at most dim(V )− 1, therefore it does not interfere with ep, which
is homogeneous of degree dim(V ). 2

8. CONICAL SETS IN AN AFFINE SPACE

We come back to the Example 8 of §2 which was the starting point of our interest in equivariant Chern
classes. In [4] there was defined an invariant of a conical set X ⊂ Cn. It is equal to the Chern-Schwartz-
MacPherson class of X considered as a constructible set in Pn. This Chern class

cSM (11X) ∈ H∗(Pn)

is expressed via the Chern class of the projectivization. The calculation is based on the following formula:

Proposition 24 ([3, Prop 5.2]). Let X ⊂ Cn be a nonempty conical set. Let X = X ∪ P(X) be the
closure of X in Pn. Let x = c1(OPn−1(1)) and x̃ = c1(OPn(1)). Suppose that

cSM (11P(X)) =
( n−1∑
i=0

aix
i
)
∩ [Pn−1] ∈ H∗(Pn−1)(14)

then

cSM (11X) =
(

(1 + x̃)
( n−1∑
i=0

aix̃
i
)

+ x̃n
)
∩ [Pn] ∈ H∗(Pn)(15)
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It follows that

cSM (11X) =
( n−1∑
i=0

aix̃
i + x̃n

)
∩ [Pn] ∈ H∗(Pn)(16)

It seems natural to look at the conical sets from the point of view of equivariant cohomology. Let
T = C∗ acts on Cn by scalar multiplication.

Proposition 25. Under assumption of Proposition 24

cT (11X) =
( n−1∑
i=0

ait
i + tn

)
∩ [Cn] ∈ HT

∗ (Cn)(17)

Proof. Assume that the usual, nonequivariant Chern class of P(X) satisfies the formula (14). To apply
Proposition 23 we have to express the equivariant Chern class cT (11P(X)) = 1 ⊗ cSM (11P(X)) by h =

cT1 (OP(X)(1)). The point is that the torus T acts on the fibers of the tautological bundle O(−1) with
weight equal to one, therefore the equivariant Chern class of OPn−1(1) is equal to

h = 1⊗ x− t⊗ 1 = x− t

under the identification

H∗T (Pn−1) = Q[ t ]⊗H∗(Pn−1) = H∗(Pn−1)[ t ] .

Hence the equivariant Chern class of 11P(X) can be written as

cT (11P(X)) =
( n−1∑
i=0

ai(h+ t)i
)
∩ [Pn−1] =

( n−1∑
i=0

i∑
j=0

(
i

j

)
ait

i−jhj
)
∩ [Pn−1] .

Here the coefficient b0(t) of the expression (13) is equal to

b0(t) =

n−1∑
i=0

ait
i .

By Proposition 23 we obtain the claim. 2

We see that formally the Chern-MacPherson-Schwartz class of 11X in Pn and the equivariant Chern
class in Cn satisfy the same formula. The equivariant approach has the advantage that we have for free
the Chern class of the product

cT×T (11X×Y ) = cT (11X)× cT (11Y ) .

Further we can restrict the Chern class of the product via diagonal inclusion T ↪→ T × T to obtain
cT (11X×Y ). With the original approach the proof of the above property was a bit demanding, see [4,
Lemma 3.10]

9. COMPUTING EQUIVARIANT CHERN CLASSES WITHOUT RESOLUTION OF SINGULARITIES

Below we sketch a method of computing the equivariant Chern class of a T -invariant singular variety
not using a resolution of singularities. The calculi will be done in equivariant cohomology and we will
omit the Poincaré duality in the notation.

Assume that the fixed point set of the action of the torus on a complex manifold M is discrete. For
a given class x ∈ Hk

T (M) of degree k < 2 dim(M) the integral
∫
M
x vanishes. By the Localization
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Theorem also the sum
∑
p∈MT

x|p
ep

has to vanish. In particular if x = cT (11X), then except from the zero
degree

(18)
∑
p∈MT

cT (11X)|p

ep
= 0 .

This relation between local equivariant Chern classes allows in many cases to compute them induc-
tively. Suppose MT = {p0, p1, . . . , pN} and assume that we know all local equivariant Chern classes
for p1, p2, . . . , pN . Then

(19) cT (11X)p0 = −
N∑
i=1

ep0
epi

cT (11X)pi

except from the zero degree. For Grassmannians the quotient ep0epi
simplifies remarkably.

The zero component of the local equivariant Chern class is easy. If p ∈ XT then by Theorem 20 this
class is equal to the Euler class at the point p

(20) (cT (11X)(0))p = ep ∈ H2 dim(M)
T (pt).

In fact this statement is the crucial point for computation. Any other equivariant characteristic class
satisfies the relation 19. The condition fixing the zero equivariant Chern class and vanishing for the
degrees higher than the dimension of the ambient space makes the equivariant Chern class unique.

Computation of the local equivariant Chern classes

Of course the inductive step of computation can be applied when for a given singularity one can find
a compact variety for which this singularity is the only deepest one. If X ⊂ Cm is a cone then taking the
closure of X in Pn will not introduce new singularities. In the next section we present another situation,
when the compactifying variety is the Grassmannian.
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10. COMPUTATION OF LOCAL EQUIVARIANT CHERN CLASS OF THE DETERMINANT VARIETY

Let us compute the local equivariant Chern class of the variety

Ωo1(n) = {φ ∈ Hom(Cn,Cn) : det(φ) = 0} .
Its compactification in Grassn(C2n) is the Schubert variety of codimension one

Ω1(n) = {W : W ∩ 〈ε1, ε2, . . . , εn〉 6= 0} .
We will apply the method sketched above. Let us start with n = 2. The canonical neighborhood of the
point p1,2 in Grass2(C4) is identified with

Hom(span(ε1, ε2), span(ε3, ε4))

and the variety Ω1(2) intersected with this neighbourhood is exactly Ωo1(2). The corresponding elements
of Ω1(2) are the planes spanned by the row-vectors of the matrix(

1 0 a b
0 1 c d

)
.

The equation of Ω1(2) is

det

(
a b
c d

)
= 0 .

Before performing computations let us draw the Goresky-Kottwitz-MacPherson graph ([22, Th. 7.2]) for
M = Grass2(C4) with the variety Ω1(2) displayed.

Schubert variety Ω1 in Grass2(C4).
The numbers attached to the edges indicate the weights of the T actions along the one dimensional

orbits. For example at the point p1,3 in the direction towards p1,2 the action is by the character t2 − t3.
The variety Ω1(2) is singular at the point p1,2 and it is smooth at the remaining points. For example at
the point p1,3 the coordinates are (

1 a 0 b
0 c 1 d

)
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and the equation of Ω1(2) is b = 0. For that point the local equivariant Chern class is equal to

(t4 − t1)(1 + t2 − t1)(1 + t2 − t3)(1 + t4 − t3) .

The summand in the formula (18) is the following

(t4 − t1)(1 + t2 − t1)(1 + t2 − t3)(1 + t4 − t3)

(t4 − t1)(t2 − t1)(t2 − t3)(t4 − t3)
=

=

(
1 +

1

t2 − t1

)(
1 +

1

t2 − t3

)(
1 +

1

t4 − t3

)
We sum up the contribution coming from the fixed points p1,3, p1,4, p2,3, p2,4, simplify and multiply by
−(t3 − t1)(t4 − t1)(t3 − t2)(t4 − t2). We obtain

(t3 + t4 − t1 − t2) deg = 1

(t3 + t4 − t1 − t2)2 deg = 2

(t3 + t4 − t1 − t2)(2t1t2 − t1t3 − t2t3 − t1t4 − t2t4 + 2t3t4) deg = 3

−4(t3 − t1)(t4 − t1)(t3 − t2)(t4 − t2) deg = 4

The terms of degree < 4 coincide with the equivariant Chern class of Ω1(2) localized at the point p1,2.
The result is symmetric in two groups of variables: {t1, t2} and {t3, t4}. The coefficients of the expansion
in the basis of the Schur functions

cT (11Ω1) =
∑

aI,JSI(−t1,−t2) · SJ(t3, t4)

has the following coefficients:
0 1 11 2 21 22

0 1 1 1 2 1
1 1 1 3 1 1
11 1 3 1
2 1 1 1
21 2 1
22 1

Computations of the equivariant Chern class Ω1(3) ⊂ Grass3(C6) can be continued without problems
by the same method. At the points of the type pI with |I ∩ {1, 2, 3}| = 1 the variety is smooth, while at
the points pI with |I ∩ {1, 2, 3}| = 2 the singularity is of the type Ω1(2)p1,2 × C5. We write the sum of
fractions according to the rule (19) and simplify. For example the expression which has to be simplified
to compute the degree one is the following:

− (s3 − t1)(s3 − t2)(s1 − t3)(s2 − t3)

(s3 − s1)(s3 − s2)(t1 − t3)(t2 − t3)
(s3 − t3) + sym. +

(s3 − t1)(s3 − t2)(s1 − t3)(s2 − t3)

(s1 − s3)(s2 − s3)(t3 − t1)(t3 − t2)
(s1 + s2 − t1 − t2) + sym.(21)

(Here s1 = t4, s2 = t5, s3 = t6.) The given summands are the contributions coming from the points
p3,4,5 and p1,2,6. Of course the sum is equal to the fundamental class

[Ω1] = s1 + s2 + s3 − t1 − t2 − t3
(which may be computed in another way). This example shows how a complicated rational functions
may in fact lead to a simple result. The difficulty lies in simplifying that expression. Higher degree terms
are much more complex. We write the final result in the Schur basis

cT (11Ω1) =
∑

aI,JSI(−t1,−t2,−t3) · SJ(s1, s2, s3) .
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The coefficients are the following:

0 1 11 2 111 21 3 211 31 22 311 221 32 321 222 33 331 322 332 333

0 1 2 2 4 5 1 9 3 4 6 9 3 8 4 1 3 6 3 1
1 1 4 8 5 12 12 2 19 5 8 8 16 4 8 10 1 2 4 1

11 2 8 12 9 16 16 3 18 6 8 6 10 4 4 1 1

2 2 5 9 4 11 9 1 13 2 5 3 10 1 2 5 1
111 4 12 16 11 8 16 4 6 10 4 1

21 5 12 16 9 16 14 2 15 3 5 3 5 1 1

3 1 2 3 1 4 2 3 1 2 1
211 9 19 18 13 15 3 3 5 1

31 3 5 6 2 6 3 3 1 1

22 4 8 8 5 10 5 1 5 1 1
311 6 8 6 3 3 1

221 9 16 10 10 5 2 1
32 3 4 4 1 4 1 1

321 8 8 4 2 1

222 4 10 5 1
33 1 1 1 1

331 3 2 1

322 6 4 1
332 3 1

333 1

We note that all the coefficients are nonnegative.
While computing the equivariant Chern class of Ω1(4) ⊂ Grass4(C8) appears a problem with the size

of the expressions, since dim(Grass4(C8)) = 16 and dim(T ) = 8. In a polynomial of degree 15 in 8
variables there are

490 314 monomials.

The expression is a sums of 68 fractions with factors ti−tj in denominators. We might have used another
compactification of C16, e.g. the projective space P16. There are less fixed points, but the denominators
are more complicated. They are of the form

∏
[(ti − tj)− (tk − t`)].

One practical solution appears naturally. The fixed points can be divided into groups with |I ∩
{1, 2, . . . , n}| fixed. Let fk(u•, v•) be the expression for the local equivariant Chern class of Ω1(k) with
u• = (t1, t2, . . . , tk) and v• = (tk+1, tk+2, . . . , t2k). The local equivariant Chern cT (11Ω1(n))|p1,2,...,n
class can by computed by the formula (19), which becomes

(22) −
n−1∑
k=1

∑
I ⊂ {1, 2, . . . , 2n}

|I| = n, |I ∩ {1, 2, . . . , n}| = k

ep1,2,...,n
epI

fk(I) gk(I) ,

where fk(I) depends on the two group of variables

u• = tI∩{1,2,...,n} and v• = t{n+1,n+2,...,2n}\I

and gk(I) is the equivariant Chern class of the singular stratum of the type Ω1(k). The factors in the
quotients

ep1,2,...,n
epI

cancel out partially and miraculously all the summands for a fixed k turn out to be
integral. For n = 3 and degree one the summands are given by the formula (21).

Such a division of fixed points has a geometric meaning. In fact we deal with the partial localization
(see §7). Consider the action of the subtorus C∗ acting on C2n with weight 1 on the first n coordinates
and with the weight −1 on the remaining coordinates. Then the fixed point set decomposes into disjoint
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union of the products of the Grassmannians:

Grassn(C2n)C
∗

=

n⊔
k=0

Grassk(Cn)×Grassn−k(Cn).

The summand for k = 0 consists of one point

{0} ⊕ 〈εn+1, εn+2, . . . , ε2n〉 ,
which does not belong to Ω1(n), while for k = n we have

〈ε1, ε2, . . . , εn〉 ⊕ {0} ,
the point which we are concerned with. Let Rk and Qk be the tautological and the quotient bundles over
Grassk(Cn). The result of the sum (22) is equal to

−(−1)n−k
n−1∑
k=1

∫
Grassk(Cn)×Grassn−k(Cn)

[fk(Rk,Qn−k) · gk] ,

where gk is (up to multiplication by a certain Euler class) the equivariant Chern class of the stratum of
the singularity type Ω1(k). Precisely

gk = e(Q∗k ⊗ Qn−k) · e(R∗k ⊗ Rn−k)·

·c(R∗k ⊗ Qk) · c(R∗n−k ⊗ Qn−k) · c(Qk ⊗ R∗n−k) .

Using Fubini theorem we do not have to simplify a large expression in one step and we arrive to the result
relatively quickly. Also knowing the Schur expansion of the functions fk one can apply Theorem 16.

11. GKM-RELATIONS

Less time-consuming method of computation of the local equivariant Chern class is based on the
relation discovered by Chen-Skjelbred [13], called GKM-relations after the rediscovery in [22]. These
relation allow us to determine the local equivariant Chern class at the point pI knowing only the local
equivariant Chern classes at the neighbouring points in the GKM-graph. This is so since

cT (11V )|pI ≡ c
T (11V )|pJ modulo (ti − tj) ,

whenever
J = (I− {i}) ∪ {j} .

Again the method works for all the degrees smaller then the dimension of the Grassmannian, since the
intersection of the ideals (ti − tj) is contained in the degree greater or equal to the dimension of the
Grassmannian. That is so for any GKM-space. Now the problem of simplifying huge rational function is
replaced by solving a relatively small system of linear equations.

12. THE RESULT FOR Grass4(C8)

Let us write the local equivariant Chern class in the Schur basis

cT (11Ω1(4))|p1,2,3,4 =
∑

aI,JSI(−t1,−t2,−t3,−t4) · SJ(t5, t6, t7, t8) .

Just to quench readers curiosity we show here the most interesting fragment of the table of coefficients.

It is hard not to have impression that there should be a way of writing down this equivariant Chern
class in a compact way. For example the equivariant Chern class of the tangent bundle written in the
Schur basis is as much complicated as ours, but it is just c(Hom(Rn,Qn)).
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It turns out that the local equivariant Chern class of Ω1(4) is a positive combination of monomials in
−t1,−t2,−t3,−t4, t5, t6, t7, t8. As one can see it is not a positive combinations of products of Schur
functions. Fortunately we do not have a contradiction with the conjecture of Aluffi and Mihalcea [5]
which says that the Chern-Schwartz-MacPherson classes are effective. Note that the Schubert varieties
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are only T -invariant, and the Theorem 4 does not apply. Instead we have a freedom with choosing the
basis of weights. The local equivariant Chern class is a polynomial in ui,j = ti − tj . To write cT (11X)
in a unique way we chose a spanning tree of the full graph with vertices 1, 2, . . . , 2n. The edge between
i and j (with the orientation forced by the partition) corresponds to the generator tj − ti. Some choices
lead to an expression with nonnegative coefficients.

Positive monomial bases for Grass2(C4)

A) t2 − t1, t4 − t2, t3 − t4
B) t2 − t1, t3 − t2, t4 − t2
C) t4 − t1, t4 − t2, t4 − t3
D) t3 − t1, t3 − t2, t4 − t2 this is not a positive basis

The positivity condition for a graph is the following:
• Characters of the tangent representation are nonnegative sums of base elements.

That in fact supports the conjecture of Aluffi and Mihalcea in a stronger, equivariant version.

The original, nonequivariant version was checked by B. Jones [23] for cells in Grassm(Cn) form ≤ 3.
In his computations equivariant cohomology and the Localization Theorem was used to compute the
push-forward of classes from a resolution.

13. FURTHER DIRECTIONS OF WORK

Several goals have not been reached so far. The most obvious directions of further work would be:
• deduce positivity results,
• study global equivariant Chern classes of Schubert varieties and open cells,
• in particular relate our computations to the determinant formulas of [5] and the combinatorial

interpretation of [30],
• develop a suitable calculus of symmetric rational functions to handle expressions appearing in

the Berline-Vergne formula for Grassmannians.
We hope to realize this program in future.

REFERENCES
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