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ORBIFOLD GROUPS, QUASI-PROJECTIVITY AND COVERS

ENRIQUE ARTAL BARTOLO, JOSÉ I. COGOLLUDO-AGUSTÍN, AND DANIEL MATEI

Abstract. We discuss properties of complex algebraic orbifold groups, their characteristic va-

rieties, and their abelian covers. In particular, we deal with the question of (quasi)-projectivity
of orbifold groups. We also prove a structure theorem for the variety of characters of normal-

crossing quasi-projective orbifold groups. Finally, we extend Sakuma’s formula for the first

Betti number of abelian covers of orbifold fundamental groups. Several examples are pre-
sented, including a compact orbifold group which is not projective and a Zariski pair of plane

curves in P2 that can be told by considering an unbranched cover of P2 with an orbifold

structure.

Introduction

Any finitely presented group G is the fundamental group of a closed oriented 4-manifold. If
we ask these manifolds to have extra-properties, some restrictions may apply. For example, such
a group is said to be Kähler (resp. projective) if it is the fundamental group of a compact Kähler
manifold (resp. a projective manifold). Note that projective groups are Kähler groups, but the
converse is still an open question posed by Serre. In this direction, it is worth mentioning that
there exist compact Kähler manifolds whose homotopy type cannot be realized by a smooth
projective manifold (cf. [25]).

The family of projective groups is a subfamily of quasi-projective groups. Recall that a quasi-
projective manifold is the difference of two projective varieties. The study of Kähler, projective
and quasi-projective groups is closely related to orbifold groups, or more precisely to orbicurve
groups, i.e. orbifold fundamental groups of complex 1-dimensional orbifolds. Recently, orbifold
groups (in any complex dimension) have been considered (cf. [24, 9] also [17] for real orbifolds).

The first purpose of this paper is to define and study the properties of the different classes
of complex orbifold fundamental groups such as compact, locally finite, and normal crossing.
In particular, we prove that orbifold fundamental groups are quasi-projective, but compact
orbifold groups in general are not projective (see §1). In this context, we develop in §2 the
concept of saturated orbifolds, which will allow one to transform orbifolds without altering their
fundamental group.

Our second purpose (see §3) is to extend two classical results regarding the variety of characters
on smooth quasi-projective fundamental groups (due to Arapura [1] and the authors [4]) and
normal-crossing compact Kähler orbiface groups (due to Campana [9]) to the general case of
normal-crossing quasi-projective orbifold groups.

Finally in §5, we extend Sakuma’s formula (cf. [21, 15]) to orbifold fundamental groups and
their abelian covers in terms of their orbifold characteristic varieties. In order to do so, in §4 we
present the concepts of unbranched and branched coverings as well as the possible uniformiza-
tions (Galois, regular, and virtually regular). Such formulas are illustrated with examples in
dimensions one and two.

Partially supported by MTM2010-21740-C02-02. The third author is also partially supported by grant CNCSIS
PNII-IDEI 1188/2008 and FMI 53/10 (Gobierno de Aragón).
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1. Orbifold groups

Definition 1.1. Let X̄ be a projective Riemann surface and let ϕ : X̄ → Z≥0 be a function such
that Sϕ := {p ∈ X | ϕ(p) 6= 1} is finite. The pair (X̄, ϕ) is said to be a 1-dimensional orbifold
or an orbicurve. The positive part of the orbicurve is X+

ϕ := X̄ \ ϕ−1(0) and we say that the

orbifold is compact if X+
ϕ = X̄. The set S>1

ϕ := X+
ϕ ∩ Sϕ is called the singular part and ϕ(p) is

the orbifold index of p ∈ X+
ϕ .

The geometrical interpretation is the following. The source of the charts centered at p ∈ X+
ϕ

are of the type ∆/µϕ(p) where µn := {z ∈ C | zn = 1}, ∆ is an open disk centered at 0 and µϕ(p)

acts on ∆ by multiplication. This interpretation suggests the following definition.

Definition 1.2. Let (X̄, ϕ) be an orbicurve. Let Xϕ := X̄ \ Sϕ and G := π1(Xϕ; p0) for some
p0 ∈ Xϕ. For each p ∈ Sϕ choose a meridian xp ∈ G (its conjugacy class is well defined). Then,
the orbifold fundamental group of (X,ϕ) is defined as

πorb
1 (X̄, ϕ; p0) := G/〈xϕ(p)

p 〉.

A group is said to be an orbicurve group if it is the orbifold fundamental group of an orbicurve.

Remark 1.3. If the group can be described as the orbifold group of a compact orbicurve then
we will refer to it as a compact orbicurve group.

Proposition 1.4. Any orbicurve group is quasi-projective.

In order to prove this result we introduce the following concept.

Definition 1.5. Let X be a smooth quasi-projective surface, let D be a divisor in X and let
D ⊂ X an irreducible component of D. An n-fold blow-up ρ of (X,D) on D is a composition
of blowing-ups ρj : Xj → Xj−1, 1 ≤ j ≤ n, such that X0 := X, the center of ρ1 is a point of
D which is smooth in D and if Ej ⊂ Xj is the exceptional component of ρj then the center of
ρj+1 is the intersection of Ej with the strict transform of D. The component Ej is called the
j-th exceptional component of ρ.

Remark 1.6. As a general comment, consider a double point on a smooth surface, i.e. a point
of local equations D := {x2 − y2 = 0} in a small ball B around P = (0, 0). Perform a blow-up

ρ : B̃ → B centered at P and consider γ(t) = (e2π
√
−1t, 0) which is a product of the meridians

around the two components of D. Note that GP := π1(B \ D) = π1(B̃ \ (E ∪ D̃)) where E is

the exceptional divisor and D̃ is the strict transform of D. Using both affine charts and using

γ(t) = (e2π
√
−1t, 1) it is easy to see that γ = γE as elements of GP , where γE is a meridian

around E.
Analogously, if we consider G := π1(X \ D) = π1(X \ (E1 ∪ D)), ρ an n-fold blow-up ρ of

(X,D) on an irreducible divisor D and µ is a meridian around D, then µ is also a meridian
around E1. Using the property discussed in the previous paragraph, µ2 is a meridian around E2

and by induction µj is a meridian around the j-th exceptional component of ρ in G.

Proof of Proposition 1.4. Let (X̄, ϕ) be an orbicurve. A quasi-projective surface Z will be con-
structed satisfying π1(Z) ∼= πorb

1 (X̄, ϕ).
Let Y := X+

ϕ × P1 be a surface, and let D := S>1
ϕ × P1 ⊂ Y . For each p ∈ S>1

ϕ consider a

ϕ(p)-fold blow-up ρp : Ỹ → Y on the divisor Fp := {p} × P1. Let Epj be the j-th exceptional

component of ρp. Let xp be a meridian of {p} × P1 in π1(Ỹ ). Following the previous remark,
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xjp is a meridian of Epj in π1(Ỹ ). The surface

Z := Ỹ \
⋃

p∈S>1
ϕ

Fp ∪ ϕ(p)−1⋃
j=1

Epj


is quasi-projective. The groups π1(X+

ϕ ), π1(Y ) and π1(Ỹ ) are naturally isomorphic. The kernel of

the epimorphism π1(Ỹ ) � π1(Z) is normally generated by the meridians x
ϕ(p)
p of Epϕ(p). Then,

π1(Z) is isomorphic to π1(Ỹ )/〈xϕ(p)
p 〉 which, by the definition of orbicurve group, is nothing

but πorb
1 (X̄, ϕ). �

Remark 1.7. As shown in [14, Theorem II.2.3], compact orbicurve groups are projective groups.

We will define orbifolds and orbifold groups following Campana (cf. [9] and bibliography
therein). Since we are mostly interested in quasi-projective groups, after using Zariski-Lefschetz
theory we can restrict our attention to the curve and surface case. However, since we will deal
with orbifold covers (see §4), orbifolds with abelian quotient singularities will also be allowed.

Definition 1.8. Let X̄ be a projective variety with only abelian quotient singularities and let
D =

⋃r
j=1Di be the decomposition of a hypersurface in irreducible components. Let us consider

a function ϕ : {D1, . . . , Dr} → Z≥0, ni := ϕ(Di). An orbifold is simply a pair (X̄, ϕ). The
positive part of the orbifold is defined as X+

ϕ := X̄ \ ϕ−1(0). The orbifold is said to be compact

if X̄ = X+
ϕ . The orbifold will be a normal-crossing orbifold (NC for short) if D is a normal

crossing divisor with smooth components.

Remark 1.9. Note that, for technical reasons, the components of D are allowed to have index one
(that is, nj = 1). However, this plays no important role in the definition of an orbifold. Hence, if
no ambiguity seems likely to arise, we denote by the same symbols an orbifold and its analogous
where ϕ−1(1) is disregarded. What is really important in the definition is the quasi-projective
variety X+

ϕ and the components Dj with nj > 1. Following the definitions for the orbicurve case
we also define

Sϕ := {Dj | nj 6= 1}, S>1
ϕ := {Dj | nj > 1}, Xϕ := X̄ \

(⋃
Sϕ

)
, X̊ϕ := X̄ \D.

Note that X̊ϕ ⊂ Xϕ ⊂ X+
ϕ . In π1(Xϕ) and π1(X̊ϕ) one has special conjugacy classes: for

each Di we consider the meridians of Di in either π1(Xϕ) or π1(X̊ϕ). Note that the kernel of
the epimorphism π1(Xϕ) � π1(X̄) is the subgroup generated by the meridians of Dj , nj 6= 1

whereas the kernel of the epimorphism π1(X̊ϕ) � π1(X̄) is the subgroup generated by the
meridians of D1, . . . , Dr.

Definition 1.10. Under the notation above, given an orbifold (X̄, ϕ) we define its orbifold

fundamental group as the group πorb
1 (X̄, ϕ; p0), p0 ∈ Reg(X̊ϕ) := X̊ϕ \ Sing(X̊ϕ) obtained as

the quotient of π1(X̊ϕ; p0) by the subgroup normally generated by {µnj

j }1≤j≤r, where µj is a

meridian of Dj . Note that π1(X̊ϕ) can also be replaced by π1(Xϕ) in this definition.
For p ∈ X+

ϕ one can define the local orbifold fundamental group πorb
1 (X̄, ϕ)p as the quotient

of π1(Reg(X̊ϕ))p by the subgroup normally generated by the appropriate powers µ
nj

j of the

meridians µj of D in a small ball around p. The orbifold (X̄, ϕ) shall be called locally finite
at p if πorb

1 (X̄, ϕ)p is a finite group, and locally finite (or simply LF) if it is locally finite at p,
∀p ∈ X+

ϕ .

We need to extend the notion of the orbifold index of a point in an orbifold as we did for
orbicurves in Definition 1.1.
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Definition 1.11. Let (X̄, ϕ) be an NC-orbifold and let p ∈ X̄. We define the orbifold index
ν(p) = ν(X̄,ϕ)(p) of p as follows:

ν(p) :=


ιp if p ∈ X̄ \D,
nj · ιp if p ∈ Dj \

⋃
i 6=j Di,

ni · nj · ιp if p ∈ Di ∩Dj , i 6= j,

where ιp = |A| if (X̄, p) ∼= (C2/A, 0), the quotient by the linear action of a small abelian
subgroup A ⊂ GL(2;C) (note that ιp = 1 iff p ∈ Reg(X̄)).

Remark 1.12. If p ∈ Reg(Xϕ) (or Reg(X̊ϕ)) then πorb
1 (X,ϕ)p is a trivial group.

Proposition 1.13. If p ∈ X+
ϕ then ν(p) = #πorb

1 (X,ϕ)p.

Proof. We distinguish several cases for p such that (X̄, p) ∼= (C2/A, 0) where A is a small abelian
group (hence cyclic). Let Bp be a small neighborhood of p (a quotient of a ball B0 in C2).

Let us suppose that p ∈ X̊ϕ. In this case πorb
1 (X̄, ϕ)p is isomorphic to π1(Kp), where Kp is

the link of the singularity (X̄, p) which is a lens space with fundamental group A and the result
follows.

Let us assume now that p belongs only to one irreducible component Di ⊂ D where Di is the
image of Y := {y = 0} ⊂ C2. We have a short exact sequence

0→ π1(B0 \ Y )→ π1(Bp \Di)→ A→ 0.

Both π1(B0 \ Y ) and π1(Bp \ Di) are isomorphic to Z (written with multiplicative notation),
which is generated by an element t which projects to a generator of A. By the definition of the
action, the image of a generator of π1(B0 \ Y ) is a meridian µi of Di which equals tιp . Hence,
we obtain πorb

1 (X,ϕ)p from π1(Bp \Di) by killing xni
i = tipni = tν(p) and the result follows.

Finally, let us assume that p belongs to two irreducible components Di, Dj ⊂ D where Di is
the image of Y := {y = 0} ⊂ C2 and Dj is the image of X := {x = 0}. The covering induces
the following short exact sequence:

(1.1) 0→ π1(B0 \ (X ∪ Y ))→ π1(Bp \ (Di ∪Dj))→ A→ 0.

Both π1(B0 \ Y ) and π1(Bp \Di) are isomorphic to Z2 (written with multiplicative notation as
above). The group π1(B0 \ (X ∪ Y )) is generated by commuting meridians of X and Y whose
images are xi and xj . We can choose an element t ∈ π1(Bp \ (Di ∪ Dj)) which projects to a
generator of A. With a suitable choice of t, we have tιp = xix

k
j (k depends on the specific action

and is coprime with ιp). Hence (1.1) induces the following short exact sequence

0→ 〈x, y | [x, y] = 1, xnj = xni = 1〉 → πorb
1 (X,ϕ)p → A→ 0

and the result follows. �

Remark 1.14. Note that if p is an orbifold point of index m, then πorb
1 (X̄, ϕ)p is cyclic of order m.

If p is an ordinary double point of D belonging to two components Di, Dj with ni, nj > 1, then
πorb

1 (X,ϕ)p is the product of two finite cyclic groups. As a consequence, if (X̄, ϕ) is a normal
crossing orbifold then it is in particular a locally finite orbifold.

Definition 1.15. A group G is said to be an orbifold group if it is isomorphic to πorb
1 (X̄, ϕ; p0)

for some orbifold (X̄, ϕ). If one can choose (X̄, ϕ) to be such that ni > 0, ∀i, then we say
that G is a compact orbifold group. If, moreover (X̄, ϕ) is a locally finite (resp. normal crossing
orbifold), we say that G is an LF (resp. NC) compact orbifold group.

Remark 1.16. Note that an orbifold group as defined below is also the fundamental group of an
orbifold (X̄, ϕ) where X̄ is smooth.
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Remark 1.17. We do not define the more general concept of LF or NC orbifold groups since
they coincide immediately with the concept of orbifold group by the following fact. If we blow

up a point in p ∈ D, we obtain a new surface Ȳ and a new divisor D̂ with r + 1 irreducible
components (the strict transforms of the components Di, with the same notation, and the
exceptional component Dr+1). We can define a map ϕ̂ such that ϕ̂(Di) = ni, 1 ≤ i ≤ r, and
ϕ̂(Dr+1) = 0 and the orbifold fundamental group does not change. An iterated application of
this procedure will give us a normal crossing divisor.

Proposition 1.18. Let us consider in P2 the arrangement of lines L given by the equation
xyz(x2− z2)(y2− z2) and consider the orbifold structure ϕL given by assigning 2 to each line in
L. Let G := πorb

1 (P2, ϕL). The meridians in G of the exceptional components of the blowing-ups
of the quadruple points of L are of infinite order.

Proof. It is easy to see that

G := 〈xi, yj , γz : x2
i = y2

j = γ2
z = [xi, yj ] = 1, γz = (XY )−1〉i,j=1,2,3,

where X = x1x2x3, Y = y1y2y3 and xi (resp. yj) i, j = 1, 2, 3 are meridians around the vertical
(resp. horizontal) lines and γz is a meridian around the line at infinity {z = 0}. Denote by γEx

(resp. γEy
) the meridian in G around the exceptional divisor Ex (resp. Ey) after blowing up

the point [0 : 1 : 0] (resp. [1 : 0 : 0]). Note that γEx
= γzX = Y −1, γEy

= γzY = X−1. By

symmetry, it is enough to show that X has infinite order in G or equivalently c := X2 ∈ G′ has
infinite order. Using Reidemeister-Schreier method it is easily seen that

(1.2) G′ = 〈ai, bj , c | [ai, bj ] = 1, [a1, a2] = [b1, b2] = c4, c central〉i,j=1,2.

It is straightforward that c has infinite order. �

Using the same ideas as in Proposition 1.4 we obtain the following result.

Proposition 1.19. Any orbifold group is a quasi-projective group.

Proof. As above, consider (X̄, ϕ) an orbifold for which D = D1 ∪ · · · ∪ Dr. For each divisor
Dj ∈ S>1

ϕ let ρj be the nj-fold blow-up on Dj and denote by ρ : Ȳ → X̄ the composition of
all of them. Let us denote by Ek,j , 1 ≤ k ≤ nj , 1 ≤ j ≤ r the k-th exceptional component

of ρj . Define Y := Ȳ \
⋃
Dj∈S>1

ϕ

(
Dj ∪

⋃nj−1
k=1 Ek,j

)
, where Dj here denotes the strict transform

of Dj by ρ and similarly with Ek,j . Note that Ȳ is the result of a finite process of blow-ups
of a projective variety X̄, hence Y is quasi-projective variety. Moreover, using Remark 1.6 it is
straightforward to check that Y satisfies the required property π1(Y ) ∼= πorb

1 (X̄, ϕ). �

In light of Remark 1.7 and Proposition 1.19, the following question arises:

Question 1.20. Is any compact orbifold group (or NC-compact orbifold group) a projective
group?

A negative answer to the first part is provided by the ideas given in Example 2.5 and Propo-
sition 1.18. This seems to suggest that NC-compact orbifolds are a reasonable class of orbifolds
to work with for our purposes.

Proposition 1.21. Compact orbifold groups are not necessarily NC-compact orbifold groups,
and thus not projective groups.

Proof. We are going to prove that the compact orbifold group G presented in Proposition 1.18
is not an NC-compact orbifold group. We will proceed by contradiction. Assume that G is an
NC-compact orbifold group. Since the subgroup G′ is of finite index, it is also an NC-compact
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orbifold group. The group G′ is described as a central extension of Z4 by Z as it is deduced
from the presentation (1.2). Since G′ is torsion free, the group G′ is in fact projective and thus
Kähler. The group

(1.3) H = 〈ai, bj , d | [ai, bj ] = 1, [a1, a2] = [b1, b2] = d, d central〉i,j=1,2.

is an index-four subgroup of G′ (d = c4) and hence, it is also projective. Moreover, H is the
Heisenberg group H(2) (following the notation in [10]). This group is nilpotent, but not almost
abelian (i.e. no finite-index subgroup is abelian). Since the rank of its abelianization is 4, it
cannot be Kähler using [10, Corollary 4.5] (one can also use [7, Corollary 3.8] to obtain this
statement). This contradicts the original asumption and thus G cannot be an NC-compact
orbifold group and thus not a projective group. �

Remark 1.22. From another point of view, Proposition 1.18 implies that the local fundamental
group πorb

1 (P2, ϕL)[0:1:0] is infinite and thus the orbifold (P2, ϕL) has no uniformization in the
sense of [24, Theorem 2.4].

Remark 1.23. Note that Propositions 1.19 and 1.21 partially answer questions posed by Simp-
son [22, §8].

2. Saturated orbifolds

Since we are mainly interested in orbifold groups it is sometimes useful to replace in (X̄, ϕ)
the function ϕ by another function ϕ̃ where ϕ̃(Di) is defined by the actual order of µi in
πorb

1 (X̄, ϕ; p0); we may perform this operation only when ni > 0 in order to have X+
ϕ = X+

ϕ̃ .

This notion is somehow related with [20, Condition (1.3.3)].

Definition 2.1. Given an orbifold (X̄, ϕ) (for a fixed D), we say that ϕ is a saturated orbifold
structure if for any meridian µi of Di (with ni > 0), the order of µi in πorb

1 (X̄, ϕ; p0) is exactly ni.

There is a natural way to saturate an orbifold. Unless otherwise stated we will consider only
saturated orbifolds in the sequel. Sometimes an extra saturation can be performed; even if
ni = 0, it may happen that µi is of finite order in πorb

1 (X̄, ϕ; p0). Note that in that case if we
define ϕ̃(ni) to be this order, then X+

ϕ $ X+
ϕ̃ .

We are going to study different kinds of saturation and their relationship with the concept of
NC-orbifolds. Let (X̄, ϕ) be an orbifold; if D is not a normal crossing divisor there is a sequence

π : Ȳ → X̄ of blowing-ups (which is an isomorphism outside X̊) such that π−1(D) becomes a
normal crossing divisor. An orbifold structure ψ can be endowed to Ȳ as in Remark 1.17, i.e.
ψ vanishes on any exceptional component of π. This procedure does not change the orbifold
fundamental group but in general X+

ϕ and Y +
ψ are not isomorphic; in particular, when (X̄, ϕ) is

not NC, (Ȳ , ψ) is not a compact orbifold even if (X̄, ϕ) is.
We are going to consider now a more general class of saturations where X+

ϕ may change

without modifying πorb
1 (X̄, ϕ).

Definition 2.2. Let (X̄, ϕ) be an orbifold and let p ∈
⋃
S+
ϕ . Let π : Ȳ → X̄ be the blowing-up

of p and keep the notation of Remark 1.17. We say that p is an LF-point at first level if the
order of the meridian µr+1 is finite in π1(X̄, ϕ)p.

Let π : Ȳ → X̄ be the blowing-up of an LF-point at first level; let D̂ := π−1(D); with the
notation of Remark 1.17, we consider a saturation ψ such that ψ(Di) := ni, 1 ≤ i ≤ r and
ψ(Dr+1) is the order of the meridian µr+1 in πorb

1 (X̄, ϕ)p.

Definition 2.3. A point p is an LF-point if all of its infinitely near points are LF-points at first
level (in particular, if an orbifold is locally finite at a point p then this point is an LF-point).
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Example 2.4. By the very construction πorb
1 (X̄, ϕ) ∼= πorb

1 (Ȳ , ψ). Hence if p is an LF-point we
can obtain a sequence of blow-ups such that the divisor D becomes a normal crossing divisor
over p and such that all the exceptional divisors have non-zero orbifold indices.

Example 2.5. If p ∈ X+
ϕ is an ordinary double point p ∈ Di ∩ Dj of D then ψ(Dr+1) =

lcm(ni, nj); if p ∈ Di is a smooth point of D then ψ(Dr+1) = ni.

Examples 2.5 and 2.4 show that LF and NC compact orbifold fundamental groups are the
same class of groups.

Example 2.6. Locally finiteness may not happen for more complicated singular points. As a
simple example if p ∈ D is an ordinary triple singular point with orbifold indices for each branch
u, v, w ∈ N such that 1

u + 1
v + 1

w ≤ 1, then p is not an LF-point. In the same way if p is an
ordinary cusp and the orbifold index is ≥ 6 then p is not an LF-point.

We set the global version of Definitions 2.2 and 2.3.

Definition 2.7. Let (X̄, ϕ) be an orbifold and let p ∈
⋃
S+
ϕ . Let π : Ȳ → X̄ be the blowing-up

of p (keeping again the notation of Remark 1.17). We say that p is a finite-type point at first
level if the order of the meridian µr+1 is finite in π1(X̄, ϕ). A point p is a finite-type point if all
of its infinitely near points are finite-type points at first level.

Remark 2.8. Let us consider X̄ = P2, D the union of three lines through a point p with orbifold
indices u, v, w ∈ N such that 1

u + 1
v + 1

w ≤ 1. It is clear that p is not an LF-point at first level
and it is easy to see that it is a finite-type point, since the meridian around the exceptional
component is in fact trivial. The quadruple points of the arrangement in Proposition 1.18 are
not of finite type. Hence the classes of compact orbifold and NC-compact orbifold groups do not
coincide.

Let us start from a saturated orbifold structure. Hence, if all the points of D (it is enough to
check it for singular points of D worse than nodal points) are LF-points (or finite-type point) we
can replace (X̄, ϕ) by an NC-orbifold structure in a surface after successive blowing-ups without
changing the fundamental group. In the first case we call this structure locally saturated ; in the
second case it is called globally saturated. Moreover, this can be done respecting the compactness.

We finish this section with a new saturation procedure which modifies πorb
1 (X̄, ϕ). An inter-

esting object of study associated with πorb
1 (X̄, ϕ) is the set of its characteristic varieties, see §3,

which is a stratification of the space of characters. Since Horb
1 (X̄, ϕ;Z)p is generated by the

meridians of the components of D passing through p, we can associate to Dr+1 the order of µr+1

in Horb
1 (X̄, ϕ;Z)p (or in Horb

1 (X̄, ϕ;Z)). The orbifold structure is called locally homologically
saturated or globally homologically saturated.

Example 2.9. If we consider an ordinary triple point where all the components have index 2,
the local homological saturation is given by assigning 2 to the exceptional component. It is easily
seen that the local saturation assigns index 4.

3. Orbifolds and characteristic varieties

The relationship between orbifolds and characteristic varieties (or similar invariants) appear
implicitly in the works of Beauville [6] and Arapura [1] and explicitly in the works of Campana,
e.g. [9], Simpson-Corlette [12], Delzant [13] and ourselves [4], among others. Except in Campana’s
work, the relationship comes from the following fact: given a smooth variety (projective, quasi-
projective or Kähler) the positive-dimensional components of the characteristic varieties can be
obtained as pull-back by mappings whose targets are orbifolds. Campana’s work focuses on



40 E. ARTAL, J.I. COGOLLUDO, AND D. MATEI

the study of characteristic varieties of compact Kähler orbifolds (more precisely, NC-projective
orbifolds in the language of §1). In this section we will study the characteristic varieties of
quasi-projective orbifolds. For a detailed exposition of the concept of characteristic varieties (or
Green-Lazarsfeld invariant), the reader can check any of the above references. Some definitions
will also be given in §5.

Before we state the aforementioned results in the context and language of orbifolds we need
to recall the concept of orbifold morphism, which as it occurs in the classical case, allows one to
define a morphism of fundamental groups.

Definition 3.1. Let (X̄, ϕ), (Ȳ , ψ) be orbifolds with divisors D :=
⋃r
y=1Dj ⊂ X̄, nj := ϕ(Dj),

E :=
⋃s
k=1Ej ⊂ Ȳ , mk := ψ(Ek). A dominant holomorphic map Φ : X+

ϕ → Y +
ψ defines an

orbifold map Φorb : (X̄, ϕ)→ (Ȳ , ψ) if for each k ∈ {1, . . . , s}, the divisor Φ∗(Ek) can be written
as
∑r
j=1 hj,kDj +mkHk where mk divides njhjk and Hk is a divisor in X+

ϕ .

Proposition 3.2 ([11, 3]). Let Φorb : (X̄, ϕ) → (Ȳ , ψ) be an orbifold map. This map induces
(in a functorial way) a morphism Φorb

∗ : πorb
1 (X̄, ϕ) → πorb

1 (Ȳ , ψ). Moreover, if (Ȳ , ψ) is an
orbicurve and the generic fiber of Φorb is irreducible then Φorb

∗ is surjective.

There are two main examples of orbifold morphisms: either the target is an orbicurve or
the orbifolds have the same dimension. The last case (étale or branched covers) is specially
interesting when all the fibers are finite.

Let us compare the following results. We use the language of §1 if needed. The natural
definition of Vorb

k (which is the orbifold analogue of Vk, the k-th characteristic variety) can be
found in §5.

Theorem 3.3 ([4, Theorem 1]). Let X be a smooth quasi-projective variety and let Vk(X) be
the k-th characteristic variety of X. Let V be an irreducible component of Vk(X). Then one of
the two following statements holds:

(1) There exists an orbicurve (C̄, ψ), an orbifold morphism Φorb : X → (C̄, ψ) and an
irreducible component W of Vorb

k (C̄, ψ) such that V = (Φorb)∗(W ).
(2) V is an isolated torsion point not of type (1).

Theorem 3.4 ([8, Théorème 3.1]). Let (X̄, ϕ) be an NC-compact Kähler orbifold surface. Let
V be an irreducible component of Vorb

k (X̄, ϕ). Then, one of the following statements holds:

(1) V is an isolated torsion point.
(2) There exists a compact hyperbolic orbicurve (C̄, ψ), where the genus of C̄ is at least 1,

an orbifold map Φorb : (X̄, ϕ) → (C̄, ψ) and an irreducible component W of Vorb
k (C̄, ψ)

such that V = (Φorb)∗(W ).

The goal of this section is to state and prove a combination of the above theorems.

Theorem 3.5. Let (X̄, ϕ) be an NC-quasi-projective orbifold surface. Let V be an irreducible
component of Vorb

k (X̄, ϕ). Then, one of the following statements holds:

(1) There exists an orbicurve (C̄, ψ), an orbifold map Φorb : (X̄, ϕ) → (C̄, ψ) and an irre-
ducible component W of Vorb

k (C̄, ψ) such that V = (Φorb)∗(W ).
(2) V is an isolated torsion point.

Proof. Let (X̄, ϕ) be an NC-quasi-projective orbifold surface. Let D be the hypersurface defining

the orbifold structure where we assume that D =
⋃r+s
j=1Dj , where nj ≥ 2 if 1 ≤ j ≤ r and

nr+k = 0 if 1 ≤ k ≤ s. We may assume the orbifold structure is saturated.
We proceed as in the proof of Proposition 1.19. Let π : Ȳ → X̄ the composition of the

∑r
j=1 nj

blow-ups indicated in that proof. We denote by Di the strict transforms of Di and by Ek,j ,
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1 ≤ k ≤ nj , 1 ≤ j ≤ r, the exceptional components of π. Let Y := Ȳ \
⋃r
j=1

(
Dj ∪

⋃nj−1
k=1 Ek,j

)
.

Recall that πorb
1 (X̄, ϕ) ∼= π1(Y ).

We can apply Theorem 3.3 to Y . Let us consider a component V of Vk(Y ) of type (1) and
consider the orbifold map given in the statement. Let us write this orbifold map in the language
of §1. We consider in Ȳ the hypersurface

D̂ =

r⋃
j=1

(
Dj ∪

nj⋃
k=1

Ek,j

)
∪

s⋃
`=1

Dr+`,

and the map ϕ̂ given by:

ϕ̂(Dj) = 0
1≤j≤r+s

, ϕ̂(Ek,j)
1≤k<nj ,1≤j≤r

= 0, ϕ̂(Enj ,j) = 1
1≤j≤r

.

Since Y +
ϕ̂ = Y , the map given by Theorem 3.3 can be written as Φ̂orb : (Ȳ , ϕ̂)→ (C̄, ψ). Let us

consider Φ̂ : Y → C̄ the underlying dominant holomorphic mapping.
Note that Ěj := Enj ,j ∩ Y is isomorphic to C∗. Let us assume that Φ̂Ěj

is not constant and

hence dominant on C̄; in particular, it determines an orbifold morphism Φ̂orb : (Enj ,j , ϕj) →
(C̄, ψ) where ϕj is the induced orbifold structure, which is the trivial one. The only possible
choices for (C̄, ψ) are either C∗ (with smooth structure) or C2,2; the characteristic varieties of
these orbifolds are finite and we are led to a contradiction.

Then, we have proven that Φ̂Ěj
is constant and denote by pj ∈ C̄ its image. Let us consider a

small neighborhood Uj of
⋃nj−1
k=1 Ek,j ; this curve is a linear chain of rational smooth curves with

self-intersection −2 and the space Ũj obtained from Uj by contracting the curves is isomorphic

to the quotient of a neighborhood Ũj of the origin in C2 by the action of a cyclic group of

order kj . We may lift Φ̂ to a dominant morphism Φ̂j : Ũj \ {0} → C̄; it is easily seen that if

Φ̂j cannot be extended to the origin, then C̄ ∼= P1 and the characteristic varieties of (C̄, ψ) are

finite. Since this is not possible, Φ̂j can be extended and Φ̂ can be extended to
⋃nj−1
k=1 Ek,j by

sending the curve to pj .

A similar argument allows us to extend Φ̂ to the regular part of D̂ in Dj ; moreover it is also
possible to extend it to Dj ∩Enj ,j (with image pj). Finally we can extend it to the double points

Di ∩ Dj , 1 ≤ i < j ≤ r. Moreover, since this map is constant on
⋃nj

k=1Ek,j , we can contract
these divisors (the exceptional divisors of π) and we obtain a holomorphic map Φ : X+

ϕ → C̄.
All we are left to do is to check that Φ defines the required orbifold morphism. Before we

prove this, note that Φ∗ induces a morphism of orbifold fundamental groups. To see this, let µj
be a meridian around Dj ; note that µ

nj

j is a meridian of Enj ,j whose image by Φ∗ is trivial and
hence the map induces a morphism of the orbifold fundamental groups.

Let us assume that Dj is contained in the preimage of pj and let us compute its multiplicity
in Φ∗(pj), say aj . If we compose Φ and π the multiplicity of Ek,j in the divisor defined by
pj equals kaj . Let bj the multiplicity of pj by ψ; the condition of Definition 3.1 for orbifold
morphism implies that njaj divides bj which is exactly the needed condition for Φ. Hence, the
required Φorb : (X̄, ϕ)→ (C̄, ψ) is constructed. �

4. Unbranched and branched orbifold covers

One of the advantages of using orbifold fundamental groups is that we can study standard
ramified covers as unbranched orbifold covers. For technical reasons, we restrict our attention
to NC-orbifolds.
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Definition 4.1. We call an orbifold morphism π : (Ȳ , ϕY ) → (X̄, ϕX) an orbifold unbranched
covering if the fibers of π are finite and the following equality holds

ν(Ȳ ,ϕY )(y) · deg πy = ν(X̄,ϕX)(x)

∀x ∈ X+
ϕ , ∀y ∈ π−1(x) (see Definition 1.11).

Remark 4.2. For the shake of simplicity we will often refer to orbifold unbranched covering as
unbranched covering. Note that usual unbranched covering are actually orbifold unbranched
covering.

The main point in Definition 4.1 is that orbifold unbranched coverings behave for orbifold
fundamental groups as unbranched coverings behave for fundamental groups. In particular, the
monodromy action completely determines the orbifold unbranched coverings.

Proposition 4.3. An orbifold unbranched covering induces an injective morphism on orbifold
fundamental groups. Moreover, let (X̄, ϕX) be an orbifold and let us denote G := πorb

1 (X̄, ϕX).
Let H ⊂ G be a finite-index subgroup; then there is an orbifold unbranched covering π :
(Ȳ , ϕY ) → (X̄, ϕX) such that π∗(π

orb
1 (Ȳ , ϕY )) = H. Moreover, (Ȳ , ϕY ) is essentially unique

(i.e., both Y +
ϕY

and S+
ϕY

are unique up to isomorphism).

As in the standard case, the cover is said to be regular or Galois if H � G; in that case the
group G/H acts on Y +

ϕY
with quotient X+

ϕX
.

Proposition 4.4. An orbifold unbranched covering satisfies both the path and homotopy lifting
properties and are determined by the monodromy representation ρ : πorb

1 (X,ϕX) → Σn, n :=
#G/H.

A proof of these results can be found basically rewriting [20, Theorem 1.3.9] in the language
of orbifolds instead of in the language of branched coverings.

Example 4.5. Consider P1
2,3,5 and the subgroup of G := πorb

1 (P1
2,3,5) = 〈µ2, µ3, µ5 : µ2

2 = µ3
3 =

µ5
5 = (µ2µ3µ5) = 1, 〉 given by the kernel of

(4.1)

ρ : G → Σ5

µ2 7→ (1, 5)(2, 3)
µ3 7→ (1, 4, 3)
µ5 7→ (1, 2, 3, 4, 5).

Note that the preimage of the orbifold point of order 2 has three points. For two of them, the
local degree of the map is 2 (and hence their index is 1) whereas on the remaining point the
local degree of ρ is 1 (and hence it should become a point of index 2). Analogously, around the
orbifold point of order 3, the preimage has three points: two of which will have orbifold index 3
and one with orbifold index 1. Finally, around the orbifold point of index 5, the preimage is a
local uniformization. Hence the local conditions on the orbifold points of the covering are given
to satisfy Definition 4.1. A simple Euler characteristic computation shows that ρ induces in fact
a (non-regular) unbranched covering from P1

2,3,3 to P1
2,3,5 of order 5.

Example 4.6. Consider the following morphism:

(4.2)
π : P1 → P1

[x : y] 7→ [(x3 − y3)2 : (x2 + y2)3]

Generically, fibers have 6 different preimages. The special fibers are at [1 : 0] (the roots of
(x2 +y2)3), [0 : 1] (the roots of (x3−y3)2), [1 : 1] (the roots of y2x2(2xy+3x2 +3y2)), and [2 : 1]
(the roots of (x4− 2yx3− 2xy3 + y4)(y+ x)2). Therefore this induces a non-regular unbranched
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covering from P1
6(2),2(3) to P1

3(2),3 of order 6 (where the subindex k(m) stands for k points of

index m).

Definition 4.7. An orbifold unbranched cover π : (Ȳ , ϕY ) → (X̄, ϕX) is a uniformization of
(X̄, ϕX) if Ȳ does not contain points of orbifold index greater than 1. The uniformization will
be Galois or regular if π realizes a quotient of Y +

ϕ by the action of a finite group (which may
not act freely).

Remark 4.8. As in the standard case, a uniformization (or more generally an unbranched cover)
is Galois if and only if the image GY of πorb

1 (Ȳ , ϕY ) in GX := πorb
1 (X̄, ϕX) is a normal subgroup

(the group action is carried by GX/GY ). Recall that if π is a finite Galois uniformization, then
the image of a meridian of a component with orbifold index ni > 1 by the monodromy action is
a product of cycles of the same length ni (with no fixed points). This is not a characterization of
Galois uniformization as Example 4.9 shows. This condition is called virtual regularity in [19].

Also note that saturation (see Definition 2.1) is trivially a necessary condition for the existence
of a uniformization.

Example 4.9. Let us consider an orbicurve (C̄, ϕ) where C̄ is an elliptic curve and the divisor
contains two points of index 2. Recall that

πorb
1 (C̄, ϕ) = 〈a, b, x, y | a2 = b2 = 1, ab = [x, y]〉

Consider the morphism:

(4.3)

ρ : πorb
1 (C̄, ϕ) → Σ4

a, x 7→ (1, 2)(3, 4)
b 7→ (1, 3)(2, 4)
y 7→ (1, 2, 3).

This morphism defines an unbranched orbifold cover; using Riemann-Hurwitz formula the source
of this cover is a Riemann surface of genus 3 (with no point of orbifold index greater than 1).
This is an example of a uniformization which is virtually regular, but not regular.

For our purposes, a more global and regular definition of unbranched covering will be enough.

Definition 4.10 ([17, 24]). Let (X̄, ϕ) be an orbifold. We say (X̄, ϕ′) is a suborbifold of
(X̄, ϕ) (or equivalently (X̄, ϕ) is a superorbifold of (X̄, ϕ′)) if ϕ′(Di)|ϕ(Di) (meaning there
exists k ∈ Z \ {0} such that ϕ(Di) = kϕ′(Di) in particular, if ϕ(Di) = 0, then ϕ′(Di) = 0).

On the other side branched orbifold coverings can also be defined. The definitions will be
straightforward for the orbicurve case.

Definition 4.11. A Galois covering π : Ȳ → X̄ between two orbifolds (X̄, ϕX) and (Ȳ , ϕY ) is
a branched orbifold covering if there exists a superorbifold structure (X̄, ϕs) for which π defines
an unbranched orbifold covering.

5. Sakuma’s formulæ

Given an orbifold (X̄, ϕX), we will define borb
1 (X̄, ϕX) as the rank of the abelianization of

GϕX
:= πorb

1 (X̄, ϕX), that is, rank(GϕX
/G′ϕX

). After taking a superorbifold, all branched

orbifold coverings can be assumed to be unbranched. Consider π : (Ȳ , ϕY ) → (X̄, ϕX) an
unbranched covering.

Note that, any unbranched covering π : (Ȳ , ϕY )→ (X̄, ϕX) produces the action of the group
of deck transformations Gϕ over Horb

1 (Ȳ , ϕY ) by conjugation, that is, consider ḡ ∈ Gϕ the

class of g ∈ GϕX
and x̄ ∈ Horb

1 (Ȳ , ϕY ) the class of x ∈ GϕY
, then ḡ · x̄ = gxg−1. Since
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ghaxh−1g−1 = g[h, ax]ag−1gxg−1 = gxg−1, the action is well defined. This action endows
Horb

1 (Ȳ , ϕY ) with a module structure over the group ring Z[Gϕ]. After tensoring by C, the
group Horb

1 (Ȳ , ϕY ) acquires a C[Gϕ]-module structure.
Recall the definition of the characteristic variety of a finitely presented group G. Consider a

free resolution of a C[H1(G)]-module M

C[H1(G)]m
φ→ C[H1(G)]n →M,

then Vk(M) := V (Fk(M)), where Fk(M) is the k-th Fitting ideal (or elementary ideal) of M and
V (I) denotes the zero set of the ideal I. Recall that Fk is defined as 0 if k ≤ max{0, n−m}, 1 if
k > n. Otherwise Fk is the set of minors of order (n−k+1)×(n−k+1) of a presentation matrix
Aφ, which is an n×m matrix with coefficients in C[H1(G)]. Note that Vk+1(M) ⊆ Vk(M) and
Vn+1(M) = ∅. For any ξ ∈ C[H1(G)], it is common to define as null(M, ξ) (nullity of ξ) or
dξ(M) (depth of ξ) as the maximum k ∈ Z such that ξ ∈ Vk(M).

We will denote by Vorb
k (X̄, ϕX) and nullorb(X̄, ϕX), the invariants of the C[H1(G)]-module

M described above where G is the orbifold fundamental group G := πorb
1 (X̄, ϕX).

Unless otherwise stated, all groups orbifold homology groups Horb
1 will be considered as C[Gϕ]-

modules. Sakuma’s formulæ [21, Theorem 7.3] (see also [15, Proposition 2.5.6]) can be combined
and extended in the following result.

Theorem 5.1. Under the above conditions, if π : (Ȳ , ϕY )→ (X̄, ϕX) is a

(5.1) borb
1 (Ȳ , ϕY ) = borb

1 (X̄, ϕX) +
∑

ξ∈Hom(Gϕ,C∗)\{1}

nullorb(X̄, ξ)

where Gϕ := GϕX
/GϕY

, nullorb(X̄, ξ) is the depth of ξ considered as a character in πorb
1 (X̄, ϕX).

Remark 5.2. Note that there is a connection between borb
1 and b1, namely

borb
1 (X̄, ϕX) = b1(X+

ϕX
) = b1(X̄ \ ϕ−1

X (0)).

Proof of Theorem 5.1. The proof offered in [21] also works in this context. We will briefly outline
the original proof.

Step 1. From representation theory one has

Horb
1 (Ȳ , ϕY ) ∼=

⊕
ξ∈Hom(Gϕ,C∗)

[
Horb

1 (Ȳ , ϕY )
]
ξ
,

where [
Horb

1 (Ȳ , ϕY )
]
ξ

= {x ∈ Horb
1 (Ȳ , ϕY ) | g(x) = ξ(g) · x ∀g ∈ Gϕ}.

Step 2. Using Proposition 4.3 there exists an orbifold (X̄ξ, ϕξ) such that[
Horb

1 (Ȳ , ϕY )
]
ξ
∼=
[
Horb

1 (X̄ξ, ϕξ)
]
ξ
.

The orbifold (X̄ξ, ϕξ) corresponds to the kernel of GϕX
→ Gϕ

ξ→ C∗, which is of finite
index in GϕX

.
Step 3. For ξ 6= 1 one has

dimC
[
Horb

1 (X̄ξ, ϕξ)
]
ξ

= nullorb(X̄, ξ). �

Remark 5.3. Note that even if (X̄, ϕX) is not an NC-orbifold, the notion of unbranched covers
may easily be defined as long as orbifolds with (normal) arbitrary singularities are allowed. In

that case we may also consider the orbifold (X̂, ϕ̂X) obtained after a sequence of blow-ups such
that the transform of D by this sequence of blow-ups is a normal crossing divisor and ϕ̂X is
defined by homological saturation. The pull-back of π defines another orbifold (Ŷ , ϕ̂Y ). Note
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that Ŷ = Ŷ +
ϕ and it has only abelian quotient singularities; it is a resolution of Ȳ which may

have more complicated singularities. There is a natural surjection πorb
1 (Ŷ , ϕ̂Y ) � πorb

1 (Ȳ , ϕY )
which is not in general an isomorphism. Nevertheless, generalizing Libgober’s arguments in [18],
it can be proved that the first Betti numbers coincide.

To illustrate Theorem 5.1, we can compute the genus of the uniformization of X̄ := P1
d1,...,dn+1

in some cases where for instance the abelianization map π : (X̄ab, ϕab) → (X̄, ϕX) is a uni-
formization. According to [20, Theorem 1.3.43] this is the case whenever di divides

lcm(d1, . . . , di−1, di+1, . . . , dn+1).

On the one hand one can directly use the Riemann-Hurwitz formula to obtain

χ(X̄ab) = 2− 2g(X̄ab) = (1− n)
d1 · . . . · dn+1

d
+

n+1∑
k=1

d1 · . . . · dn+1

ddk
,

where d := lcm(d1, . . . , dn+1). This implies

(5.2) g(X̄ab) =
d1 · . . . · dn+1

2d

[
−1 +

n+1∑
k=1

(
1− 1

dk

)]
+ 1.

Example 5.4. Consider the case 1 ≤ d1 ≤ · · · ≤ dn ≤ dn+1 = d = lcm(d1, . . . , dn). This
is a particular case of the result mentioned above and hence the universal abelian covering
π : X̄ab → X̄ := P1

d1,...,dn+1
is in fact a uniformization. Using Theorem 5.1 one can obtain

b1(X̄ab) = borb
1 (X̄ab) by counting the characters in the orbifold characteristic variety of X̄. Note

that the space of characters on πorb
1 (X̄) is a union of (n+ 1)-tuples

T := {(ξ1, . . . , ξn, ξn+1) | ξj ∈ µdj ,
n+1∏
k=1

ξk = 1} ⊂ (C∗)n+1,

where µn ⊂ C∗ is the subgroup of n-th roots of unity. Since the equation in the definition of T
can always be solved for ξn+1 one has that T ∼= µd1 × · · · × µdn . Denote by `(ξ) the length of
ξ ∈ T, that is, the number of non-trivial coordinates of ξ. From [4, Proposition 3.11] one deduces
that depth(ξ) = `(ξ) − 2. Denote by `′(ξ) the length of ξ in the first n coordinates, that is, its
length as an element of µd1 × · · · × µdn . Note that `(ξ) = `′(ξ) + 1 unless its last coordinate is
1, in which case `(ξ) = `′(ξ). Therefore if we define

b′1(X̄ab) :=
∑
ξ∈T

`′(ξ).

Then b′1(X̄ab)− b1(X̄ab) = D
d , where D := d1 · . . . ·dn which is the order of the kernel of the map

µd1 × · · · × µdn → µd given by multiplication. Hence,

b′1(X̄ab) =
∑

∅6=I⊆{1,...,n}

(#I − 1)
∏
i∈I

(di − 1)

and thus,

b1(X̄ab) =

 ∑
∅6=I⊆{1,...,n}

(#I − 1)
∏
i∈I

(di − 1)

− D

d
.

Using (5.2) this implies

D

d2

[
−1 +

∑
k

(
1− 1

dk

)]
+ 2 =

 ∑
∅6=I⊆{1,...,n}

(#I − 1)
∏
i∈I

(di − 1)

− D

d
.
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For computational purposes, the depth nullorb(X̄, ξ) can also be obtained from X̊ϕ.

Proposition 5.5. Under the above conditions,

Vorb
k (X,ϕ) \ {1} = Vk(X̊ϕ) ∩ Tϕ \ {1},

where Tϕ is the inclusion of T(X,ϕ) into T(X̊ϕ) given by the surjection π1(X̊ϕ) � πorb
1 (X,ϕ).

Proof. The proof is analogous to the one shown in [5, Proposition 2.26] for k = 1. �

Example 5.6. Consider the space M of sextics with the following combinatorics:

(1) C is a union of a smooth conic C2 and a quartic C4.

(2) Sing(C4) = {P,Q} where Q is a cusp of type A4 and P is a node of type A1.

(3) C2 ∩ C4 = {Q,R} where Q is a D7 on C and R is a A11 on C.

The space M = M(1) ∪M(2) is a union of two connected components. Any such sextics C
(i)
6 =

C
(i)
2 ∪C

(i)
4 in M(i) can be characterized by the fact that the conic q passing through R and Q such

that multR(q,C
(i)
2 ) = multR(q,C

(i)
4 ) = 3, and multQ(q,C

(i)
2 ) = 1 satisfies multQ(q,C

(i)
4 ) = 3 + i.

The following example is presented in [2], we refer to it for details. Consider the orbifolds

(P2, ϕi), where ϕi(C
(i)
4 ) = 0 and ϕi(C

(i)
2 ) = 2. Using Proposition 5.5 and [5, Proposition 3.1] it

can be checked that

Vorb
1 (P2, ϕi) \ {1} =

{
∅ if i = 1

{(1,−1)} if i = 2,
, Vorb

2 (P2, ϕi) \ {1} = ∅

and hence, using Sakuma’s formula 5.1 one has

borb
1 (Yi, ϕYi) =

{
0 if i = 1

1 if i = 2,

where (Yi, ϕYi) denotes the unramified covering of (P2, ϕi), since borb
1 (P2, ϕi) = 0. This provides

an alternative way to show that C
(1)
6 and C

(2)
6 form a Zariski pair, that is, two curves with the

same combinatorics but different embedding in P2. In other words, we prove that (P2,C
(1)
6 ) and

(P2,C
(2)
6 ) are not homeomorphic by showing that πorb

1 (P2, ϕ1) and πorb
1 (P2, ϕ2) are not isomor-

phic. Note that any homeomorphism of P2 sending C
(1)
6 to C

(2)
6 should send a meridian around

C
(1)
2 to a meridian around C

(2)
2 and hence πorb

1 (P2, ϕ1) and πorb
1 (P2, ϕ2) should be isomorphic.

We can readily recover, using Theorem 5.1 and Proposition 5.5, known computations of
the first Betti number of Hirzebruch congruence covers associated to line arrangements in P2,
see [16, 23].

For example, consider the orbifold X = (P2, ϕ) associated to the 6 lines Ceva arrange-
ment, where ϕ takes value n for all lines. Then let Y be the orbifold cover associated to
the abelianization πorb

1 (X) → (Z/nZ)5. A straightforward counting argument shows that
borb
1 (Y ) = 5(n− 1)(n− 2).
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no. 3, 307–316.
8. , Quotients résolubles ou nilpotents des groupes de Kähler orbifoldes, Manuscripta Math. 135 (2011),

no. 1-2, 117–150.

9. , Special orbifolds and birational classification: a survey, Classification of algebraic varieties, EMS

Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 123–170.
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24. A. M. Uludağ, Orbifolds and their uniformization, Arithmetic and geometry around hypergeometric functions,
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