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ON RELATIVE INVARIANTS AND DETERMINACY OF PLANE CURVES

C. T. C. WALL

Introduction

In current work on flat singularity theory, I have been led to consider the local invariants of a
curve C relative to the divisor D defined by its tangent cone. It turned out in the calculation of
these invariants that the fact that D consisted of the tangent cone was not used, only the fact
that it was a collection of lines through the origin. This led me to ask whether any restriction at
all on D was required. The first object of this note is to show that it is not. The second object
is to obtain general estimates for the degree of determinacy of C relative to D.

We begin by recalling some standard notations and ideas of singularity theory. Then we apply
them to plane curves, which may be given either by a parametrisation f or by an equation φ.
Throughout we study only germs (at the origin) of curves, so omit ‘germ’ from our terminology.
We work throughout in the complex analytic framework. All curves will be assumed to be
reduced.

Next we will recall the definitions of the invariants δ(C), µ(C) and τ(C) and the calculations
of the codimensions de(f,L) = 2δ(C), de(f,A) = τ(C)− δ(C), de(φ,R) = µ(C), and de(φ,K) =
τ(C). We then introduce the relative versions of the above concepts. Our first main result is
the calculation of the codimensions in the relative case: the results are

de(f,LD) = 2δ(C) + C.D, de(f,AD) = τ(C ∪D)− δ(C)− C.D − τ(D),

de(φ,RD) = µ(C) + C.D + µ(D)− 1− τ(D), de(φ,KD) = τ(C ∪D)− C.D − τ(D).

The degree of determinacy for C up to right or left equivalence is bounded by the Milnor
number µ(C). In the last section we obtain corresponding bounds for C relative to D; such
bounds are also needed for the work on flat singularity theory.

1. Singularities of plane curves

We now recall the methods and notations of singularity theory, following Mather [5] (see e.g.
[8]). Write Ox for the ring of germs of functions on N at x and mx for its maximal ideal. Denote
the tangent bundle πN : TN → N and write θN for the set of germs at x of sections of πN (i.e.
vector fields on N); we think of θN as the tangent space at the identity to the group Diff(N, x)
of germs of diffeomorphisms. Introduce corresponding notations for (P, y).

For g : (N, x)→ (P, y) a map-germ, we consider the diagram

TN
Tg−→ TP

πN ↓ πP ↓
N

g−→ P

,

and write θg for the set of germs of maps ξ : N → TP with πP ◦ ξ = g. Then composition
with Tg induces a map tg : θN → θg which we think of as the tangent map to the action of
R = Diff(N) on Map(N,P ) by composition; composition with g induces a map ωg : θP → θg
tangent to the action of L = Diff(P ). Set A := R×L.
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The respective images of tg and ωg are denoted TReg and TLeg, with sum TAeg. We write
TRg := tg(mx.θN ), TLg := ωg(my.θP ) and TAg := TRg + TLg. In the classification of map-
germs up to A-equivalence, TAg serves as the tangent space to the A-equivalence class of g, but
for unfolding theory we no longer fix the source and target points, so use the extended tangent
space TAeg; similarly for R and L. We also set TCg := g∗my.θg, TKg := TRg + TCg and
TKeg := TReg + TCg.

Following the notation introduced in [8], for any equivalence relation B on map-germs, I write
de(g,B) := dimC(θg/TBeg). This is the dimension of the miniversal unfolding space for g under
B-equivalence.

A plane curve C may be given as φ−1(0) for an equation φ : (C2, 0)→ (C, 0) and (if r denotes
the number of branches) as the image of a parametrisation f :

⋃r
i=1(C, 0)→ (C2, 0). From now

on, we write Ox,y for the local ring at the origin in C2, mx,y for its maximal ideal and θx,y for
the set of germs of vector fields, which is a free Ox,y−module with basis {∂x, ∂y} (where we
write ∂x for ∂/∂x); the corresponding items for C are denoted mt �Ot and θt. We denote the
source variables of f by ti (1 ≤ i ≤ r), with local rings Oti and the constituent maps fi, and set
OT :=

⊕
iOti , mT := ⊕imti and θT := ⊕iθti .

The module θf is free over OT on ∂x, ∂y. The map tf : θT → θf is the sum of the maps
tfi : θti → θfi induced by dfi/dt, and the map ωf : θx,y → θT agrees on each co-ordinate with
the ring homomorphism f∗ : Ox,y → OT . The local ring of C is defined to be OC := f∗Ox,y; its
integral closure in its quotient ring coincides with OT ; as the kernel of f∗ : Ox,y → OT is the
ideal 〈φ〉, we can also identify OC with Ox,y/〈φ〉. The module θφ is free over Ox,y on a single
generator, and we identify it with this ring; tφ(θx,y) is the (Jacobian) ideal 〈φx, φy〉 (where we
write φx for ∂xφ), and φ∗mt.θφ is the ideal 〈φ〉.

We say that two curves C and C ′ are equivalent if there is a local diffeomorphism of C2 taking
C to C ′: this holds if and only if φ, φ′ are K-equivalent if and only if f, f ′ are A-equivalent. For
an equation φ, we also have R-equivalence, and for a parametrisation f have L-equivalence.

The basic invariants of a reduced plane curve C are the number r of branches, the ‘double
point number’ defined as δ(C) := dim(OT /OC), and the Milnor and Tjurina numbers defined
respectively by

µ(C) := de(R, φ), τ(C) := de(K, φ).

The following identities are well-known: µ(C) = 2δ(C)−r+1 [6], δ(C∪C ′) = δ(C)+δ(C ′)+C.C ′

and (hence) µ(C ∪ C ′) = µ(C) + µ(C ′) + 2C.C ′ − 1.
We also have calculations of the codimensions de(L, f) = 2δ(C) (trivial), and de(A, f) =

τ(C)− δ(C) [4, Theorem 2.59].

2. Relative singularity theory

We define two curves C, C ′ to be equivalent relative to a curve D if there is a diffeomorphism
of C2 which preserves D and takes C to C ′. The diffeomorphisms which preserve D form a group
DiffD(C2), whose tangent space is the module θD of ‘logarithmic’ vector fields tangent to D.
The definitions of right- and of left-equivalence of curves C relative toD are obtained by replacing
Diff(C2) by DiffD(C2) throughout. Each of these fits into the general framework of ‘geometric
groups’ introduced by Damon [3], and we have a general unfolding theory. The tangent spaces
for the relative notions of equivalence are obtained from those in the absolute case by replacing
θC2 by θD throughout: thus TLeDf := ωf(θD), TAeDf := TRef + TLeDf , TReDφ := tφ(θD),
TKeDφ := TReDφ+ TCφ and, for each B, de(g,BD) := dimC(θg/TBeDg).

The case of relative singularity theory when D is a straight line L has been investigated by
Arnol’d [1] under the name of ‘boundary singularities’.
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We seek formulae expressing de(f,LD), de(f,AD), de(φ,RD) and de(φ,KD) in terms of the
invariants of C and D. We will also require the (local) intersection number C.D, and τ(C ∪D).

Since any plane curve is a free divisor, the Ox,y−module θD is free of rank 2. It will be
convenient to choose generators for θD: write them as

(1) ξ1 = a1∂x + b1∂y, ξ2 = a2∂x + b2∂y.

By a result of Saito [7] we may take the equation of D as ψ := a1b2 − a2b1.

Proposition 2.1. We have de(f,LD) = 2δ(C) + C.D.

Proof. By definition, TLeDf is the OT−submodule of O2
T generated over OC by (a1◦f, b1◦f) and

(a2◦f, b2◦f). Hence O2
C/TLeDf has the same composition factors as OC/((a1b2−a2b1)◦f).OC =

OC/(ψ ◦ f).OC . Thus de(f,LD) = dim(O2
T /O2

C) + dim(OC/(ψ ◦ f).OC): the first term is equal
to 2δ(C) and the second to dim(Ox,y/〈φ, ψ〉) and hence to C.D. �

Lemma 2.2. The map ωg : θC2 → Coker(tg) induced by ωg has kernel θD.

Proof. The kernel in question is the set of vector fields ξ ∈ θC2 such that ωg(ξ) = tg(η) for some
η ∈ θT . In particular, at each point of D we must have ξ tangent to D. But this is just the
condition defining θD. �

Now let f, g parametrise C, D respectively, and write h for the pair (f, g), so that h parametrises
C ∪D. We have

Proposition 2.3. We have de(f,AD) = τ(C ∪D)− δ(C)− C.D − τ(D).

Proof. Since th is the direct sum of tf and tg, we can regard the following as a short exact
sequence of chain complexes:

0 → 0 → θC2 = θC2 → 0

↓ ↓ ωh ↓ ωg
0 → Coker(tf) → Coker(tf)⊕ Coker(tg) → Coker(tg) → 0

.

Now the Cokernels of ωh and ωg are θh/TAeh and θg/TAeg and, by Lemma 2.2, the kernel of
ωg is θD. Hence the exact homology sequence of the diagram is

θD → Coker(tf)→ θh/TAeh→ θg/TAeg → 0.

Thus we have an exact sequence

0→ θf/TAeD(f)→ θh/TAe(h)→ θg/TAe(g)→ 0,

so dim(θf/TAeD(f)) = dim(θh/TAe(h)) − dim(θg/TAe(g)). Here the terms on the right hand
side are τ(C ∪ D) − δ(C ∪ D) and τ(D) − δ(D), and the result follows on substituting for
δ(C ∪D). �

We now consider C as defined by φ and introduce the relative Tjurina number

τDC := τDφ := de(φ,KD) = dim(Ox,y/〈θDφ, φ〉).
Suppose we have three curve-germs C, D1 and D2, no two with a common component, with
respective equations φ, ψ1 and ψ2.

Lemma 2.4. We have exact sequences

(2) 0→ Ox,y
〈θD1∪D2

φ, φ〉
Y−→ Ox,y
〈θD2

(φψ1), φψ1〉
Q−→ Ox,y
〈ψ1, φθD2

(ψ1)〉
→ 0,

(3) 0→ Ox,y
〈ψ1, θD2

(ψ1)〉
X−→ Ox,y
〈ψ1, φθD2

(ψ1)〉
P−→ Ox,y
〈ψ1, φ〉

→ 0,
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where Y, X are induced by multiplication by ψ1, φ respectively and Q, P are the projections.

Proof. (i) For a ∈ Ox,y, the condition that aψ1 ∈ 〈θD2(φψ1), φψ1〉 means that for some ξ ∈ θD2

and b ∈ Ox,y we have aψ1 = ξ(φψ1) + bφψ1. Since ξ(φψ1) = φξ(ψ1) + ψ1ξ(φ), it follows that
ξ(ψ1) is divisible by ψ1, in other words, that ξ ∈ θD1

, and hence that ξ ∈ θD1∪D2
.

Conversely, if a = ξ(φ) + bφ with ξ ∈ θD1∪D2
, we have aψ1 = ξ(φψ1) − φξ(ψ1) + bφψ1, and

since ξ(ψ1) is divisible by ψ1, this belongs to 〈θD2
(φψ1), φψ1〉.

We have shown that the map Y is well defined and injective. Its cokernel is the quotient of
Ox,y by 〈ψ1, θD2(φψ1)〉. Using again the identity ξ(φψ1) = φξ(ψ1) + ψ1ξ(φ) and absorbing the
second term of this sum, we see that this module is the same as 〈ψ1, φθD2

(ψ1)〉.
(ii) For a ∈ Ox,y, if aφ ∈ 〈ψ1, φθD2

(ψ1)〉, we can write aφ = bψ1 + φξ(ψ1) for some b ∈ Ox,y
and some ξ ∈ θD2

. It follows that bψ1, and hence b is divisible by φ, say b = cφ. Thus
a = cψ1 + ξ(ψ1) ∈ 〈ψ1, θD2

(ψ1)〉. The converse is again easy, so the first map exists and is
injective; the cokernel is as given. �

Proposition 2.5. We have

(i) τD2(D1 ∪ C) = τD1∪D2(C) + τD2(D1) +D1.C, and
(ii) de(φ,KD) = τD(C) = τ(C ∪D)− C.D − τ(D).

Proof. The dimensions of the first two terms in (2) of Lemma 2.4 are τD1∪D2
(C) and τD2

(D1∪C)
respectively: thus dim(Ox,y/〈ψ1, φθD2(ψ1)〉) = τD2(D1∪C)−τD1∪D2(C). Since the first term in
(3) has dimension τD2(D1) and the third has dimension D1.C, it follows that this expression is
equal to τD2

(D1) +D1.C. This proves (i), and (ii) follows on setting D2 = ∅ (and D1 = D). �

In fact the apparent extra generality of (i) is spurious: (i) follows from (ii) on substituting for
each of the terms τDC.

The following turns out to be the most difficult of our four cases; indeed the result is not
what I had originally guessed.

It will be convenient to write, for a a function, [a] for the curve defined by a = 0 and [a].[b]
for the local intersection number of a = 0 and b = 0, which is equal to dim(Ox,y/〈a, b〉). We will
manipulate such intersection numbers using identities of the forms (i) [a].[b + ca] = [a].[b] and
(ii) [a].[bc] = [a].[b] + [a].[c].

Proposition 2.6. We have de(φ,RD) = C.D + µ(C) + µ(D)− 1− τ(D).

Proof. Let ξ1 and ξ2, as in (1), generate θD. Since θDφ is an ideal with 2 generators, its
codimension is equal to the intersection number of the curves they define, hence to [ξ1(φ)].[ξ2(φ)].
We begin by writing

[ξ1(φ)].[ξ2(φ)] = [ξ1(φ)].[b1ξ2(φ)]− [ξ1(φ)].[b1].

Now manipulate using (i) to reduce the first term to [ξ1(φ)].[(b1a2−b2a1)φx] = [ξ1(φ)].[ψφx] and
the second to −[a1φx].[b1]. Next use (ii) to obtain

[ξ1(φ)].[ψ] + [ξ1(φ)].[φx]− [a1].[b1]− [φx].[b1] =

[ξ1(φ)].[ψ] + [b1φy].[φx]− [a1].[b1]− [φx].[b1] = [ξ1(φ)].[ψ] + [φy].[φx]− [a1].[b1].

The second term here is equal to µ(C).

We pause to establish the

Claim 2.1. We have [x].D + [ξ1(φ)].D = C.D + [a1].D.
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First note that, since ξ1 is tangent to D, we can set

a1(αi(ti), βi(ti)) = λiα
′
i(ti) and b1(αi(ti), βi(ti)) = λiβ

′
i(ti)

for some λi(ti), so that

ξ1(φ)(αi(ti), βi(ti)) = (λiα
′
i(ti)φx + λiβ

′
iφy)(αi(ti), βi(ti)) = λidφ(αi(ti), βi(ti))/dti.

We calculate intersection numbers with [ψ] = D by choosing a parametrisation (αi(ti), βi(ti))
for each branch of D, so that [ψ].[χ] =

∑
i ordti(χ(αi(ti), βi(ti))). Taking in turn χ equal to x,

φ, a1 and ξ1(φ), we obtain

[x].D =
∑
i ordti(αi(ti)),

C.D =
∑
i ordtiφ(αi(ti), βi(ti)),

[a1].D =
∑
i ordti(λiα

′
i(ti)) =

∑
i(ordti(λi) + ordti(αi(ti))− 1),

and

[ξ1(φ)].D =
∑
i ordti(ξ1(φ)(αi(ti), βi(ti))) =∑

i ordti(λidφ(αi(ti), βi(ti))/dti) =
∑
i(ordtiλi + ordtiφ(αi(ti), βi(ti))− 1).

The claim follows from these four equations.

We also have

[a1].D = [a1].[b1a2 − b2a1] = [a1].[b1a2] = [a1].[b1] + [a1].[a2].

Combining this with our Claim, we obtain

de(φ,RD) = [ξ1(φ)].[ψ] + [φy].[φx]− [a1].[b1] =

C.D + [a1].D − [x].D + µ(C)− [a1].[b1] = C.D − [x].D + µ(C) + [a1].[a2].

Since ξ1, ξ2 generate θD, the coefficients a1, a2 generate the ideal I := {α ∈ Ox,y |αψx ∈
〈ψy, ψ〉}. This ideal contains ψx and ψ which have no common factor, hence neither do a1 and
a2, so [a1].[a2] = dim(Ox,y/〈a1, a2〉) = dim(Ox,y/I). We have an exact sequence

0→ Ox,y/I
ψx−→ Ox,y/〈ψy, ψ〉 → Ox,y/〈ψx, ψy, ψ〉 → 0.

The third term has dimension τ(D); the second has dimension [ψy].[ψ], and we have [ψ].[ψy] =
[ψx].[ψy] + [x].[ψy]: we can prove this by the same method as the Claim or appeal to [9, Lemma
6.5.7]. Thus,

[a1].[a2] = dim(Ox,y/I) = [ψx].[ψy] + [x].[ψy]− τ(D) = µ(D)− τ(D) + [x].D − 1.

The Proposition follows by substituting this in the above formula. �

Corollary 2.7. de(φ,RD)− de(φ,KD) = µ(C ∪D)− 1− τ(C ∪D).

This follows from Propositions 2.6 and 2.5, and compares with the equation

de(φ,R)− de(φ,K) = µ(C)− τ(C).

Corollary 2.8. We have de(φ,KD) = de(f,AD) + δ(C).
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This follows from Propositions 2.3 and 2.5, and compares with de(φ,K) = de(f,A) + δ(C).

We refer to [4, Theorem 2.59] for a discussion of semi-universal deformations of plane curve-
germs, and in particular for the result that the δ constant stratum, which in the case that
the central curve is parametrised consists precisely of those curve-germs that can be simultane-
ously parametrised, has codimension δ in the deformation space, and has a smooth normalisa-
tion. Moreover, this normalisation can be identified with the semi-universal deformation of the
parametrised curve.

For singularity theory relative to D, we have a deformation of C (given by equations) for
which the tangent space to the unfolding space Ue maps isomorphically to θφ/TKeDφ, and a
deformation given by parametrised curves for which the tangent space to the unfolding space Up
maps isomorphically to θf/TAeDf . We can construct a map Up → Ue; its image will certainly lie
in the δ−constant part of Ue which, as Ue is certainly versal in the usual sense, is of codimension
δ with a smooth normalisation to which our map lifts. We expect this lift to be a (local)
isomorphism; the expectation is supported by Corollary 2.8.

3. Determinacy

The theory of determinacy was developed mainly by Mather [5]. We say that f is m − B-
determined if any g whose Taylor expansions up to degree m agree with those of f (or equiv-
alently, with g − f ∈ mm+1

N .θf ) is B-equivalent to f , and f is finitely B-determined if it is
m − B-determined for some m. Mather characterised determinacy for A-equivalence, and gave
estimates for the degree of determinacy; better estimates can be found in [2]. We recall a key
result of that paper, in simplified form.

Theorem 3.1. [2, Theorem 1.9] Suppose G a subgroup of K such that

(i) for each s, JsG is a closed algebraic subgroup of JsK,
(ii) J1G is unipotent, e.g., trivial.

Then, f is r − G-determined if and only if mr+1.θ(f) ⊆ TGf .

The formulation of this theorem refers only to germs at a single point. However if we consider
germs at a finite set (say, with a common target), all the arguments involved go through without
other than notational change. We will use this extension without further comment.

For R-equivalence, write J for the Jacobian ideal 〈∂xφ, ∂yφ〉 and recall that µ = dim(Ox,y/J).
Thus, not all the inclusions

mµ+1 + J ⊆ . . . ⊆ mi+1 + J ⊆ mi + J . . . ⊆ m + J ⊆ O
can be proper, so for some i ≤ µ, mi+1 + J = mi + J , so by Nakayama’s lemma, J ⊇ mi ⊇ mµ.

We can take G as the subgroup R1 of R of diffeomorphisms with trivial 1-jet. Since TR1φ =
tφ(m2.θx,y) = m2.J ⊇ mµ+2, φ is (µ + 1) − R-determined. Experiment soon shows that this
well-known estimate is usually very poor, though it is best possible for singularities of type Ak.

For L-equivalence, a similar result holds, but can be improved. Let C have branches Bi
(1 ≤ i ≤ r); write B∗i := C \ Bi, and set KC := maxi(µ(Bi) + Bi.B

∗
i ): thus if r > 1 we have

KC < µ(C). Write m(C) for the multiplicity of C: thus, for C not of type A∗, we have m(C) ≥ 3.

Proposition 3.2. We have

(i) f∗Ox,y ⊇ mKC

T , and

(ii) if m(C) ≥ 3, f∗m2
x,y ⊇ mKC

T .

Proof. (i) We have f∗i Ox,y ⊇ m
µ(Bi)
i (see e.g. [9, 4.3.3, 6.3.2], thus for each k ≥ µ(Bi) there

exists αk ∈ Ox,y with f∗i αk of order k. If βi is a defining equation for B∗i , f∗i (βi) has order
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Bi.B
∗
i . Hence f∗(αkβi) vanishes on Bj for j 6= i and has order k +Bi.B

∗
i on Bi. As this yields

all orders ≥ KC , the result follows.
(ii) It will suffice to show that for any g ∈ (mx,y \m2

x,y), we have f∗g 6∈ mKC

T . Set L := g−1(0);
this is a smooth curve-germ at (0, 0). The order of f∗i g is the intersection number L.Bi. We
need to show that, for some i, L.Bi < KC .

Suppose the multiplicity sequence for (infinitely near points of) Bi has r instances of m(Bi)
followed by an integer m′ < m(Bi) (see e.g. [9, 3.5.1] for this sequence). Since the following
point in the sequence is proximate to a point other than O0, it cannot belong to L, so L.Bi ≤
rm(Bi) + m′; while (see e.g. [9, 6.5.9]) µ(Bi) ≥ rm(Bi)(m(Bi) − 1) + m′(m′ − 1). We now
distinguish cases.

If m(Bi) ≥ 3, L.Bi ≤ rm(Bi) +m′ ≤ 1
2µ(Bi) + 1 < µ(Bi) ≤ KC (here the ‘+1’ is only needed

if m′ is 1 or 2).
If m(Bi) = 2 and r ≥ 2, L.Bi ≤ rm(Bi) + 1 < µ(Bi) +Bi.B

∗
i ≤ KC .

If m(Bi) = 1 and r ≥ 2, the mutual orders of contact of L and the Bi are equal to the
intersection numbers. Choose i with L.Bi minimum. As the least two of L.Bi, L.Bj , Bi.Bj are
equal, L.Bi ≤ Bi.Bj ≤ KC , with equality only if r = 2. �

Corollary 3.3. If m(C) ≥ 3, C is (KC − 1)− L-determined.

We apply Theorem 3.1, taking G to be the group L1 of left equivalences with trivial 1-jet.
Since TL1f = ωf(m2

x,y.θx,y), it follows from (ii) that if m(C) ≥ 3, TL1f ⊇ mKC

T .θT ; the result
follows.

If m(C) = 2 then either C has type A2k−1 for some k ≥ 1, we have KC = k and the degree
of determinacy is k; or C has type A2k, KC = 2k and the degree of determinacy is 2k + 1.

We turn to relative determinacy. We would like to apply Theorem 3.1 taking G to be the
group DiffD(C2) with tangent space θD acting on the right on equations and on the left on
parametrisations. However this is not always jet unipotent. We thus take G as the group of
diffeomorphisms preserving D and with identity 1-jet, so TG = θD ∩ m2

x,y.θx,y. Set eD :=

dim(θD/(θD ∩m2
x,y.θx,y)).

I conjecture that if D is not weighted homogeneous, then θD ⊂ m2
x,y.θx,y (so eD = 0). If D is

weighted homogeneous but not of type A∗, then θD ⊂ C.{x∂x + y∂y}+m2
x,y.θx,y (so eD = 1). If

D has type A∗, then eD = 2 and if D = {y = 0}, then eD = 4.

Proposition 3.4. If C has equation φ, the degree of RD-determinacy of φ is at most

µ(C) + C.D + µ(D)− 1− τ(D) + eD.

Proof. As in the absolute case it follows, using Nakayama’s lemma, that θDφ ⊇ mk, where
k = dim(Ox,y/θDφ) = de(φ,RD); by Proposition 2.6, we have de(φ,RD) = µ(C) + C.D +
µ(D)− 1− τ(D).

Since TG is an Ox,y−module, the same argument gives TGφ ⊇ mk+eD . The result now follows
from Theorem 3.1. �

Proposition 3.5. If C has parametrisation f , then f is (KC∪D − 1)− LD-determined.

Proof. Let D have parametrisation g, then C ∪D has parametrisation h = (f, g). We claim that
if h is k − L-determined, then f is k − LD-determined.

For let jkf1 = jkf , and set h1 := (f1, g). Then h and h1 have the same k−jet, so are L-
equivalent. Thus there is a diffeomorphism A of C2 with A ◦ f = f1 and A ◦ g = g. Hence A is
an LD-equivalence of f and f1.

By Corollary 3.3, if m(C ∪D) ≥ 3, we can take k to be KC∪D − 1. The result follows. �



ON RELATIVE INVARIANTS AND DETERMINACY OF PLANE CURVES 195

If we set KC,D := maxi(µ(Bi) + Bi.B
∗
i + Bi.D), then KC∪D = max(KC,D,KD,C). It seems

likely that a direct approach might allow a sharpening of KC∪D to KC,D above, but this is not
useful for our application.

In particular, if C ∪D is reduced, C is finitely determined relative to D in each sense.
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