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ON THE COBORDISM GROUPS OF COORIENTED, CODIMENSION ONE

MORIN MAPS

ANDRÁS SZÜCS

Abstract. We compute cobordism groups of fold maps, cusp maps, and more general Morin
maps of oriented n-dimensional manifolds to Rn+1. The results for fold maps in dimensions

n ≤ 10 are complete. In general we express the results through the stable homotopy groups
of spheres and that of the infinite projective space.

Introduction

We consider cobordism groups of maps of n-dimensional manifolds into Rn+1 such that they
have at most:

(a) Σ1,0 type singularities, i.e., fold maps (in Part 1),
(b) Σ1,1 type singularities, i.e., cusp maps (in Part 2),
(c) Σ1r -type singularities (in Part 3).

We express these groups completely through the stable homotopy groups of spheres and those
of the infinite projective space in case a) and modulo some small prime components for the cases
b) and c).

The main tools of the computation are:

(1) the classifying spaces of the cobordisms of maps with a given set of allowed singularities,
see [RSz], [Sz3],

(2) a fibration connecting these classifying spaces, the so-called key bundle in [Sz3], [T],
(3) identification of the boundary map in the homotopy exact sequence of the above men-

tioned fibration with a well-studied map in homotopy theory, namely the so called Kahn–
Priddy map.

Part 1. Cobordism of fold maps and the Kahn–Priddy map

1.1. Formulation of the result

Let us denote by Cob Σ1,0(n) the cobordism group of cooriented, codimension 1 fold maps of
closed, smooth, n–dimensional manifolds in Rn+1 (see [Sz3]).

(A fold map may have only Σ1,0–type (or A1–) singular points, see [AGV].)

Theorem A.

(a) Cob Σ1,0(n) is a finite Abelian group.
(b) Its odd torsion part is isomorphic to that of the nth stable homotopy group of spheres,

i.e., for any odd prime p, Cob Σ1,0(n)p ≈ πs(n)p, where the lower index p denotes the
p–primary part. The isomorphism is induced by the natural forgetting map πs(n) →
Cob Σ1,0(n).

(c) Its 2–primary part is isomorphic to the kernel of the Kahn–Priddy homomorphism [KP]:

λ∗ : πsn−1(RP∞) −→ πs(n− 1).
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Remark. The group πsn−1(RP∞) is a 2–primary group and λ∗ is onto the 2–primary part of
πs(n− 1), see [KP].

Corollary. Cob Σ1,0(n) ≈ πs(n){odd torsion part} ⊕Ker
(
λ∗ : πsn−1(RP∞) −→ πs(n− 1)

)
.

1.2. The Kahn–Priddy map ([KP], [K])

Let us consider the composition of the following maps:
a) RP q−1 ↪→ O(q). A line L ⊂ Rq, [L] ∈ RP q−1 is mapped into the reflection in its orthogonal

hyperplane.
b) O(q) ↪→ ΩqSq maps A ∈ O(q) to the map

Sq = R2 ∪∞ −→ Sq = Rq ∪∞ defined as

x −→ A(x) for x ∈ Rq and

∞ −→ ∞.

Take the adjoint of the composition map RP q−1 −→ ΩqSq. It is a map

λ : ΣqRP q−1 −→ ΩqSq.

If n < q, then the homotopy groups πq+n(Σq RP q−1) and πq+n+1(Sq+1) are stable, and

(∗) πsn(RP q−1) ≈ πsn(RP∞).

The Kahn–Priddy homomorphism λ∗ : πsn(RP∞) −→ πs(n) is the homomorphism induced by λ
in the stable homotopy groups (precomposed with the isomorphism (∗)).

Theorem 1 (Kahn–Priddy [KP]). λ∗ is onto the 2–primary component of πs(n).

1.3. Koschorke’s interpretation of λ∗

Ulrich Koschorke gave a very geometric description of the Kahn–Priddy homomorphism
through the so-called “figure 8 construction”. Given an immersion of an (n − 1)–dimensional
(unoriented) manifold Nn−1 into Rn the figure 8 construction associates with it an immersion
of an oriented n–dimensional manifold Mn into Rn+1 as follows:

Let us consider the composition Nn−1 # Rn ↪→ Rn+1.
This has normal bundle of the form ε1 ⊕ ζ1, where ε1 is the trivial line bundle (the (n+ 1)th

coordinate direction in Rn+1) and ζ1 is the normal line bundle of Nn−1 in Rn.
Let us put a figure 8 in each fiber of ε1 ⊕ ζ1 symmetrically with respect to the reflection in

the fiber ζ1. Choosing these figures 8 smoothly their union gives the image of an immersion of
an oriented n–dimensional manifold Mn into Rn+1. (Clearly Mn is the total space of the circle
bundle S(ε1 ⊕ ζ1) over Nn−1.)

This construction gives a map 8∗ : πsn(RP∞) −→ πsn(n). Indeed, the cobordism group of
immersion of unoriented (n − 1)–dimensional manifolds in Rn is isomorphic to πsn(RP∞), and
that of oriented n–dimensional manifolds in Rn+1 is πs(n).

Since the figure 8 construction respects the cobordism relation (i.e. it associates to cobordant
immersions such ones) we obtain a map of the cobordism groups.

Theorem 2 (Koschorke, [K, Theorem 2.1]). The maps λ∗ and 8∗ coincide.

This theorem of Koschorke will be the main tool in the computation of the cobordism groups
of fold maps.



198 ANDRÁS SZÜCS

1.4. Generalities on the cobordisms of singular maps

In [Sz3] we considered cobordism groups of singular maps with a given set τ of allowed local
forms. (Such a map was called a τ–map.) The cobordism group of (cooriented) τ–maps of
n–dimensional manifolds in Euclidean space was denoted by Cobτ (n). A classifying space Xτ

has been constructed for τ–maps with the property that its homotopy groups are isomorphic to
the groups Cobτ (n).

An ancestor of the spaces Xτ was the classifying space for the cobordism groups of immersions.
Namely given a vector bundle ξk we denote by Immξ(n) the cobordism group of immersions of
n–manifolds in Rn+k such that the normal bundle is induced from ξ. There is a classifying space
Y (ξ) such that

πn+k(Y (ξ)) ≈ Immξ(n).

Namely Y (ξ) = Γ(Tξ), where Tξ denotes the Thom space of the bundle ξ, and Γ = Ω∞S∞.
(This follows by a slight modification from [W].)

Next we recall the so-called “key bundle”, that is the main tool in handling cobordism groups
of singular maps.

Let τ be a list of allowed local forms, and let η be a maximal element in it. (The set of local
forms has a natural partial ordering, η is greater than η′ if an isolated η–germ (at the origin)
has an η′–point arbitrarily close to the origin.)

Let τ ′ be τ \ {η} (i.e. we omit the maximal element η).
Note that the stratum of η points is immersed. We have established in [Sz3] that there is a

universal bundle – denoted by ξ̃η – for the normal bundles of η–strata from which these normal
bundles always can be induced (with the smallest possible structure group).

In particular to the cobordism class [f ] of a τ–map f : Mn −→ Rn+k we can associate the

element in Immξ̃η (m) represented by the restriction of f to its η–stratum. (Here m is the

dimension of the η–stratum.) Hence a homomorphism Cobτ (n) −→ Immξ̃η (m) arises. Both

these groups are homotopy groups (of Xτ and ΓT ξ̃η respectively). It turns out that this map is

induced by a map of the classifying spaces Xτ −→ ΓT ξ̃η. Moreover the latter is a Serre fibration
with (homotopy) fiber Xτ ′ . (This was shown in [Sz3] using some nontrivial homotopy theory.
Terpai in [T] gave an elementary proof for it. This fibration is called the “key bundle”.)

1.5. Computation of the groups Cob Σ1,0(n)

In the case of fold maps τ = {Σ0,Σ1,0} where Σ0 denotes the germ of maximal rank and
Σ1,0 denotes that of a Whitney umbrella (R2, 0) −→ (R3, 0) (multiplied by the germ of identity
(Rn−2, 0) −→ (Rn−2, 0)).

Hence here η = Σ1,0 and τ ′ = Σ0. Note that a τ ′–map is nothing else but an immersion
(cooriented and of codimension 1). Hence Xτ ′ = ΓS1. Now the key bundle looks as follows:

(∗∗) XΣ1,0 ΓS1

−−−−−→ ΓT ξ̃Σ1,0 .

It is not hard to see (see also [RSz]) that the bundle ξ̃Σ1,0 is 2ε1 ⊕ γ1, and so T ξ̃Σ1,0 = S2RP∞.
Now the bundle (∗∗) gives the following exact sequence of homotopy groups:

πn+1(ΓS1) −→ πn+1(XΣ1,0) −→ πn+1(ΓS2RP∞)
∂−→ πn(ΓS1), i.e.,

πs(n) −→ Cob Σ1,0(n) −→ πsn−1(RP∞)
∂−→ πs(n− 1) −→

Lemma 3. The boundary map ∂ coincides with the map 8∗ and hence with the Kahn–Priddy
homomorphism λ∗.
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Proof of Theorem A. is immediate from Theorem 1, Theorem 2 and Lemma 3. �

Proof of Lemma 3. The boundary map ∂ : πsn+1(S2RP∞) ≈ πn+1(XΣ1,0,ΓS1) −→ πn(ΓS1)
can be interpreted geometrically as follows:

The source group πn+1(XΣ1,0,ΓS1) is isomorphic to the cobordism group of fold maps

f : (Mn, ∂Mn) −→ (Dn+1, Sn) such that f−1(Sn) = ∂Mn,

and the map ∂f = f
∣∣∣
∂Mn

is an immersion of ∂Mn into Sn. (Here Mn is an oriented compact

smooth n–dimensional manifold with boundary ∂Mn.)
Let [f ] denote the (relative) cobordism class of f , and let [∂f ] be that of the immersion

∂f : ∂Mn −→ Sn. Then ∂[f ] = [∂f ].
Now let V denote the set of singular points of f . This is a submanifold of Mn of codimension 2.

The restriction of f to V is an immersion, its image we denote by Ṽ (= f(V )). Let T̃ be the

(immersed) tubular neighbourhood of Ṽ . More precisely there exist a D3–bundle T ′ −→ V over

V , a submersion F of T ′ into Dn, (F (T ′) = T̃ ) and F extends the immersion f | V : V −→ Dn.
The bundle T ′ −→ V has the form 2ε1 ⊕ ζ1, where ζ1 is a line bundle.

Let T be the tubular neighbourhood of V in M such that f(T ) ⊂ T̃ . The map f
∣∣
T

: T −→ T̃

can be decomposed into a map f̂ : T −→ T ′ and the submersion F : T ′ −→ T̃ , where f̂ maps
each fiber D2 of the bundle T −→ V into a fiber D3 of T ′ −→ V as a Whitney umbrella and

f̂−1(∂T ′) = ∂T . On the boundary of each fiber D3 we obtain a “curved figure 8” as image

of f̂ . The manifold with boundary M \ T will be denoted by W . Note that its boundary is
∂W = ∂1W−q ∂2W , where ∂1W = ∂M , and ∂2W = ∂T .

The image of ∂2W at f is the union of the (F–images of the) above mentioned curved figures 8.

This is a codimension 2 framed immersed submanifold in Dn+1, we will denote it by Ṽ . (The
first framing is the F–image of the inside normal vector of ∂T ′ in T ′. The second framing is the
normal vector of the curved figure 8 in S2 = ∂D3.)

It remained to show the following two claims.

Claim a). Ṽ with the given 2–framing is framed cobordant to the immersion ∂f : ∂M # Sn

(compared with the framed embedding Sn ⊂ Dn+1).

Claim b). Ṽ is obtained from the immersion f
∣∣V : V n−2 # Dn+1 by the figure 8 construction.

We have to make some remarks in order to clarify the above statements a) and b).
To a): The framed immersion ∂f : ∂M # Sn and its composition with i : Sn ⊂ Dn+1 ⊂ Rn+1

(with the added second framing, the inside normal vectors of Sn in Dn+1) represent the same
element in πs(n − 1). Indeed, the composition with i corresponds to applying the suspension
homomorphism in homotopy groups of spheres. But the cobordism group of framed immer-
sions is isomorphic to the corresponding stable homotopy group of spheres, so the suspension
homomorphism gives the identity map of these groups.

To b): The figure 8 construction was defined for a codimension one immersed submanifold

in a Euclidean space. Here we apply it to the codimension 3 immersed submanifold Ṽ n−2 in

Dn+1. But Ṽ n−2 has two linearly independent normal vector fields in Dn+1 as was described
above. Identify Dn+1 with Rn+1 and apply the so-called multicompression theorem by Rourke–
Sanderson [RS], thus one can make the two normal vectors parallel to the last two coordinate axes
in Rn+1, we can project the immersion to Rn−1 and then we have a codimension 1–immersion, so
claim b) makes sense. (This needs some more clarification since the multicompression theorem
deals with embeddings. See below.)
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Proof of Claim a). It can be supposed that the center c of Dn+1 does not belong to ∂T̃ ∪ f(M).

Let us omit from Dn+1 a small ball centered around c and still disjoint from ∂T̃ ∪ f(M). In
the remaining manifold Sn × I the direction of I will be called vertical. Take the product with
an Rq for big enough q, so that the immersions f

∣∣
W

: Wn # Sn × I and ∂T # Sn × I become
embeddings after small perturbations.

Now W is embedded in Sn × I ×Rq, it is framed with q+ 1 normal vectors (q are parallel to
the coordinate axes of Rq).

One can suppose that the two boundary components of W are embedded as follows
1) ∂1W = ∂M is embedded into Sn × {0} ×Rq.
2) ∂2W = ∂T is embedded into the interior part int(Sn × I)×Rq.
Both have (q + 2)-framings.
Now applying the multicompression theorem we make by an isotopy the first framing vector

(the one coming from the normal vector of ∂T̃ in T̃ ) vertical, i.e. parallel to the direction of I in
Sn × I ×Rq, while the q last framing vectors (coming from Rq) we keep parallel to themselves.
The other boundary component ∂1W ⊂ Sn × {0} ×Rq is kept fixed.

We arrive at such an embedding of W in Sn × I × Rq for which the outward normal vector
along ∂2W in W is vertical (i.e. parallel to the direction of I). Now by a vertical shift we can
deform ∂2W into Sn × {1} ×Rq.

This deformation can be extended to W . Projecting into Sn × I this new position of W in
Sn × I × Rq we obtain an immersion cobordism between the immersions of the two boundary
components.

On the first component (∂1W ) we obtain ∂[f ]. On the second component we obtain the same

framed cobordism class as was that of Ṽ in ∂T̃ ⊂ Dn+1 (the union of curved figures 8). Claim
a) is proved. �

Proof of Claim b). Deform the immersed manifold Ṽ n−1 (formed by the union of curved figures
8) as follows. Contract each curved figure 8 by an isotopy along the corresponding sphere S2

into a small neighbourhood of its double point obtaining an almost flat (very small) figure 8. As
we have noticed the normal bundle of f(V ) in Dn+1 has the form 2ε1 ⊕ ζ1 = ε1

1 ⊕ ε1
2 ⊕ ζ1. The

first trivial normal line bundle ε1
1 can be identified with the direction of the double line of the

umbrella, the second one ε1
2 can be the symmetry axes of the figures 8 (both of the curved and

the flattened ones). ζ1 is the direction orthogonal to the symmetry axes.

Now considering the maps of V and Ṽ in Rn+1 (instead of Dn+1) applying again the mul-
ticompression theorem we make the two trivial normal directions ε1

2 and ε1
1 parallel to the last

two coordinate axes and then project V to Rn−1. In this way we obtain a new immersion
g : V n−2 # Rn−1 and ε1

2 (the symmetry axes of the figures 8) will be parallel to the normal

vector of Rn−1 in Rn. Now the (flattened) figures 8 (of Ṽ ) are placed exactly as by the original
figure 8 construction applied to g.

It remained to note that the described deformations do not change the cobordism class of a
framed immersion. Claim b) is proved. �

Thus Theorem A is also proved. �

Remark. The stable homotopy groups of RP∞ were computed by Liulevicius [Liu] in dimen-
sions not greater than 9.

Below in the first line we show his result, in the second one the stable homotopy groups of
spheres. These two lines by Theorem A give the groups Cob Σ1,0(n) for n ≤ 10 given in the
third line. (Here for example (Z2)3 stands for Z2 ⊕ Z2 ⊕ Z2.)
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n 1 2 3 4 5 6 7 8 9 10
πsn(RP∞) Z2 Z2 Z8 Z2 0 Z2 Z16 ⊕ Z2 (Z2)3 (Z2)4 ?
πs(n) Z2 Z2 Z24 0 0 Z2 Z240 (Z2)2 (Z2)3 Z6

Cob Σ1,0(n) 0 0 Z3 0 Z2 0 Z15 Z2 Z2 Z6

Remark. It follows from part b) of Theorem A that all the odd torsion part of Cob Σ1,0(n) can
be represented by immersions. In particular, in dimensions n = 3 and n = 7 all the elements can
be represented by immersions of the sphere S3 and S7, respectively, since the J-homomorphism
is onto in these dimensions.

Part 2. Cusp maps

2.1. Formulation of the results

Here we consider cusp maps, i.e. maps having at most cusp singularities. (In the previous
terms these are τ–maps for τ = {Σ0,Σ1,0,Σ1,1}.) The cobordism group of cusp maps of oriented
n–dimensional manifolds in Rn+1 will be denoted by Cob Σ1,1(n). We shall compute these
groups modulo their 2–primary and 3–primary parts. Let C{2,3} be the minimal class of groups
containing all 2–primary and 3–primary groups.

Theorem B. Cob Σ1,1(n) ≈
C{2,3}

πs(n)⊕ πs(n− 4)

where ≈
C{2,3}

means isomorphism modulo the class C{2,3}, and πs(m) denotes the mth stable ho-

motopy group of spheres.

2.2. Preliminaries on Morin maps

Morin maps are those of types Σ1,0,Σ1,1,0, . . . ,Σ1r,0, . . . , r = 1, 2, . . . (See [AGV].)

For η = Σ1r,0 the universal normal bundle ξ̃η will be denoted by ξ̃r. It was established in [RSz]

and [R] that the structure group of ξ̃r is Z2 and the bundle ξ̃r is associated to a representation
λ2 : Z2 −→ O(2r + 1) with the property that λ2(Z2) ⊂ SO(2r + 1) precisely when r is even.

It follows that ξ̃r is the direct sum i · γ1 ⊕ j · ε1, where i + j = 2r + 1, and i ≡ rmod 2. Here

ε1, γ1 are the trivial and the universal line bundles respectively. Hence the Thom space T ξ̃r
is Sj(RP∞/RP i−1). It is easy to see that for any odd p the reduced mod p cohomology H

∗

(T ξ̃r;Zp) vanishes if r is odd, and the natural inclusion S2r+1 ⊂ T ξ̃r (as a “fiber”) induces
isomorphism of the cohomology groups with Zp–coefficients for r even. Consequently by Serre’s

generalization of the Whitehead theorem [S2] – the inclusion ΓS2r+1 ⊂ ΓT ξ̃r (recall Γ = Ω∞S∞)
induces isomorphism of the odd torsion parts of the homotopy groups for r even, while for r odd

π∗(ΓT ξ̃r) are finite 2–primary groups.

2.3. Computation of the cusp cobordism groups

In the case of cusps r = 2 and we have that the inclusion ΓS5 ⊂ ΓT ξ̃2 is a mod C2 homotopy
equivalence (C2 is the class of 2–primary groups).

Let us consider the following pull-back diagram defining the space X frΣ1,1

X frΣ1,1 −−−−→ XΣ1,1yXΣ1,0

yXΣ1,0

ΓS5 −−−−→ ΓT ξ̃2
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(Note that X frΣ1,1 is the classifying space of those cusp maps for which the normal bundle of
the Σ1,1–stratum in the target is trivialized. Equivalently these are the cusp maps for which the
kernel of the differential is trivialized over the cusp-stratum.)

The horizontal maps of the diagram induce isomorphisms of the odd-torsion parts of the
homotopy groups. Now we show that the homotopy exact sequence of the left-hand side fibration
“almost has a splitting”.

Definition. Let p : E
F−→ B be a fibration and let t be a natural number. We say that this

fibration has an algebraic t–splitting if for each i there is homomorphism Si : πi(B) −→ πi(E)
such that the composition of Si with the map p∗ induced by p is a multiplication by t. We say
that the fibration p has a geometric t–splitting if it has an algebraic one such that all Si are
induced by a map s : B −→ E (the same map s for each i).

Lemma 4. The fibration X frΣ1,1 −→ ΓS5 has a 6–splitting.

Remark. We shall prove this only in algebraic sense, since we will need only that. For the
existence of geometric splitting we give only a hint.

Proof of Theorem B. is immediate from Lemma 4. Indeed,

Cob Σ1,1(n) ≈ πn+1(XΣ1,1) ≈
C2
πn+1(X frΣ1,1).

Now the homotopy exact sequence of the fibration pfr : X frΣ1,1 XΣ1,0

−−−−−→ ΓS5 has a 6–splitting,
hence modulo the class C{2,3} we have

πn+1(X frΣ1,1) ≈
C{2,3}

πsn+1(S5)⊕ πn+1(XΣ1,0) ≈
C2
πs(n− 4)⊕ πs(n).

(In the last mod C2 isomorphism we used Theorem A.)
Theorem B is proved except Lemma 4. �

Proof of Lemma 4. will follow from the following two claims.

Claim 1. If there is a map of an oriented 4–dimensional manifold into R5 with t cusp points
(algebraically counting them), then the fibration pfr has a t–splitting (algebraically).

Claim 2. There is a cusp-map f : M4 −→ R5 with t–cusp points (counting algebraically).

Proof of Claim 1. Let f : M4 −→ R5 be a cusp-map with t cusp-points. Let x be an element
in πm(ΓS5) ≈ πs(m − 5). It can be represented by a framed, immersed (m − 5)–dimensional
manifold Am−5 in Rm, let us denote its immersion by α.

Take the product Am−5 ×M4 and its map into the direct product Am−5 × D5 by idA × f .
Now the target Am−5 × D5 can be mapped by a submersion F into Rm onto the immersed
tubular neighbourhood of α(A) using the framing to map the D5–fibers). The composition
A ×M4 −→ Rm is clearly a cusp map and its cusp-singularity stratum represents the element
t · x in πs(m− 5).

Claim 1 is proved (at least its algebraic version. The geometric one follows from the fact that
we use the same element [f : M4 −→ D5] for any element x ∈ πs(i) and for any dimension i to
construct the element Si(x). The classifying space ΓS5 can be obtained as the limit of target
spaces of codimension 5 framed immersions.) �

Proof of Claim 2. is a compilation of the following two theorems.

Theorem ([Sz1], [Sz2], [L]). Given a generic immersion g : M # Q×R1 and a natural number
r, let us denote by ∆r+1(g) the manifold of (at least) (r+1)–tuple points in Mn. Let f : M −→ Q
be the composition of g with the projection Q × R1 −→ Q. Let us denote by Σ1r (f) the closure
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of the set of Σ1r singular points of f . Then the manifolds ∆r+1(g) and Σ1r (f) are cobordant. If
M and Q are oriented and dim Q − dim M is odd, then these manifolds are oriented and they
are oriented-cobordant.

Theorem 5 (Eccles–Mitchell [EM]). There is an oriented closed 4–dimensional manifold M4

and an immersion g : M4 # R6 with (algebraically) 2 triple points.

�

Theorem B is proved. �

Part 3. Higher Morin maps

Most of the previous arguments can be applied in the computation of cobordism groups of
Morin maps having at most Σ1r singular points for any r (the codimensions of the considered
maps are still equal to one, and the maps are cooriented). The only problem is that we need a
generalization of the Theorem of Eccles–Mitchell.

Below we shall give a weak form of such a generalization. This will allow us to compute the
groups Cob Σ1r (n) modulo the p–primary part for p ≤ r + 1.

Notation: Let C{p ≤ 2r + 1} denote the minimal class of groups containing all p–primary
groups for any prime p ≤ 2r + 1. The main result of this Part 3 is the following.

Theorem C. Let us denote by CobΣ1i(n) the cobordism group of Σ1i–map of oriented n–
manifolds in Rn+1 (i.e. τ–maps for τ = {Σ0,Σ1,0, . . . ,Σ1,1,...,1, i digits 1}). Then for any r

Cob Σ12r+1(n) ≈
C2

Cob Σ12r (n) ≈
C{p≤2r+1}

r⊕
i=0

πs(n− 4i).

The proof is very similar to that given in Parts 1 and 2. It goes by induction on r. First we
give a weak analogue of the Theorem of Eccles and Mitchell.

Lemma 1. a) For any natural number k there is a positive integer t(k) such that for any im-
mersion of an oriented, closed, smooth 4k–dimensional manifold in R4k+2 the algebraic number
of (2k + 1)–tuple points is divisible by t(k), and there is a case when this number is precisely
t(k).

b) The number t(k) coincides with the order of the cokernel of the stable Hurewicz homomor-
phism

πs4k+2(CP∞) −→ H4k+2(CP∞).

Before proving Lemma 1 it will be useful to recall a result on the cokernel of the stable
Hurewicz map.

Theorem (Arlettaz [A]). Let X be a (b− 1)–connected space and let %j be the exponent of the
stable homotopy group of spheres πs(j). Let hm : πsm(X) −→ Hm(X) be the stable Hurewicz
homomorphism. Then (%1 . . . %m−b−1)(coker hm) = 0.

Next we recall a theorem of Serre on the prime divisors of the numbers %j .

Theorem (Serre [S1]). πs(i)⊗ Zp = 0 if i < 2p− 3 and πs(2p− 3)⊗ Zp = Zp.

Hence %j is not divisible by a prime p if p > j+3
2 , in other words, %j may have a prime p as a

divisor only if p ≤ j+3
2 .

Applying Arlettaz’ theorem to X = CP∞, b = 2, m = 4r + 2 we obtain that t(r) has no
prime divisor greater than 2r + 1.



204 ANDRÁS SZÜCS

Proof of Theorem C. should be clear now, since it is completely analogous to that of Theorem B.
First we consider the “key bundle”

XΣ12r+1 −→ ΓT ξ̃2r+1 with fiber XΣ12r .

Remember that H∗(ΓT ξ̃2r+1;Zp) = 0 for any odd p, so – by the mod C Whitehead theorem [S2]
we obtain the first (mod C2) isomorphism in the Theorem

Cob Σ12r+1(n) ≈
C2

Cob Σ12r (n).

In order to prove the second (mod C{p ≤ 2r + 1}) isomorphism recall that modulo the class C2
the key bundle

XΣ12r −→ ΓT ξ̃2r with fibre XΣ12r−1

can be replaced by the bundle

X frΣ12r −→ ΓS4r+1 with the same fibre.

The later bundle has a(n algebraic) t(r)–splitting.
By Lemma 1 and the theorems of Arlettaz and Serre t(r) has no prime divisor greater than

2r + 1, hence by induction on r we obtain the second isomorphism in Theorem C. �

Proof of Lemma 1. By Herbert’s theorem the algebraic number of the (2k + 1)–tuple points
of an immersion f : M4k # R4k+2 is

〈
p1
k, [M4k]

〉
. The immersion frepresents an element

[f ] of the corresponding cobordism group of immersions of oriented 4k–manifolds in R4k+2.
This cobordism group is isomorphic to the group πs4k+2(MSO(2)), the element of the later
group corresponding to [f ] will be denoted by [αf ]. Here αf is the Pontrjagin–Thom map
Sq+4k+2 −→ SqMSO(2), for q big enough.

Let us consider the following composition of maps

πs4k+2(MSO(2)) −→
©1

H4k+2+q

(
SqMSO(2))

≈−→
©2

H4k(BSO(2))
≈−→
©3

Z.

Here ©1 is the stable Hurewicz homomorphism, ©2 is the Thom isomorphism in the homologies

x −→ SqU2 ∩ x
where U2 is the Thom class of MSO(2) and SqU2 its qth suspension, and also the Thom class
of SqMSO(2).
©3 is the evaluation on the class p1

k

y −→ 〈y, p1
k〉.

Since the maps ©2 and ©3 are isomorphisms, the cokernel of this composition is the same as
the cokernel of ©1 , i.e. of the stable Hurewicz homomorphism.

On the other hand, we show that the image of this composition map is t(k)Z, and that will
prove part b) of Lemma 1. (Part a) follows then as well, since the rational stable Hurewicz
homomorphism

πsm(X)⊗Q −→ Hm(X;Q) is an isomorphism.)

Claim. The composition of the maps ©1 , ©2 , ©3 has image t(k) · Z.

Proof It is enough to show that the image of [αf ] ∈ πs4k+2(MSO(2)) is
〈
p1
k, [M4k]

〉
.

[αf ] goes by the map ©1 to (αf )∗[S
q+4k+2], that is mapped by ©2 to (αf )∗[S

q+4k+2] ∩ SqU2.
Let ν be the normal bundle of f , let us denote by Tν its Thom space, let pr : Sq+4k+2 −→

SqTν be the Pontrjagin–Thom map, βf : SqTν −→ SqMSO(2) the fiberwise map of Thom
spaces that on the base spaces is the map νf : M −→ BSO(2) inducing the normal bundle ν.
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Now (αf )∗[S
q+4k+2] = (βf )∗ ◦ pr∗[Sq+4k+2] = (βf )∗[S

qTν]. Here [SqTν] is the fundamental
homology class of SqTν. Therefore〈

p1
k, (αf )∗[S

q+4k+2] ∩ SqU2

〉
=
〈
p1
k, (βf )∗[S

qTν] ∩ SqU2

〉
=
〈
p1
k, (νf )∗[M ]

〉
=
〈
νf
∗p1

k, [M ]
〉

=
〈
p1
k, [M ]

〉
.

�
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