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SPACES OF LOCALLY CONVEX CURVES IN Sn AND COMBINATORICS

OF THE GROUP B+
n+1

NICOLAU C. SALDANHA AND BORIS SHAPIRO

Dedicated to the memory of the one and only Vladimir Igorevich Arnold

Abstract. In the 1920’s Marston Morse developed what is now known as Morse theory trying
to study the topology of the space of closed curves on S2 ([7], [5]). We propose to attack a

very similar problem, which 80 years later remains open, about the topology of the space of
closed curves on S2 which are locally convex (i.e., without inflection points). One of the main

difficulties is the absence of the covering homotopy principle for the map sending a non-closed

locally convex curve to the Frenet frame at its endpoint.
In the present paper we study the spaces of locally convex curves in Sn with a given initial

and final Frenet frames. Using combinatorics of B+
n+1 = Bn+1∩SOn+1, where Bn+1 ⊂ On+1

is the usual Coxeter-Weyl group, we show that for any n ≥ 2 these spaces fall in at most dn
2
e+1

equivalence classes up to homeomorphism. We also study this classification in the double cover

Spin(n+ 1). For n = 2 our results complete the classification of the corresponding spaces into

two topologically distinct classes, or three classes in the spin case.

1. Introduction and main results

In what follows we will study different spaces of curves γ : [0, 1] → Sn (or to Rn+1); we
start with some basic definitions. A smooth curve γ : [0, 1] → Rn+1 is called locally convex if
its Wronskian Wγ(t) = det

(
γ(t), γ′(t), γ′′(t), . . . , γ(n)(t)

)
is non-vanishing for all t ∈ [0, 1] (see

[1], [11], [12], [13]). A smooth curve γ is called (globally) convex if for any linear hyperplane
H ⊂ Rn+1 the intersection H∩γ consists of at most n points counting multiplicities; it is an easy
exercise to check that global convexity implies local. Observe that if γ : [0, 1]→ Rn+1 is locally
convex then so is its spherical projection γ/|γ| : [0, 1] → Sn ⊂ Rn+1. Notice that for n = 2, a
curve γ : [0, 1] → Sn is locally convex if its geodesic curvature is never zero (and therefore has
constant sign) and a closed curve γ : [0, 1] → Sn is globally convex if it is the boundary of the
intersection of the sphere with a convex cone.

For various technical reasons, the space of smooth curves is too small and not the most
adequate. The definition of local convexity makes sense for other spaces, such as the Banach
spaces Cr, r ≥ n and the Sobolev spaces Hr, r > n. In Section 2 below we shall introduce
an “official” topology for the spaces of locally convex curves: this turns out to be a Hilbert
space containing all the above spaces. As with other questions concerning infinite dimensional
topology, the choice of space actually has little consequence.

Locally convex curves in Rn+1 are closely related to fundamental solutions of linear ordinary
homogeneous differential equations of order n+ 1 on [0, 1] with real-valued coefficients. Namely,
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if y0, y1, . . . , yn are linearly independent solutions of an equation

y(n+1) + an(t)y(n) + · · ·+ a0(t)y = 0

with ai(t) ∈ C[0, 1], i = 0, . . . , n , then γ = (y0, y1, . . . , yn) is locally convex. A locally convex γ
is called positive if Wγ(t) > 0 and negative otherwise. From now on we mostly consider positive
curves.

Given a smooth positive locally convex γ : [0, 1] → Rn+1, define its Frenet frame Fγ :
[0, 1] → SOn+1 as the result of the Gram-Schmidt orthogonalization of its Wronski curve(
γ(t), γ′(t), γ′′(t), . . . , γ(n)(t)

)
. In other words, Fγ satisfies the relation(

γ(t), γ′(t), γ′′(t), . . . , γ(n)(t)
)

= Fγ(t)R(t),

where R(t) is an upper triangular matrix with positive diagonal. Let LSn be the space of all
positive locally convex curves γ : [0, 1]→ Sn (in the appropriate space) with the standard initial
frame Fγ(0) = I, where I ∈ SOn+1 is the identity matrix of size (n+ 1)× (n+ 1). As we shall
see (Lemma 2.3), the space LSn is a contractible Hilbert manifold and therefore diffeomorphic
to Hilbert space.

Given Q ∈ SOn+1, let LSn(Q) ⊂ LSn be the set of positive locally convex curves on Sn with
the standard initial and the prescribed final frame Fγ(1) = Q; one of the main difficulties is that
the map LSn → SOn+1 taking γ to Fγ(1) is not a fibre bundle. Let Π : Spinn+1 → SOn+1 (n ≥ 2)
be the universal cover (which is a double cover). Denote by 1 ∈ Spinn+1 the identity element
and by −1 ∈ Spinn+1 the unique nontrivial element with Π(−1) = I. For γ ∈ LSn, the map

Fγ : [0, 1]→ SOn+1 can be uniquely lifted to F̃γ : [0, 1]→ Spinn+1, Fγ = Π◦F̃γ , F̃γ(0) = 1. Given
z ∈ Spinn+1, let LSn(z) ⊂ LSn(Π(z)) be the set of positive locally convex curves γ ∈ LSn(Π(z))

with F̃γ(1) = z. One can immediately observe that LSn(Π(z)) = LSn(z)tLSn(−z). The Hilbert
manifolds LSn(Q) and LSn(z) for various Q ∈ SOn+1 and z ∈ Spinn+1 are the main objects of
study in this paper.

Some information about the topology of LSn(Q), mostly in the case Q = I or in the case
n = 2, was earlier obtained in [1], [6], [8], [9], [11], [12] and [13]. In particular, it was shown that
the number of connected components of LSn(I) equals 3 for even n and 2 for odd n > 1, which is
related to the existence of closed globally convex curves on all even-dimensional spheres. It was
also shown in [1] that for n even the space of closed globally convex curves with a fixed initial
frame is contractible. The first nontrivial information about the higher homology and homotopy
groups of these components can be found in [8] and [9].

In this paper we leave aside the fascinating and widely open question about the topology of
the spaces LSn(Q) and concentrate on the following.

Problem 1. How many different (i.e., non-homeomorphic) spaces are there among LSn(Q),
Q ∈ SOn+1, n ≥ 2? Analogously, how many different spaces are there among LSn(z), z ∈
Spinn+1?

To formulate our partial answer to the latter question we need to introduce the following set
of matrices. For a positive integer m let

Mm
s = diag(−1, . . . ,−1, 1, . . . , 1), s ∈ Z, |s| ≤ m, s ≡ m (mod 2),

be the diagonal m × m matrix whose first (m − s)/2 entries equal to −1 and the remaining
(m+ s)/2 entries equal to 1. Notice that s equals both the trace and the signature of Mm

s and
that Mm

s ∈ SOm if and only if s ≡ m (mod 4). In the latter case, let ±wms ∈ Spinm be the two
preimages of Mm

s ∈ SOm.
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Our first result is as follows.

Theorem 1. For n ≥ 2, any Q ∈ SOn+1, and any z ∈ Spinn+1 one has:

(1) Each space LSn(Q) is homeomorphic to one of the subspaces LSn(Mn+1
s ), where |s| ≤

n+ 1, s ≡ n+ 1 (mod 4) (there are dn2 e+ 1 such subspaces).
(2) For n even, each space LSn(z), z ∈ Spinn+1, is homeomorphic to one of the subspaces

LSn(1), LSn(−1), LSn(wn+1
n−3), LSn(wn+1

n−7), . . . , LSn(wn+1
−n+5), LSn(wn+1

−n+1).
(3) For n odd, each space LSn(z), z ∈ Spinn+1, is homeomorphic to one of the subspaces

LSn(1), LSn(−1), LSn(wn+1
n−3), LSn(wn+1

n−7), . . . , LSn(wn+1
−n+3), LSn(wn+1

−n−1), LSn(−wn+1
−n−1).

Using Theorem 2 below and results proved elsewhere ([8], [9]) we check that for n = 2 the
above spaces are pairwise non-homeomorphic. It is natural to ask whether they are likewise
non-homeomorphic for n ≥ 3; see discussions in the first subsection of the conclusion.

We might want to describe the topology of these spaces; the next result gives some partial
answers. Let ΩSOn+1(Q) (resp. Ω Spinn+1(z)) be the space of all continuous curves α : [0, 1]→
SOn+1 (resp. α : [0, 1]→ Spinn+1) with α(0) = I and α(1) = Q (resp. α(0) = 1 and α(1) = z).
Using the Frenet frame we define Frenet frame injections:

F[Q] : LSn(Q) → ΩSOn+1(Q),
γ 7→ Fγ

F̃[z] : LSn(z) → Ω Spinn+1(z).

γ 7→ F̃γ

It is a classical fact that the value of Q (resp. z) does not change the space ΩSOn+1(Q) (resp.
Ω Spinn+1(z)) up to homeomorphism. Therefore, we usually omit Q (resp. z) and write ΩSOn+1

(resp. Ω Spinn+1) instead.

Theorem 2. For n ≥ 2, consider the Frenet frame injections as above.

(1) For all Q ∈ SOn+1 and for all z ∈ Spinn+1 the maps F[Q] and F̃[z] are weakly homotopi-
cally surjective.

(2) If |s| ≤ 1 then the Frenet frame injections F[Mn+1
s ] and F̃[wn+1

s ] are weak homotopy

equivalences. In this case there exist homeomorphisms

LSn(Mn+1
s ) ≈ ΩSOn+1, LSn(wn+1

s ) ≈ Ω Spinn+1 .

Recall that a map X → Y is weakly homotopically surjective if the induced maps πk(X) →
πk(Y ) are surjective; also, a map X → Y is a weak homotopy equivalence if the induced maps
πk(X)→ πk(Y ) are isomorphisms.

Notice that, in general, for arbitrary Q or z it is by no means true that the Frenet frame
injection induces a homotopy equivalence: even the number of connected components can be
different.

Versions of Theorems 1 and 2 also hold for the spaces Ck ∩ LSn(Q) and Ck ∩ LSn(z). These
facts follow from our results together with Theorem 2 in [4]; alternatively, our proofs can be
adapted (with some extra rather routine work).

Acknowledgements. The first named author gratefully acknowledges the support of CNPq,
FAPERJ and CAPES (Brazil) and is sincerely grateful to the mathematics department of the
Stockholm University for the kind hospitality during his visits to Sweden in 2005 and 2007.
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2. Frenet frames and Jacobian curves

We collect in this section a few basic notions and facts. The logarithmic derivative of a curve
Γ : [0, 1]→ SOn+1 is defined as Λ(t) = (Γ(t))−1Γ′(t). Notice that Λ(t) belongs to the Lie algebra
and is therefore automatically skew symmetric. Let T ⊂ son+1 be the set of tridiagonal skew
symmetric matrices with positive subdiagonal entries, or skew Jacobi matrices, i.e., of matrices
of the form 

−c1
c1 −c2

c2
. . .

. . . −cn
cn

 , ci > 0.

A curve Γ : I → SOn+1 is called Jacobian if its logarithmic derivative Λ satisfies Λ(t) ∈ T for
all t ∈ I (where I ⊂ R is an interval).

Lemma 2.1. Let Γ : [0, 1]→ SOn+1 be a smooth curve with Γ(0) = I. The curve Γ is Jacobian
if and only if there exists γ ∈ LSn with Fγ = Γ.

Recall that a smooth curve γ : [0, 1] → Sn belongs to LSn if and only if Fγ(0) = I and γ is
(positive) locally convex:

det
(
γ(t), γ′(t), γ′′(t), . . . , γ(n)(t)

)
> 0.

Proof. Consider γ ∈ LSn and its Wronski curve

G(t) =
(
γ(t) γ′(t) · · · γ(n)(t)

)
= Fγ(t)R(t).

We have

G′(t) =
(
γ′(t) γ′′(t) · · · γ(n+1)(t)

)
= G(t)H(t)

for H(t) an upper Hessenberg matrix whose subdiagonal entries equal to 1:

H(t) =


0 0 0 · · · 0 ∗
1 0 0 · · · 0 ∗
0 1 0 · · · 0 ∗

...
...

0 0 0 · · · 1 ∗

 .

Recall that H is upper Hessenberg if (H)ij = 0 whenever i > j+1. Write Γ = Fγ and substitute
Γ(t)R(t) for G(t) in the equations above to obtain

Γ′(t)R(t) + Γ(t)R′(t) = Γ(t)R(t)H(t)

and therefore

Λ(t) = (Γ(t))−1Γ′(t) = −R′(t)(R(t))−1 +R(t)H(t)(R(t))−1

which is upper Hessenberg with positive subdiagonal entries (the first product is upper triangular,
the second one is upper Hessenberg). Since we know that Λ(t) ∈ son+1, we have Λ(t) ∈ T, proving
one implication.
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For the other implication, consider Γ : [0, 1] → SOn+1 such that Γ(0) = I, Γ′(t) = Γ(t)Λ(t)
and Λ(t) ∈ T for all t ∈ [0, 1]. Set γ(t) = Γ(t)e1. We have γ′(t) = Γ′(t)e1 = Γ(t)Λ(t)e1 =
Γ(t)(Λ(t))21e2 = p1(t)Γ(t)e2, p1(t) > 0. Similarly,

γ′′(t) = (p1)′(t)Γ(t)e2 + p1(t)Γ(t)Λ(t)e2 = p2(t)Γ(t)e3 + r22(t)Γ(t)e2 + r21(t)Γ(t)e1,

where p2(t) > 0 and the values of rij(t) are not important. In general

γ(j)(t) = pj(t)Γ(t)ej+1 +
∑
i≤j

rji(t)Γ(t)ei, pj(t) > 0.

Thus applying Gram-Schmidt to the Wronski curve(
γ(t) γ′(t) · · · γ(n)(t)

)
yields Fγ(t) = Γ(t), completing the proof. �

A smooth Jacobian curve Γ : I → SOn+1 is called globally Jacobian if γ : I → Sn, γ(t) =
Γ(t)e1, is globally convex.

Notice that given a smooth function Λ : [0, 1]→ T ⊂ son+1 the initial value problem

Γ′(t) = Γ(t)Λ(t), Γ(0) = I (∗)
yields Γ as in the lemma and therefore a smooth curve γ ∈ LSn. This establishes a homeo-
morphism between the space of smooth curves γ ∈ LSn and the convex set of smooth functions
Λ : [0, 1]→ T. We will denote this correspondence by

Λγ(t) = (Fγ(t))−1(Fγ)′(t).

It will be convenient to have examples of locally convex curves and corresponding Jacobian
curves.

Lemma 2.2. For n+ 1 = 2k let ci and ai (i = 1, . . . , k) be positive parameters with ai mutually
distinct and c21 + · · ·+ c2k = 1. Set

ξ(t) = (c1 cos(a1t), c1 sin(a1t), . . . , ck cos(akt), ck sin(akt)) .

For n+1 = 2k+1 let c0, ci and ai (i = 1, . . . , k) be positive parameters with ai mutually distinct
and c20 + c21 + · · ·+ c2k = 1. Set

ξ(t) = (c0, c1 cos(a1t), c1 sin(a1t), . . . , ck cos(akt), ck sin(akt)) .

In both cases the curve ξ : [0, 1] → Sn is locally convex with constant Λξ. Conversely, if ξ̃ :

[0, 1] → Sn is locally convex with Λξ̃ constant then ξ̃ = Qξ for some Q ∈ SOn+1 and ξ as

above (for appropriate ci and ai). Furthermore, assume ai/(4π) ∈ Z and set Q = (Fξ(0))−1 and
ξ1(t) = Qξ(t): we have ξ1 ∈ LSn(1).

For n = 2, ξ is a circle; for n = 3, ξ turns around in one plane while it turns around at a faster
rate in another plane: for suitable values of ai and ci, ξ looks like a phone wire (see Figure 1).

Figure 1. A phone wire is locally convex in S3
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Proof. A straight-forward calculation gives, for n+ 1 = 2k,

det(ξ(t), ξ′(t), . . . , ξ(n)(t)) =

(∏
i

(c2i ai)

)∏
i<j

(
(ai − aj)2(ai + aj)

2
) > 0

and for n+ 1 = 2k + 1,

det(ξ(t), ξ′(t), . . . , ξ(n)(t)) = c0

(∏
i

(c2i a
3
i )

)∏
i<j

(
(ai − aj)2(ai + aj)

2
) > 0.

Alternatively, we can compute Ξ = Fξ : [0, 1]→ SOn+1 and its logarithmic derivative Λ : [0, 1]→
son+1: it turns out to be a constant element of T ⊂ son+1. In general, if Q ∈ SOn+1 and γ is
locally convex then so is Qγ: thus, ξ1 is locally convex.

Conversely, assume ξ̃ ∈ LSn and that Λξ̃ is constant equal to B ∈ T; we then have Ξ̃(t) =

Fξ̃(t) = exp(tB). The eigenvalues of B are all on the imaginary axis and therefore of the form
±aji, aj > 0, plus a 0 in case n+ 1 is odd. Thus there exists Q ∈ SOn+1 such that

B =


Qdiag

((
0 −a1

a1 0

)
,

(
0 −a2

a2 0

)
, . . . ,

(
0 −ak
ak 0

))
QT , n = 2k − 1,

Qdiag

(
0,

(
0 −a1

a1 0

)
,

(
0 −a2

a2 0

)
, . . . ,

(
0 −ak
ak 0

))
QT , n = 2k.

Write

X(s) =

(
cos(s) − sin(s)
sin(s) cos(s)

)
= exp

(
s

(
0 −1
1 0

))
.

Thus, according to parity we have:

Ξ̃(t) =

{
Qdiag (X(a1t), X(a2t), . . . , X(akt))Q

T ,

Qdiag (0, X(a1t), X(a2t), . . . , X(akt))Q
T ,

and therefore

ξ̃(t) = Qdiag ([0, ]X(a1t), X(a2t), . . . , X(akt)) v0, v0 = QT e1.

Up to multiplication by a matrix of the form diag ([1, ]X(θ1), . . . , X(θk)), v0 can be assumed to
be of the form v0 = ([c0, ]c1, 0, . . . , ck, 0) for ci ≥ 0 (with a corresponding change of Q). The
formulas in the previous paragraph of this proof indicate that the parameters ai and ci must be
positive and that the ai’s must be pairwise distinct for ξ̃ to be locally convex, as desired. The
other claims are easy. �

The space of smooth curves is not the most convenient, however; we use the above correspon-
dence to define our favorite space of curves: if we consider Λ ∈ L2([0, 1],T) ⊂ L2([0, 1], son+1) we
can solve the initial value problem (∗) and determine Γ : [0, 1]→ SOn+1 and γ(t) = Γ(t)e1. No-
tice that the curve γ constructed in this way from Λ ∈ L2 belongs to H1([0, 1],Rn+1) but the con-
cept of local convexity does not make sense for all curves γ : [0, 1]→ Sn with γ ∈ H1([0, 1],Rn+1).
A minor inconvenience is that L2([0, 1],T) is not a Hilbert manifold; we resolve this problem by
defining a diffeomorphism φ : T→ Rn with j-th coordinate φj(T ) = g(Tj+1,j), g(x) = x− 1/x.

Given α ∈ L2([0, 1],Rn) we set Λ = φ−1◦α and Γ as above, thus defining a space L̂Sn of Jacobian

curves and an explicit diffeomorphism L2([0, 1],Rn) ≡ L̂Sn. There are sometimes advantages in

working with L̂Sn(z) rather than LSn(z): for instance, multiplication (in Spinn+1) allows for a
sort of superposition. This will be useful later in the paper.
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Given Q ∈ SOn+1 let L̂Sn(z) ⊂ L̂Sn be the space of Jacobian curves Γ : [0, 1]→ SOn+1 with

Γ(0) = I, Γ(1) = Q. Finally, we use the map F̃ to define the spaces LSn and LSn(Q), which are
now Hilbert manifolds.

Recall also that two Hilbert manifolds are diffeomorphic if and only if they are homeomorphic
which, in its turn, holds if and only if they are weakly homotopically equivalent ([3]). Besides
the Hilbert manifold structure, the above definition of the spaces LSn(Q) (and other spaces)
has the advantage of allowing discontinuities in Λγ thus bypassing the need for a roundabout
smoothening process. The following result is now trivial.

Lemma 2.3. The space LSn is contractible.

3. Bruhat cells and the Coxeter-Weyl group Bn+1

As a first step, for any fixed dimension n we reduce Problem 1 to consideration of only finitely
many different values of Q and z using well-known group actions. The key observation here is
that if γ1 : [0, 1] → Sn is positive locally convex and A ∈ Rn×n has positive determinant than

both Aγ1 : [0, 1]→ Rn+1 and γ2 : [0, 1]→ Sn with γ2(t) = Âγ1(t) = Aγ1(t)/|Aγ1(t)| are positive
locally convex.

Let U+
n+1 be the group of real upper-triangular matrices with positive diagonal and U1

n+1 ⊂
U+
n+1 be the subgroup of matrices with diagonal entries equal to one. Consider the action of

U1
n+1 on GLn+1(R) by conjugation: in what follows we will refer to the action of U1

n+1 on
different spaces as the Bruhat action. This action induces the action of U1

n+1 on SOn+1 as the
postcomposition of the conjugation with the orthogonalization. In other words, B(U,Q) = UQU ′

where U ′ is the only matrix in U+
n+1 such that UQU ′ ∈ SOn+1; thus, B(U,Q) is obtained from

UQ by Gram-Schmidt. It is well-known that the Bruhat action on SOn+1 has finitely many
orbits. These orbits are referred to as the Bruhat cells of SOn+1: two orthogonal matrices
Q1, Q2 ∈ SOn+1 belong to the same Bruhat cell if and only if there exist upper triangular
matrices U1, U2 with positive diagonal satisfying U1Q1 = Q2U2. We denote the Bruhat cell of
Q ∈ SOn+1 by Bru(Q) ⊂ SOn+1.

Let Bn+1 ⊂ On+1 be the Coxeter-Weyl group of signed permutation matrices and let B+
n+1 =

Bn+1 ∩ SOn+1. Let Diag+
n+1 ⊂ B+

n+1 be the subgroup of diagonal matrices with entries ±1

and determinant 1; thus Diag+
n+1 is isomorphic to (Z/2Z)n. Each Bruhat cell contains exactly

one element Q0 ∈ B+
n+1 and is diffeomorphic to a cell whose dimension equals the number of

inversions of Q0. In other words, for each Q ∈ SOn+1 there is a unique Q0 ∈ B+
n+1 such that

there exist U1, U2 ∈ U+
n+1 satisfying Q = U1Q0U2.

We recall an algorithm producing Q0 from a given Q; this algorithm will be used later,
particularly in the study of chopping. Consider the first column of Q and look for the lowest
non-zero entry, say Qi1. We first multiply Q by a diagonal matrix D ∈ U+

n+1 to obtain a new

matrix Q̃ = DQ for which (Q̃)i1 = ±1; for simplicity, we may thus assume Qi1 = ±1. We
next perform row operations on Q to clean the first column above row i: in other words, we
obtain U1 ∈ U+

n+1 such that Q̃ = U1Q satisfies Q̃e1 = ±ei; again assume from now on that
Qe1 = ±ei. Now perform column operations on Q to clean row i to the right of the first
column, i.e., obtain U2 ∈ U+

n+1 such that Q̃ = QU2 satisfies eTi Q̃ = ±eT1 . Repeat the process

for each column: at the end of the process we obtain Q0 = U1QU2 (U1, U2 ∈ U+
n+1) for which

there exists a permutation π such that Q0ei = ±eπ(i). In other words, Q0 ∈ Bn+1; since

det(Q0) = det(U1) det(Q) det(U2) > 0 we have det(Q0) = 1 and Q0 ∈ B+
n+1.
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Recall that Π : Spinn+1 → SOn+1 is a group homomorphism and the double cover of SOn+1

(for n > 1, this is the universal cover). Let

B̃+
n+1 = Π−1(B+

n+1) ⊂ Spinn+1, D̃iag
+

n+1 = Π−1(Diag+
n+1) ⊂ B+

n+1;

the groups B̃+
n+1 and D̃iag

+

n+1 are Z/2Z-central extensions of B+
n+1 and Diag+

n+1, respectively.
Notice that

|B+
n+1| = 2n(n+ 1)!, |B̃+

n+1| = 2n+1(n+ 1)!, |D̃iag
+

n+1| = 2n+1;

for instance, D̃iag
+

3 is isomorphic to the quaternion group Q8 = {±1,±i,±j,±k}.

The Bruhat cell decomposition can be lifted to Spinn+1 where each cell contains a unique

element of B̃+
n+1. Two elements of SOn+1 or Spinn+1 will be called Bruhat equivalent if they

belong to the same cell in the corresponding Bruhat decomposition. We will also write Bru(z) ⊂
Spinn+1 for the Bruhat cell of z ∈ Spinn+1.

The Bruhat action of U1
n+1 on SOn+1 induces the Bruhat action of U1

n+1 on the space LSn
as follows: given γ ∈ LSn and U ∈ U1

n+1, set (B(U, γ))(t) = (B(U,Fγ(t)))e1 (where e1 =
(1, 0, 0, . . . , 0) ∈ Rn+1). Clearly, if γ ∈ LSn(z) then B(U, γ) ∈ LSn(B(U, z)). The following
lemma is now easy.

Lemma 3.1. If Q1, Q2 ∈ SOn+1 (resp. z1, z2 ∈ Spinn+1) are Bruhat equivalent then LSn(Q1)
and LSn(Q2) (resp. LSn(z1) and LSn(z2)) are homeomorphic.

This explicit homeomorphism will be used again and we therefore introduce some notation.
Let Q1 and Q2 be as in the lemma: there exists a matrix U ∈ U1

n+1 with B(U,Q1) = Q2 and
therefore B(U−1, Q2) = Q1. Define BQ1,U,Q2

: LSn(Q1) → LSn(Q2) by BQ1,U,Q2
(γ) = B(U, γ)

(for γ ∈ LSn(Q1)). Similarly define Bz1,U,z2 : LSn(z1)→ LSn(z2).

Proof. The map BQ1,U,Q2
is a homeomorphism with inverse BQ2,U−1,Q1

; the spin case is similar.
�

4. Time reversal

In this and the two following sections we introduce three natural operations acting on B+
n+1

and on the spaces of curves under consideration.

The naive idea here would be to consider the curve t 7→ γ(1− t); this curve however may be
negative locally convex and has the wrong endpoints: we show how to fix these minor problems.

Let J+ = diag(1,−1, 1,−1, . . .) ∈ On+1; notice that det(J+) = (−1)n(n+1)/2. For Q ∈ SOn+1,
define TR(Q) = J+Q

TJ+. The map TR : SOn+1 → SOn+1 is an anti-automorphism which
lifts to an anti-automorphism TR : Spinn+1 → Spinn+1. Indeed, given z ∈ Spinn+1 consider a
path α̃ : [0, 1] → Spinn+1 with α̃(0) = 1, α̃(1) = z; let α = Π ◦ α̃ and β : [0, 1] → SOn+1 with

β(t) = TR(α(t)); lift β to define β̃ : [0, 1]→ Spinn+1 with β̃(0) = 1; define TR(z) = β̃(1). The
map is well defined: two homotopic paths α̃0 and α̃1 yield homotopic paths α0 and α1; the paths
β0 and β1 are also homotopic (apply TR to the homotopy) and therefore β̃0(1) = β̃1(1).

These two anti-automorphisms preserve the subgroups Diag+
n+1 ⊂ B+

n+1 ⊂ SOn+1 and

D̃iag
+

n+1 ⊂ B̃+
n+1 ⊂ Spinn+1. In fact, the map TR : B+

n+1 → B+
n+1 admits a simple combi-

natorial description: the matrix TR(Q) is obtained from Q by transposition and the change of
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sign of all entries with i+ j odd. We do not present a detailed combinatorial description of TR
in B̃+

n+1 but we record an observation for later use.

Lemma 4.1. Let s ∈ Z, s ≡ n + 1 (mod 4), |s| < n + 1. Then there exists z ∈ D̃iag
+

n+1 with
trace(z) = s and TR(z) = −z.

Proof. Let

Q = diag(−1,−1, . . . ,−1,−1,−1, 1,−1, 1, 1, . . . , 1, 1)

and z with Π(z) = Q. We claim that z satisfies the claim; in order to perform this computation
we construct paths in SOn+1 and lift them to Spinn+1. Write

X(t) =

(
cos(πt) − sin(πt)
sin(πt) cos(πt)

)
, Y (t) =

cos(πt) 0 − sin(πt)
0 1 0

sin(πt) 0 cos(πt)

 .

Take

α(t) = diag (X(t), . . . , X(t), Y (t), 1, . . . , 1) ,

with ((n + 1 − s)/4) − 1 small X(t) blocks, one large Y (t) block followed by ((n + 1 + s)/2)
ones. Now lift the path α to α̃ : [0, 1] → Spin(n + 1) with α̃(0) = 1: without loss of generality,
z = α̃(1). Clearly trace(z) = s and

TRα(t) = diag (X(t), . . . , X(t), Y (−t), 1, . . . , 1) .

Thus α and TRα are only different in two of the coordinates of the Y block, where one makes
a half-turn one way and the other makes a half-turn the other way. Thus TR(z) = −z, as
required. �

Notice that the map TR : son+1 → son+1 given by TR(X) = J+X
TJ+ satisfies TR(X) = X

for X ∈ T. For γ ∈ LSn(Q), define its time reversal by

γTR(t) = J+Q
T γ(1− t)

where QT is the transpose of Q.

Lemma 4.2. For any γ ∈ LSn(Q) we have γTR ∈ LSn(TR(Q)). Furthermore,

FγTR(t) = TR(QTFγ(1− t)); ΛγTR(t) = Λγ(1− t).

In particular, if ξ ∈ LSn(I) is a locally convex curve for which Λξ is constant then ξTR
1 = ξ1.

Time reversal yields explicit homeomorphisms

LSn(Q) ≈ LSn(TR(Q)), LSn(z) ≈ LSn(TR(z)).

Proof. Consider a smooth curve γ ∈ LSn(Q); we must check that γTR is positive locally convex:
we have

(γTR)(j)(t) = (−1)jJ+Q
T γ(j)(1− t)

and therefore

det
(

(γTR)(t), (γTR)′(t), . . . , (γTR)(n)(t)
)

=

= (−1)n(n+1)/2 det(J+) det(QT ) det
(
γ(1− t), γ′(1− t), . . . , γ(n)(1− t)

)
=

= det
(
γ(1− t), γ′(1− t), . . . , γ(n)(1− t)

)
> 0.
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We must now check that FγTR(0) = I and FγTR(1) = TR(Q). Recall that(
γ(t), γ′(t), . . . , γ(n)(t)

)
= Fγ(t)R0(t),(

(γTR)(t), (γTR)′(t), . . . , (γTR)(n)(t)
)

= FγTR(t)R1(t)

where R0 and R1 are upper triangular matrices with positive diagonal. We have(
(γTR)(t), (γTR)′(t), . . . , (γTR)(n)(t)

)
= J+Q

T
(
γ(t), γ′(t), . . . , γ(n)(t)

)
J+

and therefore

FγTR(t) = J+Q
TFγ(1− t)R0(1− t)J+R

−1
1 (t) =

= (J+Q
TFγ(1− t)J+)(J+R0(1− t)J+R

−1
1 (t)).

Since (J+Q
TFγ(1− t)J+) ∈ SOn+1 and (J+R0(1− t)J+R

−1
1 (t)) is upper triangular with positive

diagonal we have

FγTR(t) = J+Q
TFγ(1− t)J+;

in particular,

FγTR(0) = J+Q
TFγ(1)J+ = I,

FγTR(1) = J+Q
TFγ(0)J+ = TR(Q).

This completes the proof of the first claim and of the first identity for smooth γ; the second
identity follows by taking derivatives and the final claim is now easy. The identities are extended
to the general case (i.e., γ not necessarily smooth) by continuity, thus completing the proof. �

5. Arnold duality

Let A ∈ B+
n+1 ⊂ SOn+1 be the anti-diagonal matrix with entries (A)i,n+2−i = (−1)(i+1); for

instance, for n = 2 and n = 3 we have, respectively,

A =

0 0 1
0 −1 0
1 0 0

 , A =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 ;

this matrix will appear in several places below. Define an automorphism AD of SOn+1 by
AD(Q) = ATQA; notice that the subgroup B+

n+1 ⊂ SOn+1 is invariant under this automor-
phism. As before, lift this automorphism to define an automorphism (also called AD) of Spinn+1

and B̃+
n+1. The combinatorial description of AD on B+

n+1 is the following: rotate Q by a half-
turn (meaning that the (i, j)-th entry of Q becomes the (n− i+ 2, n− j+ 2)-th entry of the new
matrix) and change signs of all entries with i+ j odd. Notice that the map AD : son+1 → son+1

given by TR(X) = ATXA takes T to itself (as a set), but reverts the order of the subdiagonal
entries.

For γ ∈ LSn(Q), define its Arnold dual as

γAD(t) = AD(Fγ(t))e1.

It turns out that this operation is just the usual projective duality between oriented hyperplanes
and unit vectors in disguise (comp [2]).
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Lemma 5.1. For any γ ∈ LSn(Q) one has that γAD ∈ LSn(AD(Q)). Furthermore,

FγAD(t) = AD(Fγ(t)), ΛγAD(t) = AD(Λγ(t)).

Arnold duality gives explicit homeomorphisms

LSn(Q) ≈ LSn(AD(Q)), LSn(z) ≈ LSn(AD(z)).

Proof. We must first check that if γ ∈ LSn is smooth then γAD as defined above also belongs
to LSn. Consider Γ̃ : [0, 1]→ SOn+1 given by

Γ̃(t) = AD(Fγ(t)) = ATFγ(t)A.

We have

(Γ̃(t))−1Γ̃′(t) = AT (Fγ(t))−1AATF′γ(t)A = ATΛγ(t)A = AD(Λγ(t)) ∈ T;

by Lemma 2.1, Γ̃ = Fγ̃ for γ̃ ∈ LSn: thus γAD = γ̃ ∈ LSn, completing our first check. The
formulas for FγAD and ΛγAD have also been proved for smooth γ and therefore, by continuity,

for all γ ∈ LSn. The formulas imply that if γ ∈ LSn(Q) then γAD ∈ LSn(AD(Q)). The final
claim is now easy. �

6. Chopping operation

The first two operations corresponded to Z/2Z-symmetries in LSn+1; our third operation is
quite different, loosely corresponding to taking γ ∈ LSn+1 and chopping off a small tip at the
end. We again start with algebra and combinatorics.

For a signed permutation Q ∈ B+
n+1 and a pair of indices (i, j) with (Q)(i,j) 6= 0 define

NE(Q, i, j) to be the number of pairs (i′, j′) with i′ < i, j′ > j and (Q)(i′,j′) 6= 0. In other
words, NE(Q, i, j) is the number of nonzero entries of Q in the northeast quadrant. Also set

SW(Q, i, j) = NE(QT , j, i).

It is easy to check that for all Q one has NE(Q, i, j)− SW(Q, i, j) = i− j.

Using the above notation define

δi(Q) = (Q)(i,j)(−1)NE(Q,i,j)

where j is the only index for which (Q)(i,j) 6= 0. Additionally, define

∆(Q) = diag(δ1(Q), δ2(Q), . . . , δn+1(Q)), and trd(Q) = trace(∆(Q)).

Lemma 6.1. det(Q) = det(∆(Q)).

Proof. Indeed, let π be the permutation such that π(j) = i if j is the only index for which
(Q)(i,j) 6= 0. Then

det(∆(Q)) =
∏
i

δi(Q) =

(∏
i

(Q)(i,j)

)
(−1)

∑
iNE(Q,i,j)

=

(∏
i

(Q)(i,j)

)
(−1)|{(i,i

′);i′<i,π−1(i′)>π−1(i)}| = det(Q).

�
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Thus ∆ is a function from B+
n+1 to Diag+

n+1 ⊂ B+
n+1. Notice that ∆(Q) = Q for any Q ∈

Diag+
n+1. We extend ∆ to a function from SOn+1 to Diag+

n+1 by declaring that if Q and Q′ are
Bruhat equivalent then ∆(Q) = ∆(Q′); we similarly extend the function trd(Q) to SOn+1. The
map ∆ : SOn+1 → Diag+

n+1 is a projection (in the sense that ∆(∆(Q)) = ∆(Q)) and therefore

defines a partition of SOn+1 into 2n classes of the from ∆−1(Q), Q ∈ Diag+
n+1. Furthermore, if

Q ∈ Diag+
n+1, we have ∆(QQ′) = Q∆(Q′) so that a class ∆−1(Q) is a fundamental domain for

the action of Diag+
n+1 on SOn+1 by multiplication.

Let A be the matrix used in the definition of Arnold duality. Notice that ∆(A) = I and
therefore ∆(QA) = Q for all Q ∈ Diag+

n+1. For Q ∈ SOn+1, its chopping is defined by
chop(Q) = ∆(Q)A. Thus the Bruhat equivalence class of chop(Q) is an open set, dense in
∆−1(∆(Q)) = chop−1(chop(Q)). The maps ∆ and chop as well as the functon trd : B+

n+1 → Z
will play a crucial role in our argument. (Notice that ∆ is not a group homomorphism).

Let us present a geometric interpretation for ∆ and chop. For γ ∈ LSn(Q) and ε > 0, we
define the naive chop of γ by ε as

chopε(γ)(t) = γ((1− ε)t).

A straightforward computation gives

Fchopε(γ)(t) = Fγ((1− ε)t), Λchopε(γ)(t) = (1− ε)Λγ((1− ε)t);

in particular,

Fchopε(γ)(1) = Fγ(1− ε).
The inconvenience here is that if ε > 0 is fixed and γ varies over the whole LSn(Q) we have no
control of Fchopε(γ)(1), the final frame of chopε(γ). The situation improves if we adapt that the
choice of ε depending on γ and focus on Bruhat cells instead of individual final frames.

Lemma 6.2. For any Q ∈ SO(n+ 1) and for any γ ∈ LSn(Q) there exists ε > 0 such that for
all t ∈ (1− ε, 1) we have that Fγ(t) ∈ Bru(chop(Q)).

In other words, given γ ∈ LSn there exists ε̃ > 0 such that, for all ε ∈ (0, ε̃), Fchopε(γ)(1) is
Bruhat equivalent to chop(Fγ(1)).

Before proving Lemma 6.2 we present an illustrative example for n = 2. Take

Q =

 0 1 0
−1 0 0
0 0 1

 .

and expand an arbitrary smooth curve γ ∈ LS2(Q) in a Taylor series near t = 1. Using x = t−1
we get γ(x) ≈ (x,−1, x2/2) (up to higher order terms) so that, for x ≈ 0,

Fγ(x) ≈

 x 1 0
−1 0 0
x2/2 x 1

 .

We now apply the above algorithm to find Q0 ∈ B+
n+1 which is Bruhat equivalent to Fγ(x)

when x is a negative number with a small absolute value (i.e., Q0 = U1Fγ(x)U2). We start at
the (3, 1)-th entry x2/2, which is positive. Thus, (Q0)3,1 = +1. We now concentrate on the
SW (i.e., bottom left) (2 × 2)-blocks of Fγ(x) and Q0: since Q0 = U1Fγ(x)U2, the signs of
the determinants of these two blocks should be equal; since its original value equals −x > 0,
the (2, 2)-th entry of Q0 equals −1. Finally, the (1, 3)-th entry must be set to 1 for the whole
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determinant to be positive. Summing up, if γ ∈ LS2(Q) then there exists ε > 0 such that for
any t ∈ (1− ε, 1) one has that Fγ(t) is Bruhat equivalent to

chop(Q) =

0 0 1
0 −1 0
1 0 0

 .

The general proof below follows the same idea.

Proof. As above, consider Q ∈ B+
n+1 with associated permutation π, so that Qi,j 6= 0 if and only

if π(j) = i. Write a Taylor approximation Fγ(x) ≈M(x) where

(M(x))i,j = sig(`)x`, π−1(i) = j + `, (Q)i,j+` = si,

where

g(`) =

{
1/`!, ` ≥ 0,

0, ` < 0.

Let Mk(x) be the SW (k× k)-block of M(x): from the algorithm, we must show that, for small
negative x, the matrix Mk(x) is invertible and compute the sign of its determinant.

Write M(x) = EGπXπ(x)M̃X̃(x) for

E = diag(si), Gπ = diag(g(π−1(i)− 1)), Xπ(x) = diag(xπ
−1(i)−1),

(M̃)i,j = (π−1(i)− 1)j−1, X̃(x) = diag(x1−i).

Here we use the notation ab = a(a− 1) · · · (a− b+ 1). Let Ek, G
π
k , X

π
k (x) be the SE k× k-blocks

of E,Gπ, Xπ(x), respectively. Similarly, let M̃k and X̃k(x) be the SW and NW k× k-blocks of

M̃ and X̃(x), respectively. We have Mk(x) = EkG
π
kX

π
k (x)M̃kX̃k(x) and therefore det(Mk(x))

is the product of the determinants of these blocks. We must therefore determine the sign of the
determinant of each block.

For real numbers a and b, we write a ∼ b if a and b have the same sign. We have detEk =∏
j≥n−k+2 si, detGπk ∼ 1,

detXπ
k (x) =

∏
j≥n−k+2

(xπ
−1(i)−1) = x(

∑
j≥n−k+1(π−1(i)−1))

(−1)(k+
∑
j≥n−k+2 π

−1(i))

and det X̃k(x) = x−k(k−1)/2 ∼ (−1)k(k−1)/2. In order to compute det M̃k, consider the Van-
dermonde matrix V π with (V π)i,j = (π−1(i) − 1)j−1; notice that there exists U ∈ U1

n+1 with

V π = M̃U . Let V πk be the SW k × k-block of V π, also a Vandermonde matrix. We have

det M̃k = detV πk =
∏

n−k+2≤j<j′≤n+1

(π−1(j′)− π−1(j)).

At this point we know that detMk 6= 0 (with the same sign for all small negative x) and

therefore there exists a diagonal matrix ∆̂(Q) ∈ B+
n+1 such that M(x) and M̂ = ∆̂(Q)A are

Bruhat equivalent. Write ∆̂(Q) = diag(δ̂i(Q)); we must compute δ̂i(Q). Let M̂k be the SW

k × k-block of M̂k: by Bruhat equivalence we have det M̂k ∼ det(Mk(x)); by construction we

have det M̂k = (−1)kn
∏
j≥n−k+2 δ̂j(Q). Thus δ̂n−k+2(Q) ∼ (−1)n det(Mk(x)) det(Mk−1(x)).
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We have

detEk detEk−1 = sn−k+2 = Qn−k+2,π−1(n−k+2),

detXπ
k (x) detXπ

k−1(x) ∼ (−1)π
−1(n−k+2)−1,

det X̃k det X̃k−1 ∼ (−1)k−1,

det M̃k det M̃k−1 ∼
∏

n−k+2<j′≤n+1

(π−1(j′)− π−1(n− k + 2))

∼ (−1)SW(Q,n−k+2,π−1(n−k+2))

and therefore

δ̂n−k+2(Q) ∼ (−1)nQn−k+2,π−1(n−k+2)(−1)SW(Q,n−k+2,π−1(n−k+2))+k+π−1(n−k+2).

Since both sides have absolute value 1 the latter relation is actually an equality; for i = n−k+2
and j = π−1(n− k + 2) we then have

δ̂i(Q) = Qi,j(−1)SW(Q,i,j)+i+j = Qi,j(−1)NE(Q,i,j) = δi(Q).

Thus ∆̂(Q) = ∆(Q) and we are done. �

A geometric description of the situation is now more clear. The Bruhat cells of the form
Bru(DA), D ∈ Diag+

n+1, are disjoint open sets and their union is dense in SOn+1. The comple-
ment of this union is the disjoint union of Bruhat cells of lower dimension. Let Γ : (−ε, ε) →
SOn+1 be a smooth Jacobian curve (i.e., with Λ(t) = (Γ(t))−1Γ′(t) ∈ T for all t ∈ (−ε, ε)): if
Γ(0) does not belong to a top-dimensional Bruhat cell then the function chop and Lemma 6.2
tell us in which cell Γ(t) falls for t < 0, |t| small. In other words, provided you follow a Jaco-
bian curve you can only arrive at a given low-dimensional Bruhat cell from one of the adjacent
top-dimensional cells.

As discussed above, the decomposition into Bruhat cells lifts of Spinn+1. The above geometric

characterization of chop thus also lifts to a map chop : Spinn+1 → B̃+
n+1. Let a = chop(1)

(so that Π(a) = A) and define ∆ : Spin(n + 1) → D̃iag
+

n+1 by chop(z) = ∆(z)a. We shall not
attempt to give a combinatorial description of ∆ or chop in the spin groups.

We present yet another interpretation of the chopping operation. Let Γ : (t0 − c, t0 + c) →
Spinn+1 be a Jacobian curve. Notice that if Γ is Jacobian and z ∈ Spinn+1 then so is zΓ
(their logarithmic derivatives are equal). Thus, Lemma 6.2 can be extended to show that for all
z ∈ Spinn+1 one has that zΓ(t0− ε) ∈ Bru(chop(zΓ(t0))) or Γ(t0− ε) ∈ z−1 Bru(chop(zΓ(t0))).
In particular, taking z = (Γ(t0))−1, we have Γ(t0 − ε) ∈ Γ(t0) Bru(a). Conversely, given Q1 ∈
SOn+1 and Q0 ∈ Q1 Bru(A) there exists a globally Jacobian curve Γ : [0, 1] → SOn+1 with
Γ(0) = Q0, Γ(1) = Q1 (so that γ : [0, 1]→ Sn, γ(t) = Γ(t)e1, is globally convex). The following
statement thus follows from Lemma 6.2.

Corollary 6.3. Given Q ∈ SOn+1 there exists an open set U ⊂ SOn+1 with Q ∈ U and
U ∩ (QBru(A)) ⊆ Bru(chop(Q)). Similarly, given z ∈ Spinn+1 there exists an open set U ⊂
Spinn+1 with z ∈ U and U ∩ (zBru(a)) ⊆ Bru(chop(z)).

Proof. The SOn+1 case follows from the remarks above together with Lemma 6.2; the Spinn+1

case is similar. �

The next statement is crucial in our consideration.
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Proposition 6.4. For any z ∈ B̃+
n+1 there are homeomorphisms

LSn+1(z) ≈ LSn+1(chop(z)) ≈ LSn+1(∆(z)).

We need a few preliminary constructions and results. Consider a Jacobian curve Γ0 : [0, 1]→
SOn+1 with Γ0(0) = Q0 and Γ0(1) = Q1. Define CQ0,Γ0,Q1 : LSn+1(Q0)→ LSn+1(Q1) by

(CQ0,Γ0,Q1
(γ))(t) =

{
γ(2t), t ≤ 1/2,

Γ0(2t− 1)e1, t ≥ 1/2.

Lemma 6.5. Consider a globally Jacobian curve Γ0 : [0, 1]→ SOn+1 whose image is contained
in a Bruhat cell. Let Q0 = Γ0(0), Q1 = Γ0(1) and U ∈ U1

n+1 with B(U,Q0) = Q1. Then the maps
BQ0,U,Q1

and CQ0,Γ0,Q1
are homotopic. In particular, CQ0,Γ0,Q1

is a homotopy equivalence.

Proof. Since Q0 and Γ(s) are in the same Bruhat cell for all s ∈ [0, 1] we can define a continuous
function U : [0, 1] → U1

n+1 with B(U(s), Q0) = Γ(s), U(0) = I, U(1) = U . Define H :
LSn(Q0)× [0, 1]→ LSn(Q1) by

(H(γ, s))(t) =

{
BQ0,U(s),Γ(s)(2t/(1 + s)), t ≤ (1 + s)/2,

Γ0(2t− 1)e1, t ≥ (1 + s)/2.

The map H produces the desired homotopy from CQ0,Γ0,Q1
to BQ0,U,Q1

. �

To prove Proposition 6.4 we will also use the following previously known facts.

Fact 1 (comp. Lemma 5 in [13]). For any z ∈ Spinn+1 the space LSn(z) has two connected
components if and only if there exists a globally convex curve in LSn(z). One of these connected
components is the set of all globally convex curves in LSn(z) and this connected component is
contractible. If LSn(z) contains no globally convex curves then it is connected.

Fact 2 (comp. Theorem 0.1 in [3]). Let M and N be two topological Hilbert manifolds. Then
any weak homotopy equivalence f0 : N →M is homotopic to a homeomorphism f1 : N →M .

Let z1 ∈ B̃+
n+1 and consider a smooth Jacobian curve Γaux : [−ε, ε]→ Spinn+1 with Γaux(0) =

z1. Choose ε sufficiently small so that the image of Γaux([−ε, 0)) ⊂ Bru(chop(z1))∩ (z1 Bru(a)).
Let z0 = Γaux(−ε), Γ0(t) = Γaux(ε(t − 1)). Proposition 6.4 now follows directly from the next
lemma.

Lemma 6.6. The map Cz0,Γ0,z1 : LSn(z0)→ LSn(z1) is a weak homotopy equivalence.

Proof. For k a non-negative integer, let α : Sk → LSn+1(z1): we construct α̃ : Sk → LSn+1(z0)
and a homotopy H : Sk × [0, 1]→ LSn+1(z1) with H(s, 0) = α(s), H(s, 1) = Cz0,Γ0,z1(α̃(s)). By
compactness and continuity, there exists ε1 > 0 such that for all s ∈ Sk and for all t ∈ [1− ε1, 1)
we have Fα(s)(t) ∈ Bru(chop(z1)) ∩ (z1 Bru(a)). Again by compactness and continuity, there

exists ε2 > 0, ε2 < ε1/2, such that for all s ∈ Sk we have Fα(s)(1− ε1) ∈ Bru(chop(z1))∩ (Γ0(1−
ε2) Bru(a)). Thus, for each s ∈ Sk, the space Xs of globally Jacobian curves Γs : [1 − ε1, 1]
for which Γs(1 − ε) = Fα(s)(1 − ε1) and Γs(1) = z1 is non-empty (since α(s)|[1−ε1,1] ∈ Xs) and
therefore, by Fact 1, a contractible space. Consider the subspace Ys ⊂ Xs of curves for which
Γs(t) = Γ0(t) for t ≥ 1 − ε2; the condition Fα(s)(1 − ε1) ∈ (Γ0(1 − ε2) Bru(a)) implies that
Ys is non-empty and Fact 1 implies that is Ys also contractible. We may therefore construct a
homotopy H1 : Sk × [0, 1] → LSn+1(z1) with H(s, 0) = α(s), H(s, s̃) ∈ Xs and H(s, 1) ∈ Ys.
In other words, we may assume without loss of generality that there exists ε2 > 0 such that
α(s)(t) = γ0(t) for all s ∈ Sk and t > 1− ε2.
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Set z2 = Γ0(1 − ε2) and Γ2 : [0, 1] → Spinn+1 with Γ2(t) = Γ0((1 − ε2) + ε2t). We may
reparameterize the curves so that, for all s, α(s)(1/2) = z2 and α(s)(t) = Γ2(2t− 1) for t ≥ 1/2.
In other words, we may assume that α(s) = Cz2,Γ2,z1 α̂(s). Set Γ3(t) = Γ0(t/(1−ε2)); Lemma 6.5
tells us that Cz0,Γ3,z2 : LSn(z0)→ LSn(z2) is a homotopy equivalence: α̂ is therefore homotopic
to Cz0,Γ3,z2 ◦ α̃ for some α̃ : Sk → LSn(z0), implying that α is homotopic to Cz0,Γ0,z1 ◦ α̃, as
desired. This completes the proof that πk(Cz0,Γ0,z1) : πk(LSn(z0))→ πk(LSn(z1)) is surjective.

The proof that this map is injective is similar. Let α̃ : Sk → LSn(z0) and α = Cz0,Γ0,z1 ◦ α̃;
assume that α̃ is homotopically trivial, i.e., that there exists H : Bk+1 → LSn(z1) with H|Sk = α:
we need to prove that α is homotopically trivial. As above, change H so that H(s) agrees with

Γ0 near 1, i.e., we may assume H to be of the form H = Cz2,Γ2,z1 ◦ Ĥ. We therefore have
that Cz0,Γ3,z2 ◦ α̃ is homotopically trivial. Since Cz0,Γ3,z2 : LSn(z0) → LSn(z2) is a homotopy
equivalence we are done. �

7. Proof of Theorem 1

First we reformulate Theorem 1 using the language of the prevous sections.

Theorem 3. Let Q0, Q1 ∈ SOn+1: if trd(Q0) = trd(Q1) then LSn(Q0) and LSn(Q1) are
homeomorphic.

Let z0, z1 ∈ Spinn+1: if trd(z0) = trd(z1) and | trd(z0)| 6= n + 1 then LSn(z0) and LSn(z1)
are homeomorphic.

Theorem 1 follows directly from Theorem 3. The condition | trd(z0)| 6= n + 1 in the spin
part is necessary: for n = 2 and 1,−1 ∈ Spin3 the two central elements the spaces LS2(1) and
LS2(−1) are not homeomorphic since they have different numbers of connected components.

Recall that from Lemmas 3.1 and 6.6 and Proposition 6.4 we already know that if ∆(Q0) =
∆(Q1) then LSn(Q0) and LSn(Q1) (as well as LSn(∆(Q0))) are homeomorphic; we have a similar
result for the spin group. We are therefore left to consider the spaces LSn(Q), Q ∈ Diag+

n+1,
and their spin counterparts. A number of additional statements are required for the proof of
Theorem 3.

Lemma 7.1. Let D0, D1 ∈ Diag+
n+1 with trd(D0) = trd(D1). Then there exists Q ∈ B+

n+1 with
∆(Q) = D0, ∆(TR(Q)) = D1. Thus LSn(D0) and LSn(D1) are homeomorphic.

Proof: Let π be a permutation of {1, 2, . . . , n+ 1} with (D1)π(i),π(i) = (D0)i,i for all i. Let P
be a permutation matrix with (P )(i,j) = 1 if and only if j = π(i). Set Q = D0∆(P )P : we have
∆(Q) = D0∆(P )∆(P ) = D0. On the other hand, if π(i) = j, we have δj(TR(Q)) = δi(Q) (from
the proof of Lemma 7.3) and therefore δj(TR(Q)) = (D0)(i,i)(∆(P ))(i,i)δi(P ) = (D0)(i,i) =
(D1)j,j and ∆(TR(Q)) = D1. The last claim follows from Proposition 6.4. �

This completes the proof of Theorem 3 for the SOn+1 case: one judicious use of the equiv-
alences proved in the previous section is enough. The spin case is slightly subtler: it turns out
that a single instance of the equivalences is not enough, which can be readily checked by an
exhaustive search in the case n = 2. A small chain of consecutive instances of the equivalences
are therefore used.

Lemma 7.2. Let z0, z1 ∈ D̃iag
+

n+1 with trd(z0) = trd(z1) 6= ±(n+1). Then there exist w0, w1 ∈
B̃+
n+1 with ∆(w0) = z0, ∆(TR(w1)) = z1 and either ∆(TR(w0)) = ∆(w1) or ∆(TR(w0)) =

TR(∆(w1)). Thus LSn(z0) and LSn(z1) are homeomorphic.
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Proof. Take s = trd(z0) and apply Lemma 4.1 to obtain z ∈ D̃iag
+

n+1 with TR(z) = −z. Let

Q0 = Π(z0), Q1 = Π(z1), Q = Π(z). By Lemma 7.1 there exist P0, P1 ∈ B+
n+1 with ∆(P0) = Q0,

∆(TR(P0)) = Q, ∆(P1) = Q, ∆(TR(P1)) = Q1. Take w0, w1 ∈ B̃+
n+1 with Π(w0) = P0,

Π(w1) = P1, ∆(w0) = z0, ∆(TR(w1)) = z1. We have ∆(TR(w0)) = ±z and ∆(w1) = ±z and
we are done. �

Theorem 3 follows directly from Lemmas 7.1 and 7.2.

It is natural to ask whether Theorem 3 is the strongest possible such statement, i.e., if spaces
which it does not declare homeomorphic are actually not homeomorphic. We do not know the
answer to this question (see Problem 2 below) but the following proposition shows that it is the
strongest result which follows (or follows directly) from the remarks of the previous sections.

Proposition 7.3. For all Q ∈ B+
n+1 we have trd(AD(Q)) = trd(TR(Q)) = trd(Q).

Proof: Assume (Q)(i,j) 6= 0. We have

δn+2−i(AD(Q)) = (AD(Q))(n+2−i,n+2−j)(−1)NE(AD(Q),n+2−i,n+2−j)

= (−1)(i+j)Q(i,j)(−1)SW(Q,i,j) = Q(i,j)(−1)NE(Q,i,j) = δi(Q)

and

δj(TR(Q)) = (TR(Q))(j,i)(−1)NE(TR(Q),j,i)

= (−1)(i+j)(Q)(i,j)(−1)SW(Q,i,j) = Q(i,j)(−1)NE(Q,i,j) = δi(Q).

The proposition now follows. �

8. Proof of Theorem 2

Our nearest goal is to prove Theorem 2(i), i.e. the fact that the inclusion L̂Sn(z) ⊂ Ω Spinn+1(z)
is homotopically surjective for all z and then to settle Theorem 2(ii), i.e. that this inclusion is
a homotopy equivalence if Π(z) = ±J+.

Recall that the group SOn+1 ⊂ R(n+1)×(n+1) has a natural Riemann metric and Spinn+1

inherits it via Π. With this metric, let rn+1 > 0 be the injectivity radius of the exponential map,
i.e., rn+1 is such that if z0, z1 ∈ Spinn+1, d(z1, z2) < rn+1, then there exists a unique shortest
geodesic gz0,z1 : [0, 1]→ Spinn+1 (parametrized by a constant multiple of arc length) joining z0

and z1 so that gz0,z1(i) = zi, i = 0, 1.

We will need another technical lemma.

Lemma 8.1. Let K be a smooth compact manifold and α : K × [0, 1] → Spinn+1 be a smooth

function and write αs(t) = α(s, t). Then there exists ξ? ∈ LSn(1) and corresponding Ξ? ∈ L̂Sn
such that ξTR

? = ξ? and the curves γs(t) = αs(t)ξ?(t) are positive locally convex for all s ∈ K.
Furthermore, given ε > 0, ε < rn+1, we may assume that

d(F̃γs(t), αs(t)Ξ?(t)) < ε

for all s ∈ K, t ∈ [0, 1].
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Figure 2. Approximating a curve by a locally convex curve

The intuitive picture here, at least for n = 2, is that an arbitrary curve γ : S1 → Sn can be
replaced by a phone wire, a locally convex curve which in some sense follows γ while quickly
rotating in a transversal direction to guarantee local convexity (see Figure 2).

Proof: Take ξ1 ∈ LSn(1) as in Lemma 2.2. We claim that ξ?(t) = ξ1(Nt) satisfies the lemma

for a sufficiently large integer N . Notice that ξ
(k)
? (t) = Nkξ

(k)
1 (Nt) and

γ(k)
s (t) = Nk

(
αs(t)ξ

(k)
1 (Nt) + · · ·+ 1

N j

(
k

j

)
α(j)
s (t)ξ

(k−j)
1 (Nt) + · · ·

)
= Nk(αs(t)ξ

(k)
1 (Nt) + Ek(N, s, t))

where Ek(N, s, t) tends to 0 when N →∞. Since

det(αs(t)ξ1(Nt), . . . , αs(t)ξ
(n)
1 (Nt)) = det(ξ1(Nt), . . . , ξ

(n)
1 (Nt))

is positive and bounded away from 0 it follows that γs is indeed locally convex for sufficiently
large N . Furthermore, the identities(

αs(t)ξ1(Nt) + E0(N, s, t) · · · αs(t)ξ
(n)
1 (Nt) + En(N, s, t)

)
= Fγs(t)Rγs(t)(

αs(t)ξ1(Nt) · · · αs(t)ξ
(n)
1 (Nt)

)
= αs(t)Ξ?(t)Rξ?(t),

where Rγs(t) and Rξ?(t) are upper triangular matrices with positive diagonals, show that

d(F̃γs(t), αs(t)Ξ?(t)) can be made arbitrarily small by choosing large N . �

Proposition 8.2. For any z ∈ Spinn+1 the inclusion L̂Sn(z) ⊂ Ω Spinn+1(z) is homotopically

surjective. In other words, given α0 : Sk → Ω Spinn+1(z) there exists a homotopy in Ω Spinn+1(z)

from α0 to α1 : Sk → L̂Sn(z) ⊂ Ω Spinn+1(z).

Proof. Write α0(s; t) = α0(s)(t). Assume without loss of generality that α0 is smooth if inter-
preted as α0 : Sk× [0, 1]→ Spinn+1. Assume furthermore that α0 is flat at both t = 0 and t = 1,

i.e., that (α0(s))(m)(t) = 0 for t ∈ {0, 1}, for all s ∈ Sk and all m > 0. By Lemma 8.1, there

exist ξ? ∈ LSn(1) and corresponding Ξ? ∈ L̂Sn(1) such that

d(F̃γs(t), α0(s; t)Ξ?(t)) <
rn+1

2

for all s ∈ Sk, t ∈ [0, 1]; here, as in Lemma 8.1, γs(t) = α(s; t)ξ?(t). The flatness condition
guarantees that

F̃γs(0) = α0(s; 0)Ξ?(0) = 1, F̃γs(1) = α0(s; 1)Ξ?(1) = z.

Recall that Ξ? ∈ Ω Spinn+1(1): let H : [0, 1] → Ω Spinn+1(1) be a homotopy between the
constant path H(0)(t) = 1 and H(1) = Ξ?.
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Take α1(s; t) = F̃γs(t) and α1/2(s; t) = α0(s; t)Ξ?(t). Clearly, α1 : Sk → L̂Sn(z) ⊂ Ω Spinn+1(z),
as required. It suffices to construct homotopies between α0 and α1/2 and between α1/2 and α1.
The homotopy between α0 and α1/2 is given by

ασ(s; t) = α0(s; t)H(2σ)(t), σ ∈ [0, 1/2].

Recall that d(α1/2(s; t), α1(s; t)) < rn+1/2: the homotopy between α1/2 and α1 is defined by
joining these two points of Spinn+1 by the uniquely defined shortest geodesic (parametrized by
a constant multiple of arc length):

ασ(s; t) = gα1/2(s;t),α1(s;t)(2σ − 1), σ ∈ [1/2, 1].

�

Proposition 8.3. Assume Π(z) = ±J+: then the inclusion L̂Sn(z) ⊂ Ω Spinn+1(z) is a weak

homotopy equivalence. In other words (given Proposition 8.2), if Ĥ0 : Bk+1 → Ω Spinn+1(z) takes

Sk ⊂ Bk+1 to L̂Sn(z) ⊂ Ω Spinn+1(z) then there exist H1 : Bk+1 → LSn(z) and corresponding

Ĥ1 : Bk+1 → L̂Sn(z) with Ĥ0|Sk = Ĥ1|Sk .

Clearly if Π(z) = ±J+ then s(z) must be 0, 1 or −1. Theorem 2 therefore follows from
Proposition 8.3 and Fact 2.

Proof. Assume without loss of generality that H0 is smooth. Take ξ? ∈ LSn(1) as in Lemma

8.1 so that, for any s ∈ Bk+1, γ(s) = Ĥ0(s)ξ? ∈ LSn(z). We may furthermore assume that the

curves Ĥ0(s)(C1t)ξ?(C2t + C3) are locally convex for any s ∈ Bk+1, for any C1, C2 ∈ [1/10, 10]
and for any C3 ∈ R. Recall that ξ?(t) = ξ1(Nt) for some large N : take N to be a multiple
of 4 so that Ξ?(1/4) = Ξ?(1/2) = Ξ?(3/4) = 1, Ξ?(t) = TR(Ξ?(t)) = J+(Ξ?(t))

−1J+ and
Ξ?(1− t) = (Ξ?(t))

−1. Recall that Λξ? is constant: let B = Λξ?(t). Set

H1(s)(t) = γ(2s)(t) = Ĥ0(s)(t)ξ?(t), |s| ≤ 1/2.

We now define H1 in the two regions |s| ∈ [1/2, 3/4] and |s| ∈ [3/4, 1].

For s ∈ [3/4, 1] we squeeze the function Ĥ0(s/|s|) to a central interval [1− |s|, |s|] and attach
chunks of ξ?(2t) outside the central interval. For

n = 2, Q =

 0 0 −1
0 −1 0
−1 0 0

 = chop(−J+),

the construction is illustrated in Figure 3: we can add chunks of a locally convex curve at
the endpoints and translate in the sphere (i.e., rotate in R3) the central portion of the curve.
Continue the process to add several closed circles at both endpoints.

The general construction is perhaps best stated in terms of Λ: for |s| ∈ [3/4, 1]

ΛH1(s)(t) =


2B, 0 ≤ t < 1− |s|,

1
2|s|−1ΛĤ0(s/|s|)

(
t−1+|s|
2|s|−1

)
, 1− |s| ≤ t ≤ |s|,

2B, |s| < t ≤ 1.

Recall that Λ is only assumed to be of class L2 and therefore the jump discontinuities are allowed.
The curve H1(s) defined using the above Λ is by construction locally convex: we must verify
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Figure 3. Approximating a curve by a locally convex curve

that FH1(s)(1) = Ĥ1(s)(1) = z. We have Ĥ1(s)(1− |s|) = Ξ?(2(1− |s|)); for 1− |s| ≤ t ≤ |s| we
therefore have

Ĥ1(s)(t) = Ξ?(2(1− |s|))Ĥ0(s/|s|)
(
t− 1 + |s|
2|s| − 1

)
and Ĥ1(s)(|s|) = Ξ?(2(1− |s|))z; finally, at least in SOn+1 we have

Ĥ1(s)(1) = Ξ?(2(1− |s|))zΞ?(2(1− |s|))
= Ξ?(2(1− |s|))(±J+)Ξ?(2(1− |s|))(±J+)z

= Ξ?(2(1− |s|))(Ξ?(2(1− |s|)))−1z = z

(recall that z = ±J+ and that J+Ξ?(t)J+ = (Ξ?(t))
−1); by continuity we have Ĥ1(s)(1) = z in

Spinn+1 for all s with |s| ∈ [3/4, 1].

The missing step is |s| ∈ [1/2, 3/4]. For n = 2, the circles which are concentrated at the
endpoints for |s| = 3/4 must spread along the curve as s approaches 1/2. More algebraically,
notice that for both |s| = 1/2 and |s| = 3/4, we can write H1(s)(t) = (A|s|(s/|s|)(t))(β|s|(t)),
A|s|(s/|s|) : [0, 1]→ SOn+1, β|s| : [0, 1]→ Sn. From the constructions above we have

A 1
2
(s/|s|)(t) = Ĥ0(s/|s|)(t), β 1

2
(t) = ξ?(t),

A 3
4
(s/|s|)(t) = Ĥ0(s/|s|)(g 3

4
(t)), β 3

4
(t) = ξ?(h 3

4
(t))

where

g 3
4
(t) =


0, 0 ≤ t ≤ 1

4 ,

2t− 1
2 ,

1
4 ≤ t ≤

3
4 ,

1, 3
4 ≤ t ≤ 1,

h 3
4
(t) =


2t, 0 ≤ t ≤ 1

4 ,
1
2 ,

1
4 ≤ t ≤

3
4 ,

2t− 1, 3
4 ≤ t ≤ 1.

We complete the definition of H1 with

H1(s)(t) = (A|s|(s/|s|)(t))(β|s|(t)), 1/2 ≤ |s| ≤ 3/4

Aσ(s/|s|)(t) = Ĥ0(s/|s|)(gσ(t)), βσ(t) = ξ?(hσ(t)),

gσ and hσ as plotted in Figure 4 (notice that g 1
2
(t) = h 1

2
(t) = t).

We are left with proving that H1(s) is locally convex. For t ∈ [0, |s| − 1
2 ] ∪ [ 3

2 − |s|, 1], H1(s)

is a reparametrization of ξ? and therefore locally convex. For t ∈ [|s| − 1
2 , 1− |s|] ∪ [|s|, 3

2 − |s|],
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1

g

1s−1/2 3/2−s

1

1

h

s

1/2

1−s

Figure 4. The functions gσ and hσ

locally convexity follows from Lemma 8.1 or, perhaps more precisely, from the choice of ξ? as
described at the beginning of the proof. Finally, for t ∈ [1−|s|, |s|], H1(s) is a reparametrization
of H0(s/|s|) and therefore again locally convex. This completes the construction of H1 and the
proof. �

9. Final remarks and open problems

9.1. Is Theorem 1 strong? For n = 2, Theorems 1 and 2 imply that any space LS2(z) is
homeomorphic to one of three spaces LS2(1), LS2(−1) or Ω Spin(3) = ΩS3. From [6], we know
that LS2(1) and LS2(−1) have 1 and 2 connected components, respectively, and ΩS3 is clearly
connected. From [8] and [9], we know that dimH2(LS2(1);R) = 2, dimH2(LS2(−1);R) = 1
and dimH4(LS2(−1);R) ≥ 2. Thus, these three spaces are not pairwise homeomorphic; also,
the non-contractible connected component of LS2(−1) is not homeomorphic to either ΩS3 or
LS2(−1).

Unfortunately, similar information is unavailable for n > 2. We formulate the following
question.

Problem 2. Are the dn2 e + 1 subspaces LSn(Mn+1
s ) (and similar space of curves in Spinn+1)

appearing in Theorem 1 pairwise non-homeomorphic for n > 2?

Our best guess is that the answer is positive.

9.2. Bounded curvature. A first natural generalization of the space of locally curves on S2 is
the space of curves whose curvature κ at each point is bounded by two constants m < κ < M .

Problem 3. Is it true that there are only finitely many topologically distinct spaces of curves
whose curvature is bounded as above among the spaces of such curves with the fixed initial and
variable finite frames?
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9.3. Other Lie groups. The space L̂Sn is a special instance of a more general construction
on an arbitrary compact Lie group. Given a compact Lie group G, consider a non-holonomic
subspace of its Lie algebra (i.e., this subspace generates the whole algebra). Consider some
polytopal convex cone in this subspace. Take the left-invariant distribution of cones on G
obtained by its left translation in the algebra. Finally, consider spaces of curves on G tangent
to the obtained cone distribution which start at the unit element and end at some fixed point
of G.

This generalization includes the scenario described in the previous subsection as a special case
(G is SO3 and the subspace consists of skew tridiagonal matrices, just as for our problem; the
only difference is the cone).

Problem 4. Is it true that there are only finitely many topologically distinct spaces of such
curves with the fixed initial and variable finite point?

This is likely to be too optimistic an attempt of generalization, but perhaps the finiteness
condition holds true with some interesting additional hypothesis. For instance, our cone is the
interior of the convex hull of a small set of rather special vectors: maybe some such condition is
needed.

9.4. The homotopy type of spaces of closed locally convex curves. Finally, the most
interesting problem in this context is to describe the homotopy type of the space of closed locally
convex curves. The aim of [10] is to address this problem for n = 2; see partial results in [8], [9].
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