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Fronts of Whitney umbrella – a differential geometric

approach via blowing up

Toshizumi FUKUI and Masaru HASEGAWA

Abstract

We investigate the differential geometric ingredients for Whitney umbrella, which is
known as the only stable singularity of surface to 3-dimensional Euclidean space. We
obtain several criteria of the singularity types of fronts of Whitney umbrella in terms of
differential geometric language we discuss.
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1 Introduction

H. Whitney [28] has found Whitney umbrella (also known as the cross-cap) as singularities
which are not avoidable by small perturbation. This is very important singularity type, since
it is the only singularity of a map of surface to 3-dimensional Euclidean space which is sta-
ble under small deformations. This singularity is fundamental in the context of differential
topology but it does not seems that Whitney umbrella is a subject of differential geometry,
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at least before C. Gutierrez and J. Sotomayor ’s paper [10]. Motivated by Darboux’s classi-
fication ([5]), they aimed to determine the configuration of lines of curvature near Whitney
umbrella, and complete it in [9]. J. W. Bruce and J. M. West [3] investigated functions
on Whitney umbrella using singularity theory. In [8], we show that a unified treatment for
differential geometric properties for regular and singular maps g : (R2,0) → (R3,0) and
show that Whitney umbrella is not a bad singularity ([8, proposition 4.2]) from the view
point of investigating singularities of distance squared functions. In other words, Whitney’s
umbrella is as good as (or as bad as) Darbouxian umbilics (i.e., both are characterised by the
condition that rankR(g, 0) = 4 in the notation of [8]). Several authors continue to investigate
the configuration of the solution curves of particular binary differential equations (i.e. lines
of curvature, asymptotic and characteristic curves) in [20, 24]. In [19], the classification of
parabolic lines of Whitney umbrella is used to investigate the projections of smooth surface
in R4 to 3-spaces.

When we consider parallel surfaces of a regular surface, we are not able to avoid singulari-
ties. These singularities are often called front and this subject is investigated by M. Kokubu,
W. Rossman, K. Saji, M. Umehara and K. Yamada [16]. They mean by a front a map
g : (R2,0)→ R3 such that there exists a well-defined normal n : (R2,0)→ S2 ⊂ R3 so that
(g,n) : (R2,0)→ (R3,0)× S2 is an immersion. Cuspidal edges and swallowtails are typical
singularity types of fronts. In [16], criteria for the these singularities are given. Furthermore,
criteria for the cuspidal lips and the cuspidal beaks are given in [15], criterion for the cuspi-
dal butterfly is given in [14], and criteria for the D4-singularities are given in [23]. Whitney
umbrella is not a front in their sense, since any unit normals defined at regular points near
the singular point cannot extend continuously to the singular point.

Physically, the wave propagation is described by Huygens’s principle: every point to which
a luminous disturbance reached becomes a source of a spherical wave, and the sum of these
secondary waves determines the form of the wave front at any subsequent time. We remark
that this does not require the notion of unit normal vectors. Mathematically, a wave front
is the envelope of the spherical waves, and this requires us to investigate the singularities of
the members of the family of functions:

Φ : (R2,0)×R3 → R, (u, v)× (x, y, z) 7→ −1

2
(‖(x, y, z)− g(u, v)‖2 − t02) (1.1)

where t0 is a constant. The family Φ is an unfolding of the distance squared function ϕ(u, v) =
Φ(u, v, x0, y0, z0) where (x0, y0, z0) is a point in R3, and the discriminant set D(Φ) of Φ is a
(wave) front of g at distance |t0| where

D(Φ) = {(x, y, z) ∈ R3 ; Φ = Φu = Φv = 0 for some (u, v) ∈ (R2,0)}.

For regular surfaces, we investigate the distance squared unfolding Φ and show several criteria
for singularity types of parallel surfaces in terms of differential geometric language (principal
curvatures, ridge points, sub-parabolic points, etc.) in [7]. In this paper, we investigate
singularities of the distance squared unfolding for Whitney’s umbrella, and show similar
criteria for versality (Theorems 3.7). To investigate the singularities of the distance squared
unfolding for Whitney’s umbrella, we need several differential geometric languages of Whitney
umbrella.
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We also investigate the focal sets (caustics) of Whitney umbrella, since the bifurcation
set B(Φ) of Φ represents the focal set where

B(Φ) = {(x, y, z) ∈ R3 ; Φu = Φv = ΦuuΦvv − Φuv
2 = 0 for some (u, v) ∈ (R2,0)}.

In Section 2, we introduce some differential geometric ingredients (principal curvatures,
ridge, sub-parabolic points, etc.) for Whitney umbrella. For regular surfaces in Euclidean
3-space, several authors investigate ridge points and sub-parabolic points; see for example
[2], [4], [18], [21], and [22]. The ridge points were first studied in details by I. Porteous [21] in
terms of singularities of distance squared functions. The ridge line is the locus of points where
one principal curvature has an extremal value along lines of the same principal curvature.
The sub-parabolic points were studied in details by J. W. Bruce and T. C. Wilkinson [4] in
terms of singularities of folding maps. The sub-parabolic line is the locus of points where
one principal curvature has an extremal value along lines of the other principal curvature.
Recently, in the case of the hyperbolic space, the analogous notion to the ridge point of
hypersurfaces is introduced in [13], and the analogous notion to the sub-parabolic point of
smooth surfaces is introduced in [12]. We develop the differential geometric ingredients over
Whitney umbrella, which seem to be missing pieces of knowledge of the people who work on
singularity theory and differential geometry. Since Whitney umbrella is a singularity of rank
one, the tangent planes of nearby point degenerate to the tangent line at the singularity, and
the normal lines are developed to the normal plane at the singular point. This means that
we have a chance to have a bounded normal curvature in one direction at singular point.

In Section 2.1, we first show that for Whitney umbrella there is a well-defined unit normal
via the double oriented blowing-up ([11, example (a) in p. 221]):

π̃ : R× S1 → R2, (r, θ) 7→ (r cos θ, r sin θ). (1.2)

Then we are able to talk about principal curvatures and principal directions via π̃, and we
discuss their asymptotic behaviours in Section 2.3.

LetM denote the quotient space of R×S1 with identification (r, θ) ∼ (−r, θ+ π). Then
we obtain a natural map

π :M→ R2, [(r, θ)] 7→ (r cos θ, r sin θ), (1.3)

which we usually call a blow up. We remark that M is topologically a Möbius strip. It is
a natural problem to ask configurations of the parabolic line, ridge lines, sub-parabolic lines
etc. on M near the exceptional set X = π−1(0, 0). We show

(1) The parabolic line intersects with X in at most two points (Proposition 2.3),

(2) Along an arc which reaches the singularity of Whitney umbrella, one principal curvature
κ1 is bounded if the arc is not tangent to the double point locus, and the other principal
curvature κ2 tends to infinity (Lemma 2.2),

(3) The ridge line with respect to κ1 intersects with X in at most four points (Lemma 2.6,
see Lemma 2.7 also) in generic context,

(4) The ridge line with respect to κ2 intersects with X at two points (Proposition 2.10),
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(5) The sub-parabolic line with respect to κ1 intersects with X in at most three points
(Lemma 2.11), and

(6) A constant principal curvature (CPC) line intersects with X in at most four points
(Proposition 2.16).

In Section 3, we investigate singularities of the distance squared unfolding Φ defined by
(1.1). We define the focal conic in the normal plane as a counterpart of focal points, and
discuss versality of the unfolding Φ of ϕ, which is one of the fundamental notion in singularity
theory. As a consequence, we are able to determine singularity types of caustics and fronts
of Whitney umbrella in Section 4. We summarise our results as follows:

(1) If (x0, y0, z0) is on the focal conic, then ϕ is at least A2-singularity.

(2) If (x0, y0, z0) 6= g(0, 0) does not correspond to the ridge over Whitney umbrella, then ϕ
has an A2-singularity and Φ is an R+-versal unfolding (and a K-versal unfolding). The
caustic is nonsingular at (x0, y0, z0), and the front has the cuspidal edge at (x0, y0, z0).

(3) If (x0, y0, z0) 6= g(0, 0) corresponds to the first-order ridge over Whitney umbrella, then
ϕ has an A3-singularity and Φ is R+-versal. Thus the caustic has the cuspidal edge at
(x0, y0, z0). Moreover if (x0, y0, z0) does not correspond to the sub-parabolic point over
Whitney umbrella, then Φ is a K-versal unfolding. We thus conclude that the front has
the swallowtail at (x0, y0, z0)

(4) If (x0, y0, z0) 6= g(0, 0) corresponds to the first-order ridge and the sub-parabolic over
Whitney umbrella, and the CPC line has definite (resp. indefinite) Morse singularity
on X, then the front is the cuspidal lips (resp. cuspidal beaks) at (x0, y0, z0).

(5) If (x0, y0, z0) 6= g(0, 0) corresponds to the second-order ridge and does not correspond to
the sub-parabolic point over Whitney umbrella, then the front is the cuspidal butterfly
at (x0, y0, y0).

See Theorem 3.7 and Theorem 4.3 for a precise statement. We remark that there are no
D4-singularities (or worse) for distance squared function ϕ at Whitney umbrella.

2 Differential geometry for Whitney umbrella

We consider a smooth map g : U → R3 given by g(u, v) = (g1(u, v), g2(u, v), g3(u, v)) which
defines a surface in R3, where U ⊂ R2 is an open subset. The map g possibly has singularities.
The map g : (R2,0)→ (R3,0) has a Whiney umbrella singularity at (0, 0) if it is A-equivalent
to the map germ:

(R2,0)→ (R3,0), (u, v) 7→ (u, uv, v2).

We remark that some authors distinguish between Whitney umbrellas and cross-caps as
follows: the Whitney umbrella is the zero-set of the function x2z − y2 = 0; the cross-cap
is the image of the map that is A-equivalent to (u, v) 7→ (u, uv, v2) (see, for example, [3]
and [24]). But the authors prefer to use the word “Whitney umbrella” for map germs with
respect for H. Whitney’s work.
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Away from singularities a unit normal vector is defined by n = (gu × gv)/‖gu × gv‖, and
the first and second fundamental forms for g are given by

I = E du2 + 2F du dv +Gdv2, II = Ldu2 + 2M dudv +N dv2,

respectively, where

E = 〈gu, gu〉, F = 〈gu, gv〉, G = 〈gv, gv〉, L = 〈guu,n〉, M = 〈guv,n〉, N = 〈gvv,n〉.

The principal curvatures κ1 and κ2 are the roots of the equation∣∣∣∣ L− κiE M − κiF
M − κiF N − κiG

∣∣∣∣ = 0.

If a non-zero vector vi = (ξi, ηi) (i = 1, 2) is the principal vector with principal curvature κi,
then (

L− κiE M − κiF
M − κiF N − κiG

)(
ξi
ηi

)
=

(
0
0

)
(2.1)

We can choose (ξi, ηi) so that the tangent vector ξigu + ηigv is of unit length.
We investigate the asymptotic behaviour of these ingredients near Whitney umbrella.

2.1 The unit normal vectors

Now we suppose that g has a rank one singularity at (0, 0). Take the image of dg0 to be the
x-axis. Then we may write g as

g(u, v) =

(
u,

1

2
(a02u

2 + 2a11uv+ a02v
2) +O(u, v)3,

1

2
(b20u

2 + 2b11uv+ b02v
2) +O(u, v)3

)
.

We consider the unit normal vector ñ = n ◦ π̃ in the coordinates (r, θ), where π̃ is as in
(1.2). By a straightforward calculation we show that the unit normal vector ñ is expressed
as follows:

ñ(r, θ) =
(0 +O(r), −b11 cos θ − b02 sin θ +O(r), a11 cos θ + a02 sin θ +O(r))√
(a112 + b11

2) cos2 θ + 2(a11a02 + b11b02) cos θ sin θ + (a022 + b02
2) sin2 θ

.

If the singular point of g is a Whitney umbrella, then

a11 a02
b11 b02

6= 0.

We thus conclude the unit normal vector ñ is well-defined on {r = 0}, since

(a11a02 + b11b02)2 − (a11
2 + b11

2)(a02
2 + b02

2) = −(a11b02 − a02b11)2.
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2.2 Normal form of Whitney umbrella

For a regular surface, we can take the z-axis as the normal line, and, after suitable rotation
if necessary, we can express the surface in the Monge normal form:

(u, v) 7→
(
u, v,

1

2
(k1u

2 + k2v
2) +O(u, v)3

)
For Whitney umbrella we can perform similar computations and obtain the following normal
form theorem of Whitney umbrella.

Proposition 2.1. Let g : (R2,0) → (R3,0) be a smooth map with a Whitney umbrella at
(0, 0). Then there are a rotation T : R3 → R3 and a diffeomorphism φ : (R2,0) → (R2,0)
so that

T ◦ g ◦ φ(u, v) =

(
u, uv +B(v) +O(u, v)k+1,

k∑
j=2

Aj(u, v) +O(u, v)k+1

)
(k ≥ 3),

where

B(v) =

k∑
i=3

bi
i!
vi, and Aj(u, v) =

j∑
i=0

ai,j−i
i!(j − i)!

uivj−i with a02 6= 0.

The result was first proved in [27], but we repeat the proof for completeness.

Proof. Take the image of dg0 to be the x-axis. Then we may write g as

g(u, v) =
(
u,
∑
i+j=2

b∗ij
i!j!

uivj +O(u, v)3,
∑
i+j=2

a∗ij
i!j!

uivj +O(u, v)3
)

with
b∗11 b∗02
a∗11 a∗02

6= 0.

Take θ so that (cos θ, sin θ) = (a∗02, b
∗
02)/

√
a∗02

2 + b∗02
2, and set a rotation of R3

T =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


and a change of coordinates

ψ(u, v) =

u, 1

b∗11 b∗02
a∗11 a∗02

(
−1

2

b∗20 b∗02
a∗20 a∗02

u+

√
a∗02

2 + b∗02
2 v

) .

Then we have

T ◦ g ◦ ψ(u, v) =

u, uv +
∑
i+j=3

βij
i!j!

uivj +O(u, v)4,
∑
i+j=2

αij
i!j!

uivj +O(u, v)3


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for some constants αij and βij . Setting Bk =
∑
i+j=k biju

ivj/(i!j!) (k ≥ 3) and replacing v

by v +
∑
i+j=k−1 ciju

ivj/(i!j!), we have

uv +Bk +O(u, v)k+1 = uv +
∑
i+j=k

ici−1,j + bij
i!j!

uivj +O(u, v)k+1.

For a suitable choice of cij (i + j = k − 1), we can reduce this to b(0,k)v
k/k! + O(u, v)k+1.

Hence, we obtain the result.

2.3 Principal curvatures and principal directions

Coefficients of the first and second fundamental forms. Throughout the rest of the
paper, we suppose that g is given in the normal form of Whitney umbrella:

g(u, v) =

(
u, uv +B(v) +O(u, v)5,

4∑
j=2

Aj(u, v) +O(u, v)5
)
, (2.2)

where

B(v) =

4∑
i=3

bi
i!
vi, and Aj(u, v) =

j∑
i=0

ai,j−i
i!(j − i)!

uivj−i with a02 6= 0.

Then we have

gu =
(

1, v +O(u, v)4,

4∑
j=2

(Aj)u +O(u, v)4
)
,

gv =
(

0, u+Bv +O(u, v)4,

4∑
j=2

(Aj)v +O(u, v)4
)

and thus have

E = 1 + v2 + (A2u)
2

+ 2A3uA2u +O(u, v)4,

F = uv +A2uA2v +A3uA2v +A3vA2u +
1

2
b3v

3 +O(u, v)4,

G = u2 + (A2v)
2

+ 2A3vA2v + b3uv
2 +O(u, v)4.

(2.3)

Since

gu × gv =

 3∑
j=2

(
v (Aj)v − u (Aj)u

)
− b3

2
v2A2u +O(u, v)4,

−
4∑
j=2

(Aj)v +O(u, v)4, u+
1

2
b3v

2 +
1

6
b4v

3 +O(u, v)4

 ,
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we have
‖gu × gv‖2 = λ2 + λ3 + λ4 +O(u, v)5,

where

λ2 = u2 +A2
2v, λ3 = 2A3vA2v + b3uv

2,

λ4 = 2A4vA2v +A2
3v + (uA2u − vA2v)

2 +
1

3
b4uv

3 +
1

4
b3

2v4.
(2.4)

It follows that

ñ(0, θ) =
1

A
(0, −a11 cos θ − a02 sin θ, cos θ), (2.5)

where A = A(θ) =
√

cos2 θ + (a11 cos θ + a02 sin θ)2. Since a02 6= 0, ñ(0, θ) defines an
isomorphism from real projective line P 1(R)

P 1(R)→ P 1(R), θ 7→ ñ(0, θ).

We set
l = 〈guu, gu × gv〉, m = 〈guv, gu × gv〉, n = 〈gvv, gu × gv〉.

Since

guu =

0, 0,

4∑
j=2

(Aj)uu +O(u, v)3

 ,

guv =

0, 1 +O(u, v)3,

4∑
j=2

(Aj)uv +O(u, v)3

 ,

gvv =

0, Bvv +O(u, v)3,

4∑
j=2

(Aj)vv +O(u, v)3

 ,

l, m, and n are expressed as follows:

l = l1 + l2 + l3 +O(u, v)4, m = m1 +m2 +m3 +O(u, v)4, n = n1 + n2 + n3 +O(u, v)4,

where

l1 = a20u, l2 = uA3uu +
1

2
a20b3v

2, l3 = uA4uu +
1

2
b3A3uuv

2 +
1

6
a20b4v

3

m1 = −a02v, m2 = uA3uv −A3v +
1

2
a11b3v

2,

m3 = uA4uv −A4uv +
1

2
b3A3uv +

1

6
a11b4v

3

n1 = a02u, n2 = uA3vv +
1

2
b3(a02v

2 − 2vA2v),

n3 = uA4vv +
1

2
b3v(vA3vv − 2A3v) +

1

6
b4v

2(a02v − 3A2v).

(2.6)

42



By using the Taylor series for L(ru, rv), M(ru, rv), and N(ru, rv) in r we obtain

L =
a20u√
λ2

+
2l2λ2 − l1λ3

2λ
3/2
2

r +
8l3λ2

2 − 4l2λ2λ3 − 4l1λ2λ4 + l1λ3

8λ
5/2
2

r2 +O(r3),

M =
−a02v√
λ2

+
2m2λ2 −m1λ3

2λ
3/2
2

r +
8m3λ2

2 − 4m2λ2λ3 − 4m1λ2λ4 +m1λ3

8λ
5/2
2

r2 +O(r3),

N =
a02u√
λ2

+
2n2λ2 − n1λ3

2λ
3/2
2

r +
8n3λ2

2 − 4n2λ2λ3 − 4n1λ2λ4 + n1λ3

8λ
5/2
2

r2 +O(r3).

(2.7)

Principal curvatures.

Lemma 2.2. The principal curvatures κ̃i = κi ◦ π̃ are expressed as follows:

κ̃1(r, θ) = k10(θ) + k11(θ)r + k12(θ)r2 +O(r3),

κ̃2(r, θ) =
1

r2
[
k20(θ) + k21(θ)r +O(r2)

]
,

(2.8)

where

k10 =
A∗2 sec θ

A
, (2.9)

k11 =
1

A3

(
6a02Ã3Ã2v tan θ + 2Ã3u(a11Ã2v + cos θ) cos θ

−Ã3vÃ2v(a20 cos2 θ + a02 sin2 θ) sec θ

)
+
b3A

∗
2Ã

2
2v tan2 θ

2A3
, (2.10)

k12 =
1

2a02A5

[
24a02A4Ã4 sec θ − 12a02A2Ã3Ã3vÃ2v sec θ

− 2a02A2Ã4v(Ã2uÃ2v +A2 tan θ + cos θ sin θ)

− Ã2
3v

(
2Ã2

2v(a11
2 − a20a02) + 4a11Ã2v cos θ

+(a20a02 + 2) cos2 θ − a02 sin2 θ

)
cos θ

− 8a02A4A∗2Ã
2
2 sec3 θ − 8a02A4A∗2 sin θ tan θ − a02A2A∗2

3 sec θ
]
,

(2.11)

k20 =
a02 cos θ

A3
, (2.12)

k21 =
1

A5

[
(−3a02Ã3vÃ2v +A2Ã3vv) cos θ

]
+

1

2A5

[
b3(−2A2Ã2v + a02A2 sin θ − 3a02 cos2 θ sin θ) sin θ

]
.

(2.13)

Here A∗2 = a20 cos2 θ − a02 sin2 θ, Ã2v = A2v ◦ π̃ |r=1, Ã3v = A3v ◦ π̃ |r=1, and so on.

Proof. The principal curvatures κi are the roots of the equation

(EG− F 2)k2 − (EN − 2FM +GL)k + (LN −M2) = 0.

From (2.3), (2.4), (2.6), and (2.7), it follows that

(EG− F 2) ◦ π̃ = a2r
2 + a3r

3 + a4r
4 +O(r5),

43



−(EN − 2FM +GL) ◦ π̃ = b0 + b1r + b2r
2 +O(r3),

(LN −M2) ◦ π̃ = c0 + c1r + c2r
2 +O(r3),

where

a2 = A2, b0 = −a02 cos θ

A
, c0 =

a02A
∗
2

A2
,

and the coefficients a3, a4, b1, b2, c1, and c2 are the trigonometric polynomials in the coeffi-
cients appearing in the terms of degree four or less in the normal form of Whitney umbrella.
Therefore, we obtain

κ̃1 = −c0
b0

+
b1c0 − b0c1

b0
2 r +

b1
2c0 − b0b2c0 + a2c0

2 − b0b1c1 + b0
2c2

b0
3 r2 +O(r3),

κ̃2 =
1

r2

(
− b0
a2

+
a3b0 − a2b1

a23
r +O(r2)

)
.

We thus obtain (2.9)–(2.13) by a straightforward calculation.

Gaussian curvature. Since the Gaussian curvature K is the product of the principal
curvatures, it does not depend on the choice of the unit normal vector. From (2.9) and
(2.12), the Gaussian curvature is expressed as follows:

K̃(r, θ) = K ◦ π(r, θ) =
1

r2

(
a02(a20 cos2 θ − a02 sin2 θ)

A(θ)
4 +O(r)

)
,

where π is as in (1.3). By this expression, we say that a point (0, θ0) on the Möbius strip
M is elliptic, hyperbolic, or parabolic point over Whitney umbrella if r2K̃(0, θ0) is positive,
negative, or zero, respectively. We often omit the phrase “over Whitney umbrella” if no
confusion is possible from the context.

We immediately have the following proposition.

Proposition 2.3. (1) There is no parabolic point over Whitney umbrella if and only if
a20a02 < 0.

(2) There is one parabolic point over Whitney umbrella if and only if a20 = 0.

(3) There are two parabolic points over Whitney umbrella if and only if a20a02 > 0.

Furthermore, in terms of the parabolic line in a domain, Whitney umbrella is classified
into three types. We say that Whitney umbrella is hyperbolic, elliptic, or parabolic if the
parabolic line has an A+

1 -singularity (an isolated point), A−1 -singularity (a pair of smooth
curves intersecting transversally), or A2-singularity (a cusp), respectively. In the case of the
hyperbolic Whitney umbrella all non-singular points near the Whitney umbrella singularity
are hyperbolic. In the case of the elliptic Whitney umbrella the parabolic line divides the
surface into hyperbolic and elliptic regions (see [27] for details).

From (2.6), the parabolic line in the Möbius strip M is expressed by the equation

a02A
∗
2+
[
(a20Ã3vv+a02Ã3uu) cos2 θ+2a02(Ã3uv cos θ−Ã3v) sin θ−a11b3A∗2 sin θ

]
r+O(r2) = 0.
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If a20a02 < 0, then the parabolic line dose not meet with the exceptional set X = π−1(0, 0)
on M, in which case the surface is the hyperbolic Whitney umbrella. If a20a02 > 0, then
the parabolic line meets with X at two parabolic point over Whitney umbrella, in which
case the surface is the elliptic Whitney umbrella. If a20 = 0, then the parabolic line meets
with X at one parabolic point (r, θ) = (0, 0), which is the sub-parabolic point over Whitney
umbrella (See Section 2.4). Calculating the tangent vector of the parabolic line at (0, 0) on
M, we show that the parabolic line meets tangentially with X at (0, 0) if and only if a30 6= 0.
In this case, we have the parabolic Whitney umbrella (This classification according to the
coefficients of the normal form of Whitney umbrella is also obtained in [20]). Moreover,
the parabolic point (0, 0) is the singular point of the parabolic line if and only if a30 = 0,
equivalently this point is the ridge point over Whitney umbrella (See Section 2.4). In this
case, this point is of Morse type if and only if 3a21

2 + 2a40a02 6= 0.

Principal directions.

Lemma 2.4. The unit principal vectors ṽi in the coordinates (r, θ) are expressed as follows:

ṽ1 = (sec θ +O(r))
∂

∂r
+

(
−2Ã3v + b3Ã2v sin θ tan θ

2a02
+O(r)

)
∂

∂θ
,

ṽ2 =
1

r2

[(
sin θ

A
r +O(r2)

)
∂

∂r
+

(
cos θ

A
+O(r)

)
∂

∂θ

]
.

Proof. From the equation (2.1), one of the vectors along the principal vectors vi in the
coordinates (u, v) are given by

ξi
∂

∂u
+ ηi

∂

∂v
= (N − κiG)

∂

∂u
+ (−M + κiF )

∂

∂v
. (2.14)

Since
∂

∂u
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
and

∂

∂v
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
,

the vector (2.14) can be lifted by π and we obtain

ξ̃i
∂

∂r
+ η̃i

∂

∂θ
=
[
(N ◦ π̃ − κ̃iG ◦ π̃) cos θ + (κ̃iF ◦ π̃ −M ◦ π̃) sin θ

] ∂
∂r

+
1

r

[
(κ̃iF ◦ π̃ −M ◦ π̃) cos θ + (κ̃iG ◦ π̃ −N ◦ π̃) sin θ

] ∂
∂θ
.

From (2.3), (2.4), (2.6), and (2.7), we have

F ◦ π̃ = F2r
2 + F3r

3 +O(r4), G ◦ π̃ = G2r
2 +G3r

3O(r4),

M ◦ π̃ = M0 +M1r +M2r
2 +O(r3), N ◦ π̃ = N0 +N1r +N2r

2 +O(r3),

where

F2 = cos θ sin θ + Ã2uÃ2v, F3 = Ã3uÃ2v + Ã3vÃ2u +
1

2
b3 sin3 θ,

G2 = cos2 θ + Ã2
2v, G3 = 2Ã3vÃ2v + b3 cos θ sin2 θ,

M0 = −a02 sin θ

A
, N0 =

a02 cos θ

A
,
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and coefficients L1, M1, N1, L2, M2, and N2 are the trigonometric polynomials in the
coefficients appearing in the terms of degree four or less in the normal form of Whitney
umbrella. It follows that ξ̃i and η̃i are expressed as follows:

ξ̃1 = N0 cos θ −M0 sin θ + (N1 cos θ −M1 sin θ)r +O(r2),

η̃1 = −M1 cos θ −N1 sin θ + [(F2k10 −M2) cos θ + (G2k10 −N2) sin θ] r +O(r2),

ξ̃2 =
(
−G2k20 +N0

)
cos θ +

(
F2k20 −M0

)
sin θ

+ [(−G3k20 −G2k21 +N1) cos θ + (F3k20 + F2k21 −M1) sin θ] r +O(r2),

η̃2 =
1

r
[k20(F2 cos θ +G2 sin θ)

+ ((F3k20 + F2k21 −M1) cos θ + (G3k20 +G2k21 −N1) sin θ)r +O(r2)
]
.

After a long calculation, it follows that ξ̃i and η̃i are expressed as follows:

ξ̃1 = ξ̃10 + ξ̃11r +O(r2), η̃1 =η̃10 + η̃11r +O(r2),

ξ̃2 = ξ̃20 + ξ̃21r +O(r2), η̃2 =
1

r

[
η̃20 + η̃21r +O(r2)

]
,

where

ξ̃10 =
a02
A
, η̃10 =

1

2A
(
−2Ã3v cos θ + b3Ã2v sin2 θ

)
,

ξ̃11 =
1

2A3

[
2
(
Ã3v(a02Ã2v cos θ − a11Ã2v sin θ − cos θ sin θ)

− a02Ã3uvÃ2v + Ã3vv(a11Ã2v + cos θ)
)

− b3Ã2v(a11Ã2v +A2 cos2 θ + cos θ) sin θ
]
,

η̃11 =
1

12A3

[
−24A2Ã4v cos θ + 12Ã2

3vÃ2v cos θ + 24Ã2Ã2vA
∗
2 cos θ

+ 12a02Ã
2
2u(3a11Ã2v cos θ + a02

2 sin2 θ) cos θ sin θ − 24a11a02Ã
3
2v sin3 θ

+ 12a02
3Ã2

2u cos θ sin3 θ + 12a20a11
3Ã2u cos5 θ + 60a11

2a02
2Ã2v cos θ sin4 θ

+ 24A2A∗2 cos θ + 12a20a11
4 cos5 θ − a025 sin5 θ tan θ + 4b4A2Ã2v sin3 θ

−3b3
2Ã2v cos θ sin4 θ − 6b3Ã3v(Ã

2
2v − cos2 θ) sin2 θ

]
,

ξ̃20 =
2a02
A3

(Ã2Ã2v + cos2 θ sin θ) sin θ, η̃20 = ξ̃20 cot θ, η̃21 = ξ̃21 cot θ,

ξ̃21 =
1

A5

[
3a11a02A2Ã3 + a02

2A2Ã3u sin θ

+ Ã3v(2a02Ã2Ã
2
2v − a11A2 −A2 − 8a11a02 cos θ sin θ) cos θ

− a02Ã3uv(2Ã2Ã
2
2v + a11Ã

2
2v cos θ sin θ + 3a02 cos2 θ sin2 θ)

+ Ã3vv(2Ã2Ã2v + a11Ã2uÃ
2
2v + a11Ã

2
2v sin θ + 2A2 sin θ − 3a02

2 sin3 θ)
]

cos θ sin θ

− b3
2A5

[
2Ã2Ã2v(a11Ã

2
2v + Ã2v cos θ − 2a11 cos2 θ) + 3Ã2uÃ

2
2v cos2 θ
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+ 5a11Ã
2
2v cos2 θ sin θ + 3Ã2v cos3 θ sin θ + a02 cos3 θ sin2 θ

]
sin2 θ.

The unit principal vectors ṽi are given by

ṽi =
1√

Ẽξ̃2i + 2F̃ ξ̃iη̃i + G̃η̃2i

(
ξ̃i
∂

∂r
+ η̃i

∂

∂θ

)
, (2.15)

where Ẽ, F̃ , and G̃ are the coefficients of the first fundamental form of g in the coordinates
(r, θ). We calculate that

Ẽ = cos2 θ + 4
(

cos2 θ sin2 θ + Ã2
2

)
r2 +O(r3),

F̃ = −r cos θ sin θ

+ 2
[
(cos2 θ − sin2 θ) cos θ sin θ + Ã2

(
Ã2v cos θ − Ã2u sin θ

)]
r3 +O(r4),

G̃ = r2 sin2 θ +
[
(cos2 θ − sin2 θ)2 +

(
Ã2v cos θ − Ã2u sin θ

)2]
r4 +O(r5).

Hence, we obtain

Ẽξ̃21 + 2F̃ ξ̃1η̃1 + G̃η̃21 =
a02

2 cos2 θ

A2
+O(r),

Ẽξ̃22 + 2F̃ ξ̃2η̃2 + G̃η̃22 =
4a02

2(Ã2Ã2v + cos2 θ sin θ)2

A4
r2 +O(r3).

This completes proof together with (2.15).

Remark 2.5. The (unit) principal vector ṽ1 is extendible on {(r, θ) ; r 6= 0 or cos θ 6= 0}
and thus the principal field defined by v1 is extendible on the Möbius stripM except on the
set {(r, θ) ; r = 0, cos θ = 0}. The principal curvature vector r2ṽ2 is extendible over R× S1

even though ṽ2 is not. So the principal field defined by vi is extendible over M.

2.4 Ridge points and sub-parabolic points over Whitney umbrella

Ridge points. By the computation in the previous subsection, we can express ṽiκ̃i as
follows:

ṽ1κ̃1(r, θ) =R110(θ) +R111(θ)r + · · · , ṽ2κ̃2(r, θ) =
1

r4
(R210(θ) +R211(θ)r + · · · ,

where ṽiκ̃i denotes the directional derivative of the principal curvature κ̃i in the principal
vector ṽi. We say that a point (r0, θ0) is a ridge point relative to the principal vector ṽ1

(resp. ṽ2) if ṽ1κ̃1(r0, θ0) = 0 (resp. r4ṽ2κ̃2(r0, θ0) = 0). If the ridge point (r0, θ0) is over
Whitney umbrella (that is, r0 = 0) this is equivalent that R110(θ0) = 0 (resp. R210(θ0) = 0).
It is possible that Ri10(θ) has multiple roots. We say that (0, θ0) is a multiple ridge point
relative to ṽi if θ0 is a multiple root of Ri10(θ). We say that a point (0, θ0) is a n-th order
ridge point relative to ṽ1 (resp. ṽ2) over Whitney umbrella if Rim0(θ0) = 0 (1 5 m 5 n) and
Ri,n+1,0(θ0) 6= 0, where

ṽ
(m)
1 κ̃1(r, θ) =R1m0(θ) +R1m1(θ)r + · · · , ṽ

(m)
2 κ̃2(r, θ) =

1

r2+2m
(R2m0(θ) +R2m1(θ)r + · · · .
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Here, ṽ
(n)
i κ̃i denotes the n-th time directional derivative of κ̃i in the direction ṽi. The ridge

line relative to ṽi near the exceptional set X = π−1(0, 0) is expressed by the equation:

Ri10(θ) +Ri11(θ)r + · · · = 0.

In terms of the normal form of Whitney umbrella, we have κ̃1(0, θ) tends to infinity as θ
approaches ±π/2, by (2.9), and, after some calculations, we obtain

ṽ1κ̃1(r, θ) =
Γ3(θ) sec3 θ

A(θ)
+O(r), (2.16)

ṽ2κ̃1(r, θ) =
1

r2

(
−a02Γ∗3(θ) sec θ

A(θ)4
+O(r)

)
, (2.17)

ṽ2κ̃2(r, θ) =
1

r4

(
−3a02

2(a11 cos θ + a02 sin θ) cos θ

A(θ)6
+O(r)

)
, (2.18)

ṽ1κ̃2(r, θ) =
1

r3

(
− 2a02
A(θ)3

+O(r)

)
, (2.19)

where

Γ3(θ) = 6Ã3 cos θ − b3Ã2v sin3 θ, Γ∗3(θ) = 2Ã2Ã2v + 2 cos2 θ sin θ.

Lemma 2.6. A point (0, θ0) with cos θ0 6= 0 is a ridge point relative to ṽ1 if and only if
Γ3(θ0) = 0. Moreover, the point (0, θ0) is a first order ridge point relative to ṽ1 if and only
if Γ4(θ0) 6= 0, where

Γ4(θ) = 24a02Ã4 cos2 θ − 12Ã2
3v cos2 θ − 12a02A

∗
2Ã

2
2 − 12a02A

∗
2 cos2 θ sin2 θ

− a02b4Ã2v cos θ sin4 θ + 12b3
2Ã3vÃ2v cos θ sin2 θ − 3b3Ã

2
2v sin4 θ.

Proof. The expansion (2.16) implies the first assertion. Since cos θ0 6= 0, the condition
Γ3(θ0) = 0 is equivalent to

a30 =−
[
cos θ0(3a21 cos2 θ0 sin θ0 + 3a12 cos θ0 sin2 θ0 + a03 sin3 θ0)

− b3 sin3 θ0(a11 cos θ0 + a02 sin θ0)
]

sec4 θ0.

Using the above relation, we can reduce ṽ2
1κ̃1(0, θ0) to

ṽ2
1κ1(0, θ0) =

Γ4(θ0) sec5 θ0
a02A(θ0)3

,

and the proof is complete.

Lemma 2.7. If b3 6= 0, then there are at most four ridge points relative to ṽ1 over Whitney
umbrella.
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Proof. The ridge points relative to ṽ1 over Whitney umbrella are given by Γ3(θ) = 0; equiv-
alently,

a30 + 3a21 tan θ + 3a12 tan2 θ + (a30 − a11b3) tan3 θ − a02b3 tan4 θ = 0.

This implies assertions.

Remark 2.8. When b3 = a03 = a12 = a21 = a30 = 0, the multiplicity of ridge points is not
defined but the order is defined. In fact, we have Γ4(θ) 6≡ 0.

Proposition 2.9. Suppose that a point (0, θ0) is a ridge point relative to ṽ1 over Whitney
umbrella, and that the ridge line relative to ṽ1 is non-singular at (0, θ0). Then the ridge line
is tangent to X at (0, θ0) if and only if (0, θ0) is the multiple ridge point relative to ṽ1.

Proof. It follows form (2.16) that if and only if Γ′3(θ0) = 0, the ridge line relative to ṽ1 is
tangent to X at (0, θ0). Hence, we have proved the proposition.

From (2.18), we have the following proposition.

Proposition 2.10. There are two simple ridge points relative to ṽ2 over Whitney umbrella.
That is, the ridge line relative to ṽ2 is not tangent to X.

Sub-parabolic points. By the computation in the previous subsection, we can express
ṽiκ̃j (i 6= j) as follows:

ṽ1κ̃2(r, θ) =
1

r3
(P10(θ) + P11(θ)r + · · · ), ṽ2κ̃1(r, θ) =

1

r2
(P20(θ) + P21(θ)r + · · · ).

We say that a point (r0, θ0) is a sub-parabolic point relative to the principal vector ṽ1 (resp. ṽ2)
if r3ṽ1κ̃2(r0, θ0) = 0 (resp. r2ṽ2κ̃1(r0, θ0) = 0). When the sub-parabolic point is over
Whitney umbrella (that is, r0 = 0), we obtain Pi0(θ0) = 0. A point (0, θ0) is said to be a
multiple sub-parabolic point relative to vi over Whitney umbrella if θ0 is a multiple root of
Pi0(θ) = 0. The sub-parabolic line relative to vi near X is expressed by the equation:

Pi0(θ) + Pi1(θ)r + · · · = 0.

From (2.17) we have the following lemma.

Lemma 2.11. A point (0, θ0) is a sub-parabolic point relative to ṽ2 if and only if Γ∗3(θ0) = 0
holds.

From (2.19), we have the following proposition.

Proposition 2.12. There is no sub-parabolic point relative to ṽ1 over Whitney umbrella.

Lemma 2.13. There is at least one and at most three sub-parabolic points relative to ṽ2 over
Whitney umbrella.
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Proof. The sub-parabolic points relative to ṽ2 over Whitney umbrella are given by Γ∗3(θ) = 0;
equivalently,

a20a11 + (2 + a20a02 + 2a11
2) tan θ + 3a11a02 tan2 θ + a02

2 tan3 θ = 0.

Since a02 6= 0, the equation has at least one and at most three roots and we have completed
the proof of the Lemma.

It follows from (2.17) that we obtain the following proposition.

Proposition 2.14. Suppose that a point (0, θ0) is a sub-parabolic point relative to ṽ2 over
Whitney umbrella, and that the sub-parabolic line relative to ṽ2 is non-singular at (0, θ0).
Then the sub-parabolic line is tangent to X at (0, θ0) if and only if (0, θ0) is the multiple
sub-parabolic point relative to ṽ2.

Example 2.15. We set (a20, a11, a02) = (−3, 0, 1) in the normal form of Whitney umbrella,
then we have

Γ∗3(θ) = − cos2 θ sin θ + sin3 θ.

The roots of Γ∗3(θ) = 0 are θ = ±π/4 and θ = 0. Hence, we have the distinct three simple
sub-parabolic points (0,±π/4) and (0, 0) relative to ṽ2 over Whitney umbrella.

(1) We take (a30, a21, a12, a03, b3) = (−1, 0, 10/9, 0, 1). Then we have

Γ3(θ) = − cos4 θ +
10

3
cos2 θ sin2 θ − sin4 θ.

The roots of Γ3(θ) = 0 are θ = ±π/3 and θ = ±π/6. Hence, we have four distinct
simple ridge points (0,±π/3) and (0,±π/6) relative to ṽ1 over Whitney umbrella.

(2) We take (a30, a21, a12, a03, b3) = (−3, 0, 4/3, 0, 1). Then we have

Γ3(θ) = −3 cos4 θ + 4 cos2 θ sin2 θ − sin4 θ.

The roots of Γ3(θ) = 0 are θ = ±π/3 and θ = ±π/4. Hence, we have four distinct simple
ridge points (0,±π/3) and (0,±π/4) relative to ṽ1 over Whitney umbrella. Remark
that the points (0,±π/4) are ridge relative to ṽ1 and sub-parabolic relative to ṽ2.

2.5 Constant principal curvature lines

We set Σ1
k (resp. Σ2

k) (k ≥ 0) as the image of

{(r, θ) ∈ R× S1 ; κ̃1(r, θ) = ±k} (resp. {(r, θ) ∈ R× S1 ; κ̃2(r, θ) = ±k})

by the double covering R × S1 → M. We call Σk = Σ1
k ∪ Σ2

k by the constant principal
curvature (CPC) line with a constant value of k. Remark that X ∩ Σ2

k = ∅. Remark also
that Σ0 is nothing but the parabolic line, which we already described in Proposition 2.3.
Remember that M is non-orientable and the induced image of ñ, by π̃ : R × S1 → R2,
covers “all possible unit normals”. We remark that Σk (k > 0) is the singular set of the front
of g at distance 1/k.
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Proposition 2.16. A CPC line Σk (k 6= 0) intersects with X in at most four points.

Proof. The number of the intersection points of Σk and X equals the number of roots of the
equation |κ̃1(0, θ)| = k. From (2.9), we obtain the equation∣∣∣∣ (a20 cos2 θ − a02 sin2 θ) sec θ√

cos2 θ + (a11 cos θ + a02 sin θ)2

∣∣∣∣ = k.

Squaring both sides and setting the equation to 0, we get[
a20

2−k2(a11
2+1)

]
cos4 θ−2a02a11k

2 cos3 θ sin θ−a02(2a20−a02k) cos2 θ sin2 θ+a02
2 sin4 θ = 0.

Dividing both sides by cos4 θ, we obtain

a20
2 − k2(a11

2 + 1)− 2a02a11k
2 tan θ − a02(2a20 − a02k2) tan2 θ + a02

2 tan4 θ = 0.

Since a02 6= 0, this equation is quartic in tan θ and we have thus completed the proof.

Setting C(r, θ) = κ̃1(r, θ)
2 − k2 (k 6= 0) and by (2.8), we have

C(r, θ) = −k2 + k10(θ)
2

+ 2k10(θ)k11(θ)r +
(
2k10(θ)k12(θ) + k11(θ)

2)
r2 + · · · . (2.20)

From (2.16) and (2.18), the principal vectors ṽi can be written in

ṽ1(r, θ) = (x10(θ) + x11(θ)r + · · · ) ∂
∂r

+ (y10(θ) + y11(θ)r + · · · ) ∂
∂θ
,

ṽ2(r, θ) =
1

r2

[(
x21(θ)r + x22(θ)r2 + · · ·

) ∂
∂r

+ (y20(θ) + y21(θ)r + · · · ) ∂

∂θ

]
.

Note that x10(θ) 6= 0 and y20(θ) 6= 0. Therefore, the directional derivatives of κ̃1(r, θ) by ṽi
are expressed as follows:

ṽ1κ̃1(r, θ) =x10(θ)k11(θ) + y10(θ)k′10(θ)

+ (2x10(θ)k12(θ) + x11(θ)k11(θ) + y10(θ)k′11(θ) + y11(θ)k′10(θ))r + · · · ,

ṽ2κ̃1(r, θ) =
1

r2
[
y20(θ)k′10(θ) + (x21(θ)k11(θ) + y20(θ)k′11(θ) + y21(θ)k′10(θ))r + · · ·

]
.

(2.21)

The following lemma provides the criterion for the singularity of the CPC line intersecting
with X in terms of the configurations of the ridge line and the sub-parabolic line.

Lemma 2.17. Suppose that a point (0, θ0) is not parabolic and that the CPC line Σk meets
X at (0, θ0). Then the CPC line Σk is singular at (0, θ0) if and only if (0, θ0) is the ridge
point relative to ṽ1 and the sub-parabolic point relative to ṽ2. In this case, the singularity is
of Morse type if and only if the ridge line relative to ṽ1 and the sub-parabolic line relative to
ṽ2 intersect transversely at (0, θ0).

Proof. Let us use expansions (2.20) and (2.21). Now we have k10(θ0) 6= 0. The CPC line Σk
is singular at (0, θ0) if and only if Cr(0, θ0) = Cθ(0, θ0) = 0. By computation, we have

Cr(0, θ0) = 2k10(θ0)k11(θ0) and Cθ(0, θ0) = 2k10(θ0)k′10(θ0).
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It follows that Σk has singularity at (0, θ0) if and only if k′10(θ0) = k11(θ0) = 0. From (2.21),
we deduce that (0, θ0) is the ridge point relative to ṽ1 and the sub-parabolic point relative
to ṽ2 if and only if k′10(θ0) = k11(θ0) = 0. This completes the proof of the first assertion.

We show the second assertion. Assume that (0, θ0) is a singularity of Σk. Then (0, θ0) is
a Morse singularity if and only if

Crr(0, θ0) Crθ(0, θ0)
Crθ(0, θ0) Cθθ(0, θ0)

6= 0.

This is equivalent to

2k′′10(θ0)k12(θ)− k′11(θ0)
2 6= 0.

It follows from (2.21) that the ridge line relative to ṽ1 and the sub-parabolic line relative to
ṽ2 intersect transversely at (0, θ0) if and only if

2x10(θ0)k12(θ0) + y10(θ0)k′11(θ0) x10(θ0)k′11(θ0) + y10(θ0)k′′10(θ)
y20(θ0)k′11(θ0) y20(θ0)k′′10(θ0)

6= 0;

equivalently,

x10(θ0)y20(θ0)(2k′′10(θ0)k12(θ)− k′11(θ0)
2
) 6= 0.

We thus have completed of the proof of the second assertion.

Lemma 2.18. Suppose that a point (0, θ0) is not parabolic and that the CPC line Σk meets
X at (0, θ0). Then the CPC line Σk is tangent to X at (0, θ0) if and only if (0, θ0) is a
sub-parabolic point relative to ṽ2 which is not a ridge point relative to ṽ1.

Proof. Let us consider expansions (2.20) and (2.21). From (2.20), the equation of the tangent
line of Σk at (0, θ0) is then

k11(θ0)r + k′10(θ0)(θ − θ0) = 0.

It follows that the CPC line Σk is tangent to X if and only if k′10(θ0) = 0 and k11(θ0) 6= 0.
From (2.21), we show that the point (0, θ0) is a sub-parabolic point relative to ṽ2 which is
not a ridge point relative to ṽ1 if and only if k′10(θ0) = 0 and k11(θ0) 6= 0.

Lemma 2.19. Assume that the CPC line Σk and the ridge line relative to ṽ1 meet at a point
(0, θ0) which is not parabolic over Whitney umbrella. Then

(1) These two curves intersect transversely at the point (0, θ0) if and only if the point (0, θ0)
is a first order ridge point relative to ṽ1.

(2) These two curves are tangent at the point (0, θ0) if and only if the point (0, θ0) is a
second or higher order ridge point relative to ṽ1.

Proof. Let us consider expansions (2.20) and (2.21). Remark that k10(θ0) 6= 0. The ridge
line relative to ṽ1 passes through (0, θ0), that is, (0, θ0) is a ridge point relative to ṽ1 over
Whitney umbrella if and only if

x10(θ0)k11(θ0) + y10(θ0)k′10(θ0) = 0.
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Since x10 6= 0, this is equivalent to

k11(θ0) = −y10(θ0)k′10(θ0)

x10(θ0)
. (2.22)

The CPC line Σk and the ridge line relative to ṽ1 intersect transversely at (0, θ0) if and only
if the determinant

k11(θ0) 2x10(θ0)k12(θ0) + x11(θ0)k11(θ0) + y10(θ0)k′11(θ0) + y11(θ0)k′10(θ0)
k′10(θ0) x10(θ0)k′11(θ0) + x′10(θ0)k11(θ0) + y10(θ0)k′′10(θ0) + y′10(θ0)k′10(θ0)

(2.23)

is not zero. Otherwise, these two curves are tangent at (0, θ0) if and only if the determinant
(2.23) is zero. By using (2.22), the determinant (2.23) is expanded as

− 1

x10(θ0)
2 k
′
10(θ0)

[
2x10(θ0)

3
k12(θ0) + 2x10(θ0)

2
y10(θ0)k′11(θ0)

+ x10(θ0)
2
y11(θ0)k′10(θ0) + x10(θ0)y10(θ0)

2
k′′10(θ0)− x10(θ0)x11(θ0)y10(θ0)k′10(θ0)

+ x10(θ0)y10(θ0)
2
k′10(θ0)− y10(θ0)

2
x′10(θ0)k′10(θ0)

]
,

and we obtain

ṽ2
1κ̃1(0, θ0) =

1

x10(θ0)

[
2x10(θ0)

3
k12(θ0) + 2x10(θ0)

2
y10(θ0)k′11(θ0) + x10(θ0)

2
y11(θ0)k′10(θ0)

+ x10(θ0)y10(θ0)
2
k′′10(θ0)− x10(θ0)x11(θ0)y10(θ0)k′10(θ0)

+ x10(θ0)y10(θ0)
2
k′10(θ0)− y10(θ0)

2
x′10(θ0)k′10(θ0)

]
.

Hence, we conclude that the determinant (2.23) is zero (resp. non-zero) if and only if (0, θ0) is
a first order (resp. second or higher order) ridge point relative to ṽ1, and we have completed
the proof.

3 Singularities of the distance squared unfolding

We assume that g : (R2,0) → (R3,0) is given by (2.2). In this section, we investigate the
singularities of the members of the family of the distance squared function:

Φ : (R2,0)×R3 → R, (u, v)× (x, y, z) 7→ −1

2
(‖(x, y, z)− g(u, v)‖2 − t02) (3.1)

where t0 is a constant. We set ϕ(u, v) = Φ(u, v, x0, y0, z0) where (x0, y0, z0) is a point in R3,
and take t0 so that ϕ(0, 0) = 0, that is, t0

2 = x0
2 + y0

2 + z0
2.

Now we recall the definition of the normal plane. When the map g : (R2,0) → (R3,0)
has Whitney umbrella at (0, 0), the image of dg(0,0) is a line in R3. We call the plane
perpendicular to this line the normal plane at Whitney umbrella.

Proposition 3.1. The following conditions are equivalent:

(1) The function ϕ has at least an A1-singularity at (0, 0);
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(2) The point (x0, y0, z0) is on the normal plane at Whitney umbrella;

(3) There exist ρ0 ∈ R and θ0 with θ0 ∈ [−π/2, π/2] such that (x0, y0, z0) = ρ0ñ(0, θ0).

Proof. The unfolding Φ can be expressed as follows:

Φ(u, v, x, y, z) = c00(x, y, z) + xu+

4∑
i+j=2

1

i!j!
cij(x, y, z)u

ivj +O(u, v)5. (3.2)

We have

c00 =
1

2
(t0

2 − x2 − y2 − z2), c20 = a20z − 1, c11 = y + a11z, c02 = a02z,

c30 = a30z, c21 = a21z, c12 = a12z, c03 = a03z + b3y,

c40 = −3a20
2 + a40z, c31 = −3a20a11 + a31z, c22 = −2− 2a11

2 − a20a02 + a22z,

c13 = −a11a02 + a13z, c04 = −3a02
2 + b4y + a04z.

Then ϕ can be written in the form

ϕ(u, v) = x0u+

4∑
i+j=2

1

i!j!
c0iju

ivj +O(u, v)5, (3.3)

where c0ij = cij(x0, y0, z0). It follows that ϕ has at least an A1-singularity at (0, 0) if and only
if x0 = 0. Directly from the definition of the normal form we obtain that the image of dg(0,0)
is the x-axis. Hence, the normal plane is the yz-plane. Thus (1) and (2) are equivalent.

Next, suppose (2) holds. Since a02 6= 0,

ñ(0, θ) =
(0,−a11 cos θ − a02 sin θ, cos θ)√
cos2 θ + (a11 cos θ + a02 sin θ)2

expands in all direction in the yz-plane. Hence, there exist ρ0 ∈ R and θ0 with θ0 ∈
[−π/2, π/2] such that (x0, y0, z0) = ρ0ñ(0, θ0).

Finally, suppose (3) holds. Then we have x0 = 0. Thus (3) implies (1).

3.1 Focal conics

Proposition 3.2. The points (x0, y0, z0) at which ϕ has at least A2-singularity (valid for the
rest of the paper “an Ak-singularity”) at (0, 0) form a conic in the normal plane.

Proof. Assume that ϕ has at least an A1-singularity at (0, 0), that is, x0 = 0. Then the
determinant of the Hessian of ϕ at (0, 0) is given by

ϕuu(0, 0) ϕuv(0, 0)
ϕuv(0, 0) ϕvv(0, 0)

=
c020 c011
c011 c002

= −y02 − 2a11y0z0 + (a20a02 − a112)z0
2 − a02z0.

Therefore, the locus of the equation

−y2 − 2a11yz + (a20a02 − a112)z2 − a02z = 0

is the set of the points at which ϕ is an Ak-singularity at (0, 0). Thus we complete the
proof.
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Lemma 3.3. The function ϕ has an Ak-singularity at (0, 0) if and only if (x0, y0, z0) =
(0, 0, 0) or

(x0, y0, z0) =
1

κ̃1(0, θ0)
ñ(0, θ0) with κ̃1(0, θ0) 6= 0, where θ0 ∈

(
−π

2
,
π

2

)
.

Proof. Suppose that ϕ is at least an A1-singularity at (0, 0). By Proposition 3.1, we have
(x0, y0, z0) = ρ0ñ(0, θ0) where ρ0 ∈ R and θ0 ∈ [−π/2, π/2]. Substituting this into the
equation −y02 − 2a11y0z0 + (a20a02 − a112)z0

2 − a02z0 = 0, we obtain

ρ0 = 0, or ρ0 =

√
cos2 θ0 + (a11 cos θ0 + a02 sin θ0)2

(a20 cos2 θ0 − a02 sin2 θ0) sec θ0
.

When ρ0 = 0, the point (x0, y0, z0) coincides with (0, 0, 0). In the later case, ρ0 coincides
with the principal radius 1/κ̃1(0, θ0).

For this reason, we call the set of the points (x, y, z) at which ϕ has an Ak-singularity
at (0, 0) the focal conic of Whitney umbrella. Focal conics are classified into three types as
shown in Figure 1. The following proposition provides a classification of focal conics.

Proposition 3.4. (1) The focal conic is an ellipse if and only if a20a02 < 0.

(2) The focal conic is a hyperbola if and only if a20a02 > 0, in which case its asymptotes
are parallel to y + (a11 ±

√
a20a02)z = 0.

(3) The focal conic is a parabola if and only if a20 = 0, in which case its axis of symmetry
is parallel to y + a11z = 0.

Proof. Remark that the focal conic is the zero locus of

FC(y, z) = −y2 − 2a11yz + (a20a02 − a112)z2 − a02z.

Firstly, we assume that a20 6= 0. Replacing y and z by y − a11/(2a20) and z + 1/(2a20),
respectively. Then the equation FC(y, z) = 0 has the form

− a02
4a20

− (y + a11z)
2 + a20a02z

2 = 0.

This form implies the assertion (1) and (2).
Next, we assume that a20 = 0. Then the equation FC(y, z) = 0 reduces to

−(y + a11z)
2 − a02z = 0.

This implies the assertion (3).

The following proposition provides properties of the focal conic. It is easy to verify this
proposition and we omit its proof.

Proposition 3.5. Let g be given in the normal form of Whitney umbrella and let Ck denote
the circle centred at the origin with radius 1/k in the normal plane.
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Figure. 1: The three types of focal conics: focal ellipse left, focal parabola center, focal
hyperbola right.

(1) The y-axis is tangent to the focal conic at the origin.

(2) The circle Ck is a subset of the front at distance 1/k.

(3) For k > 0 we have #Σk∩X = #Ck∩{(y, z) ; FC(y, z) = 0} where X is the exceptional
set X = π−1(0, 0) on the Möbius strip M. Since #Ck ∩ {(y, z) ; FC(y, z) = 0} is at
most four, #Σk ∩X is also at most four (cf. Proposition 2.16). Moreover, we have

Ck ∩ {(y, z) ; FC(y, z) = 0} =
⋃

θ:κ̃1(0,θ)=k

Rñ(0, θ) ∩ {(y, z) ; FC(y, z) = 0} \ {(0, 0)}

=
⋃

θ:κ̃1(0,θ)=k

1

k
ñ(0, θ).

If ñ(0, θ) is parallel to the axis of symmetry of the focal parabola or the asymptotes of the
focal hyperbola, then Rñ(0, θ) ∩ {(y, z) ; FC(y, z) = 0} \ {(0, 0)} = ∅ and κ̃1(0, θ) = 0,
that is, (0, θ) is a parabolic point over Whitney umbrella.

(4) The circle Ck is tangent to the focal conic at ñ(0, θ)/k if and only if (0, θ) a is sub-
parabolic point relative to ṽ2 over Whitney umbrella. For any focal conic, there exists
at least one and at most three values of k such that Ck is tangent to the focal conic.
This implies that the number of the sub-parabolic points relative to ṽ2 over Whitney
umbrella is at least one and at most three (cf. Lemma 2.13).

(5) The origin of the normal plane is the vertex of the focal conic if and only if a11 = 0.
In this case, we have κ̃1(0,−θ) = κ̃1(0, θ), and (r, θ) = (0, 0) is a sub-parabolic point
relative to ṽ2.

(6) When the focal conic is a parabola, (r, θ) = (0, 0) is parabolic (in fact, κ̃1(0, 0) = 0) and
sub-parabolic relative to ṽ2 over Whitney umbrella (i.e., Γ∗3(0) = 0).

We obtain the following corollary by Propositions 2.3 and 3.4.
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Corollary 3.6. (1) There is no parabolic point over Whitney umbrella, that is, the parabolic
line dose not meet with X, if and only if the focal conic is an ellipse, in which case we
have the hyperbolic Whitney umbrella.

(2) There is one parabolic point over Whitney umbrella, that is, the parabolic line meets with
X at one point, if and only if the focal conic is a parabola. In this case the intersection
point of the parabolic line and X is a sub-parabolic point relative to ṽ2. Furthermore,
the parabolic line is tangent to X at the point if and only if the point is not a ridge
point relative to ṽ1. In this case, we have the parabolic Whitney umbrella.

(3) There are two parabolic points, that is, the parabolic line meets with X at two points,
if and only if the focal conic is a hyperbola, in which case we have the elliptic Whitney
umbrella.

3.2 Versality of distance squared unfolding

We do not repeat here the definition of versal unfolding, which is fundamental in singularity
theory. Please refer to [1] for elegant explanation, [17] for elementary introduction, and
[25] for carefully prepared survey. The notation in [25] becomes the standard in singularity
theory.

Theorem 3.7. Suppose that g : (R2,0) → (R3,0) is given in the normal form of Whitney
umbrella. Assume that Φ : (R2,0) × R3 → R is the distance squared function defined by
(3.1) and that ϕ(u, v) = Φ(u, v, x0, y0, z0) where (x0, y0, z0) is a point in R3.

(1) Suppose that (x0, y0, z0) = ñ(0, θ0)/κ̃1(0, θ0) 6= (0, 0, 0) with κ̃1(0, θ0) 6= 0 and t0
2 =

x0
2 + y0

2 + z0
2, where θ0 ∈ (−π/2, π/2).

(a) The function ϕ(u, v) has an A2-singularity at (0, 0) if and only if (0, θ0) is not
a ridge point relative to ṽ1 over Whitney umbrella. In this case, Φ is R+ and
K-versal unfolding of ϕ.

(b) The function ϕ has an A3-singularity at (0, 0) if and only if (0, θ0) is a first order
ridge point relative to ṽ1 over Whitney umbrella. In this case, Φ is an R+-versal
unfolding of ϕ. Moreover, Φ is a K-versal unfolding of ϕ if and only if (0, θ0) is
not a sub-parabolic point relative to ṽ2 over Whitney umbrella.

(2) Suppose that (x0, y0, z0) = (0, 0, 0) and t0 = 0. Then ϕ has an A3-singularity at (0, 0).
In this case, Φ is neither an R+-versal nor a K-versal unfolding of ϕ.

Proof. Let us use expansions of Φ and ϕ as in (3.2) and (3.3), respectively. We remark that
the coefficient a02 appearing in the normal form of Whitney umbrella is not zero.

(1) We first prove the condition for the point (0, 0) to be an A2 or A3-singularity of ϕ.
Lemma 3.3 now shows that ϕ has an Ak-singularity at (0, 0). By (2.5) and (2.9), we have

(x0, y0, z0) =

(
0, − (a11 cos θ0 + a02 sin θ0) cos θ0

a20 cos2 θ − a02 sin2 θ0
,

cos2 θ0

a20 cos2 θ0 − a02 sin2 θ0

)
6= (0, 0, 0).

Simple calculations show that(
c020 c011
c011 c002

)
=

a02

a20 cos2 θ0 − a02 sin2 θ0

(
sin2 θ0 − cos θ0 sin θ0

− cos θ0 sin θ0 cos2 θ0

)
.
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Taking s and (ξ, η) so that

s

(
η2 −ξη
−ξη ξ2

)
=

(
c020 c011
c011 c002

)
,

we obtain
s =

a02

a20 cos2 θ0 − a02 sin2 θ0
and (ξ, η) = (cos θ0, sin θ0).

Setting c = 2s(c021ξ
2 + 2c012ξη + c003η

2)/ξ4 and replacing v by v + (η/ξ)u− cu2, we have

Φ = c00(x, y, z) + xu+

4∑
i+j=2

1

i!j!
ĉij(x, y, z)u

ivj +O(u, v)5,

where

ĉ20 =
1

ξ2
(c20ξ

2 + 2c11ξη + c02η
2), ĉ11 =

1

ξ
(c11ξ + c02η), ĉ02 = c02,

ĉ30 =
1

sξ5

(
sξ2(c30ξ

3 + 3c21ξ
2η + 3c12ξη

2 + c03η
3)− 3(c11ξ + c02η)(c021ξ

2 + 2c012ξη + c002η
2)
)

ĉ21 =
1

sξ4
[
sξ2(c21ξ

2 + 2c12ξη + c02η
2)− c02(c021ξ

2 + 2c012ξη + c002η
2)
]
,

ĉ12 =
1

ξ
(c21ξ + c03η), ĉ03 = c03,

ĉ40 =
1

ξ4
(c040ξ

4 + 4c031ξ
3η + 6c022ξ

2η2 + 4c013ξ
3η + c004η

4)

− 3

sξ6
(c021ξ

2 + 2c012ξη + c003η
2)
[
2(c21ξ

2 + 2c12ξη + c02η
2)− (c021ξ

2 + 2c012ξη + c003η
2)
]
.

Therefore, ϕ is expressed as

ϕ =
1

2
ĉ002v

2 +
1

6
(ĉ030u

3 + 3ĉ012uv
2 + ĉ003v

3) +
∑
i+j=4

1

i!j!
ĉ0iju

ivj +O(u, v)5,

where ĉ0ij = ĉij(x0, y0, z0). By this form, ϕ does not have D4 or worse singularities. This
form also shows that ϕ has an A2 or A3 singularity for (x0, y0, z0) at (0, 0) if and only if
ĉ030 6= 0, or ĉ030 = 0 and ĉ040 6= 0, respectively. After some computations, we extract that

ĉ030 =
Γ3(θ0) sec2 θ0

a20 cos2 θ0 − a02 sin2 θ0
and ĉ040 =

Γ4(θ0) sec4 θ0

a02(a20 cos2 θ0 − a02 sin2 θ0)
.

Therefore, from Lemma 2.6 it follows that ϕ has an A2 or A3-singularity at (0, 0) if and
only if (0, θ0) is not a ridge point relative to ṽ1 or a first order ridge point relative to ṽ1,
respectively.

We now turn to the versality of Φ. Firstly, we prove Case (a). Suppose that (0, 0) is an
A2-singularity. We remark that A2-singularity is 3-determined. To show the R+-versality
and the K-versality of Φ, it is enough to verify that, respectively,

E2 = 〈ϕu, ϕv〉E2 + 〈Φx|R2×p0 ,Φy|R2×p0 ,Φz|R2×p0〉R + 〈1〉R + 〈u, v〉4E2 , and (3.4)

58



E2 = 〈ϕu, ϕv, ϕ〉E2 + 〈Φx|R2×p0 ,Φy|R2×p0 ,Φz|R2×p0〉R + 〈u, v〉4E2 , (3.5)

where p0 = (x0, y0, z0). The coefficients of uivj of functions appearing in (3.4) and (3.5) are
given by the following table:

1 u v u2 uv v2 u3 u2v uv2 v3

Φx 0 1 0 0 0 0 0 0 0 0
Φy −y0 0 0 α20 1 0 α30 α21 α12 α03

Φz −z0 0 0 β20 β11 β02 β30 β21 β12 β03

ϕu 0 0 0 1
2 ĉ

0
30 0 1

2 ĉ
0
12

1
6 ĉ

0
40

1
2 ĉ

0
31

1
2 ĉ

0
22

1
6 ĉ

0
13

ϕv 0 0 ĉ002 0 ĉ012
1
2 ĉ

0
03

1
6 ĉ

0
31

1
2 ĉ

0
22

1
2 ĉ

0
13

1
6 ĉ

0
04

ϕ 0 0 0 0 0 1
2 ĉ

0
02

1
6c

0
30 0 1

2 ĉ
0
12

1
6 ĉ

0
03

uϕu 0 0 0 0 0 0 1
2 ĉ

0
30 0 1

2 ĉ
0
12 0

vϕu 0 0 0 0 0 0 0 1
2 ĉ

0
30 0 1

2 ĉ
0
12

uϕv 0 0 0 0 ĉ002 0 0 ĉ012
1
2 ĉ

0
03 0

vϕv 0 0 0 0 0 ĉ002 0 0 ĉ012
1
2 ĉ

0
03

u2ϕv 0 0 0 0 0 0 0 ĉ002 0 0

uvϕv 0 0 0 0 0 0 0 0 ĉ002 0

v2ϕv 0 0 0 0 0 0 0 0 0 ĉ002

Here,

αij =
∂ĉij
∂y

(x0, y0, z0), βij =
∂ĉij
∂z

(x0, y0, z0),

and boxed elements are non-zero. Hence, Gauss’s elimination method using boxed elements
as pivots leads to that the matrix presented by this table is full rank. Thus the equality (3.5)
holds. The case of (3.4) is similar.

Next, we consider Case (b). Suppose that (0, 0) is an A3-singularity. We remark that
A3-singularity is 4-determined. To show the R+-versality and the K-versality of Φ, it is
enough to verify that

E2 = 〈ϕu, ϕv〉E2 + 〈Φx|R2×p0 ,Φy|R2×p0 ,Φz|R2×p0〉R + 〈1〉R + 〈u, v〉5, and (3.6)

E2 = 〈ϕu, ϕv, ϕ〉E2 + 〈Φx|R2×p0 ,Φy|R2×p0 ,Φz|R2×p0〉R + 〈u, v〉5, (3.7)

respectively. The coefficients of uivj of functions appearing in (3.6) and (3.7) are given by
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the following table:

1 u v u2 uv v2 u3 u2v uv2 v3 u4

Φx 0 1 0 0 0 0 0 0 0 0 0
Φy −y0 0 0 α20 1 0 α30 α21 α12 α03 α40

Φz −z0 0 0 β20 β11 β02 β30 β21 β12 β03 β40

ϕu 0 0 0 0 0 1
2 ĉ

0
12

1
6 ĉ

0
40

1
2 ĉ

0
31

1
2 ĉ

0
22

1
6 ĉ

0
13

1
24 ĉ

0
50

ϕv 0 0 ĉ002 0 ĉ012
1
2 ĉ

0
03

1
6 ĉ

0
31

1
2 ĉ

0
22

1
2 ĉ

0
13

1
6 ĉ

0
04

1
24 ĉ

0
41

ϕ 0 0 0 0 0 1
2 ĉ

0
02 0 0 1

2 ĉ
0
12

1
6 ĉ

0
03

1
24 ĉ

0
40

uϕu 0 0 0 0 0 0 0 0 1
2 ĉ

0
12 0 1

6 ĉ
0
40

vϕu 0 0 0 0 0 0 0 0 0 1
2 ĉ

0
12 0

uϕv 0 0 0 0 ĉ002 0 0 ĉ012
1
2 ĉ

0
03 0 1

6 ĉ
0
31

vϕv 0 0 0 0 0 ĉ002 0 0 ĉ012
1
2 ĉ

0
03 0

u2ϕv 0 0 0 0 0 0 0 ĉ002 0 0 0

uvϕv 0 0 0 0 0 0 0 0 ĉ002 0 0

v2ϕv 0 0 0 0 0 0 0 0 0 ĉ002 0

uivj (i+ j ≤ 3) u4 u3v u2v2 uv3 v4

u3ϕu 0 0 ĉ002 0 0 0

u2vϕu 0 0 0 ĉ002 0 0

uv2ϕu 0 0 0 0 ĉ002 0

v3ϕu 0 0 0 0 0 ĉ002

The equality (3.6) holds if and only if the matrix presented by this table except the first
column is full rank. This requires that α20 or β20 is non-zero. Similarly, (3.7) holds if and
only if

y0 α20

z0 β20
6= 0. (3.8)

Some calculations show that

α20 = 2 tan θ0 and β20 = a20 + 2a11 tan θ0 + a02 tan2 θ0.

Now we assume that (α20, β20) = (0, 0). Then we have θ0 = 0 and a20 = 0. Hence,
κ̃1(0, θ0) = 0. Since this opposes the assumption κ̃1(0, θ0) 6= 0, the equality (3.6) holds.

We now turn to (3.7). A Calculation shows that

y0 α20

z0 β20
=

2Γ∗2(θ0) sec θ0
A∗2(θ0)

.
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By Lemma 2.11, it follows that (3.8) holds if and only if (0, θ0) is not a sub-parabolic point
relative to ṽ2 over Whitney umbrella.

(2) Now we can reduce ϕ to

ϕ =− 1

2
u2 − 1

8
a20

2u4 − 1

2
a20a11u

3v

− 1

4
(2 + 2a11

2 + a20a02)u2v2 − 1

2
a11a02uv

3 − 1

8
a02

2v4 + · · · .

It follows that ϕ has an A3-singularity at (0, 0). Next, we show that Φ is not R+-versal. Since
A3-singularity is 4-determined, Φ is an R+-versal unfolding of ϕ if and only if the following
equality holds.

E2 = 〈ϕu, ϕv〉E2 + 〈Φx|R2×{0},Φy|R2×{0},Φz|R2×{0}〉R + 〈1〉R + 〈u, v〉5.

Since

Φx = u+ · · · , Φy = uv + · · · , Φz =
1

2
(a20u

2 + 2a11uv + a02v
2) + · · · ,

ϕu = −u+ · · · ,

ϕv = −1

2

[
a20a11u

3 + (2 + a20a02 + 2a11
2)u2v + a11a02uv

2 + a02
2v3
]

+ · · · ,

the sum of two ideals 〈ϕu, ϕv〉E2 + 〈Φx|R2×{0},Φy|R2×{0},Φz|R2×{0}〉R does not contain v,
and Φ is not an R+-versal unfolding of ϕ. In a similar way, we can prove that Φ is not
K-versal.

4 Singularities of caustics and fronts of Whitney um-
brella

If a smooth function germ f : (R2,0)→ (R, 0) is right equivalent to A2-singularity, then the
discriminant set of a K-versal unfolding F : (R2×R3,0)→ (R, 0) of f is locally diffeomorphic
to the discriminant set of the following unfolding:

G(u, v, x, y, z) = u3 ± v2 + x+ yu.

The singularity of the discriminant set of G is the cuspidal edge. Here, the cuspidal edge
is the image of a map germ A-equivalent to (u, v) 7→ (u, v2, v3) at the origin. The picture
of the cuspidal edge is shown in Figure 2 (i). Similarly, if a smooth function f is right
equivalent to A3-singularity, then the discriminant (resp. bifurcation) set of a K-versal (resp.
R+) unfolding F is locally diffeomorphic to the discriminant (resp. bifurcation) set of the
following unfolding:

G(u, v, x, y, z) = u4 ± v2 + x+ yu+ zu2 (resp. Ĝ(u, v, x, y, z) = u4 ± v2 + xu2 + yu).

The singularity of the discriminant set of G (resp. bifurcation set of Ĝ) is the swallowtail
(resp. cuspidal edge). Here, the swallowtail is the image of a map germ A-equivalent to
(u, v) 7→ (u, 3v4 + uv2, 4v3 + 2uv) at the origin. The picture of the swallowtail is shown in
Figure 2 (ii). Therefore, Theorem 3.7 leads to the following.
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(i) (ii)

Figure. 2: (i) Cuspidal edge; (ii) swallowtail.

Theorem 4.1. Let g : (R2,0)→ (R3,0) be given in the normal form of Whitney umbrella.
Suppose that (0, θ0) is not a parabolic point over Whitney umbrella where θ0 ∈ (−π/2, π/2).

(1) Suppose that (0, θ0) is not a ridge point relative to ṽ1 over Whitney umbrella. Then
the front of g at distance 1/|κ̃1(0, θ0)| is locally diffeomorphic to a cuspidal edge at
ñ(0, θ0)/κ̃1(0, θ0).

(2) Suppose that (0, θ0) is a first order ridge point relative to ṽ1 over Whitney umbrella.
Then the caustic of g is locally diffeomorphic to a cuspidal edge at ñ(0, θ0)/κ̃1(0, θ0).
Additionally, if (0, θ0) is not a sub-parabolic point relative to ṽ2 over Whitney umbrella,
then the front of g at distance 1/|κ̃1(0, θ0)| is locally diffeomorphic to a swallowtail at
ñ(0, θ0)/κ̃1(0, θ0).

Theorem 4.1 (1) and Proposition 2.16 imply that the front of g has at most four cuspidal
edge singularities on Ck. Similarly, Theorem 4.1 (2) and Lemma 2.7 imply that the front of
g has at most four swallowtail singularities on Ck. If for example g is given in the normal
form of Whitney umbrella determined by coefficients

(a20, a11, a02, a30, a21, a12, a03, b3) = (3, 0, 1,−7, 0, 8/3, 0, 1),

then the front of g at distance 1/
√

2 has four swallowtail singularities on C√2.
In Theorem 4.3 below, we give the criteria for the cuspidal lips, the cuspidal beaks and the

cuspidal butterfly of fronts of Whitney umbrella. To prove Theorem 4.3, we use the criteria
for these singularities of parallel surfaces of regular surfaces, which shown in the authors’
previous work [7]. We present these criteria as the following:

Theorem 4.2 ([[7], theorem 5·3]). Suppose that g : U → R3 is a smooth map which defines
a regular surface in R3 and that gt denotes the parallel surface of g at distance t. Assume
that κi(p) 6= 0.

(1) Assume that g(p) is a first order ridge point relative to the principal vector vi and a
sub-parabolic point relative to the other principal vector, and det(Hess κi(p)) > 0 (resp.
< 0), where Hess κi denotes the Hessian matrix of κi. Then the parallel surface gt at
distance t = 1/κi(p) is locally diffeomorphic to a cuspidal lips (resp. cuspidal beaks) at
gt(p).

(2) Assume that g(p) is a second order ridge point relative to the principal vector vi and
not a sub-parabolic point relative to the other principal vector. Then the parallel surface
gt at distance t = 1/κi(p) is locally diffeomorphic to a cuspidal butterfly at gt(p).
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Here, the cuspidal lips is the image of a map germ A-equivalent to (u, v) 7→ (3u4 +
2u2v2, u3 + uv2, v) at the origin, the cuspidal beaks is the image of a map germ A-equivalent
to (u, v) 7→ (3u4− 2u2v2, u3− uv2, v) at the origin, and the cuspidal butterfly is the image of
a map germ A-equivalent to (u, v) 7→ (4u5 + u2v, 5u4 + 2uv, v) at the origin. The pictures of
these singularities are shown in Figure 3.

(i) (ii) (iii)

Figure. 3: (i) Cuspidal lips; (ii) cuspidal beaks; (iii) cuspidal butterfly.

Theorem 4.3. Let g : (R2,0) → (R3,0) be given in the normal of Whitney umbrella.
Suppose that (0, θ0) is not a parabolic point over Whitney umbrella, where θ0 ∈ (−π/2, π/2).

(1) Assume that (0, θ0) is a first order ridge point relative to ṽ1 and sub-parabolic point
relative to ṽ2 over Whitney umbrella, and that det(Hess κ̃1(0, θ0)) > 0 (resp. < 0).
Then the front of g at distance 1/|κ̃1(0, θ0)| is locally diffeomorphic to a cuspidal lips
(resp. cuspidal beaks) at ñ(0, θ0)/κ̃1(0, θ0).

(2) Assume that (0, θ0) is a second order ridge point relative to ṽ1 and not a sub-parabolic
point relative to ṽ2 over Whitney umbrella. Then the front of g at distance 1/|κ̃1(0, θ0)|
is locally diffeomorphic to a cuspidal butterfly at ñ(0, θ0)/κ̃1(0, θ0).

Proof. We shall prove the assertion (1). The proof of the assertion (2) is similar and we omit
the detail. We set g̃ = g ◦ π̃ : R × S1 → R3 and g̃t(r, θ) = g̃(r, θ) + tñ(r, θ) (t 6= 0). Then
g̃t is the parallel surface of g̃ at distance t, whose image is the front of g at distance |t|. The
principal radii of g̃t are given by

1

κ̃ti
=

1

κ̃i
− t. (4.1)

We consider two parallel surfaces of g̃: one is at distance t0 = 1/κ̃1(0, θ0) by g̃t0 , and
the other is at distance t1 6= t0 by g̃t1 . We remark that g̃t0 is the parallel surface of g̃t1 at
distance 1/κ̃1(0, θ0) − t1 = 1/κ̃t11 (0, θ0). Now suppose that g̃t1(0, θ0) is a first order ridge
point relative to ṽt11 and a sub-parabolic point relative to ṽt12 , that is,

ṽt11 κ̃
t1
1 (0, θ0) = 0, (ṽt11 )2κ̃t11 (0, θ0) 6= 0, and ṽt12 κ̃

t1
1 (0, θ0) = 0, (4.2)

and that det(Hess κ̃t11 (0, θ0)) > 0 (resp. < 0). Then it follows from Theorem 4.2 that g̃t0 is
locally diffeomorphic to a cuspidal lips (resp. cuspidal beaks) at g̃t0(0, θ0).
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Since the lines of curvature on all parallel surfaces correspond to one another (cf. [6]
p. 121, see also [26] p. 159), it follows that ṽt11 (resp. ṽt12 ) is parallel to ṽ1 (resp. r2ṽ2) at
(0, θ0). This and (4.1) show that the condition (4.2) holds if and only if

ṽ1κ̃1(0, θ0) = 0, ṽ2
1κ̃1(0, θ0) 6= 0, and r2ṽ2κ̃1(0, θ0) = 0.

These conditions are equivalent to that (0, θ0) is a first order ridge point relative to ṽ1 and
a sub-parabolic point relative to ṽ2 over Whitney umbrella. Moreover, it follows from (4.1)
that the sign of det(Hess κ̃t11 (0, θ0)) is the same as the sign of det(Hess κ̃1(0, θ0)). Thus we
have completed the proof.

We obtain criteria for the cuspidal edge, the swallowtail, the cuspidal lips, the cuspidal
beaks, and the cuspidal butterfly of fronts of Whitney umbrella, and the criterion for the
cuspidal edge of caustics of Whitney umbrella except at singular point of Whitney umbrella
(Table 1). Finding a normal form of the caustic there is an open problem.

Table 1: Criteria for singularities of caustics and fronts of Whitney umbrella.
caustic front

no ridges — non singular cuspidal edge
1-ridges not sub-parabolic cuspidal edge swallowtail

sub-parabolic — cuspidal lips or beaks if CPC is Morse
2-ridges not sub-parabolic — cuspidal butterfly

Example 4.4. Let g be given in the normal form of Whitney umbrella determined by
coefficients

(a20, a11, a02, a30, a21, a12, a03, b3) = (0, 0, 1, 0, 1,−1, 0, 0).

Then we obtain

ñ(0, θ) = (0,− sin θ, cos θ),

κ̃1(0, θ) = − sin θ tan θ,

Γ3(θ) = 3 cos3 θ sin θ − 3 cos2 θ sin2 θ,

Γ∗3(θ) = 2 cos2 θ sin θ + sin3 θ,

Γ4(θ) = −3 cos6 θ + 3 cos5 θ sin θ − 3 cos4 θ sin2 θ + 12 cos2 θ sin4 θ + 3 sin6 θ.

We set k = 1/
√

2. The CPC line Σk and the exceptional set X = π−1(0, 0) meet at two
points (r, θ) = (0,±π/4). Therefore, the front of g at distance

√
2 has two singular points on

Ck at
ñ(0, π/4)

κ̃1(0, π/4)
= (0, 1,−1) and

ñ(0,−π/4)

κ̃1(0,−π/4)
= (0,−1, 1).

Conditions Γ3, Γ∗3, and Γ4 are shown in Table 2. From Table 2, it follows that (0, π/4)
is the first order ridge point relative to ṽ1 and not sub-parabolic point relative to ṽ2 over
Whitney umbrella, and (0,−π/4) is neither the ridge point relative to ṽ1 nor sub-parabolic
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Table 2: Conditions for points to be the ridge or sub-parabolic point.
Γ3(θ) Γ∗3(θ) Γ4(θ)

θ = π/4 0 3/2 3/2
θ = −π/4 −3/2 3/4 −

point relative to ṽ2 over Whitney umbrella. Hence, the front of g at distance
√

2 is locally
diffeomorphic to the swallowtail at (0, 1,−1). Moreover, this front is locally diffeomorphic to
the cuspidal edge at (0,−1,−1). The picture of this front is shown in Figure 4. The thick
circle in Figure 4 is Ck.

cuspidal edge

swallowtail

Figure. 4: The front of Whitney umbrella g as in Example 4.4 at distance
√

2.

References
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