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PICARD GROUPS OF NORMAL SURFACES

JOHN BREVIK AND SCOTT NOLLET

Abstract. We study the fixed singularities imposed on members of a linear system of surfaces

in P3
C by its base locus Z. For a 1-dimensional subscheme Z ⊂ P3 with finitely many points

pi of embedding dimension three and d � 0, we determine the nature of the singularities

pi ∈ S for general S ∈ |H0(P3, IZ(d))| and give a method to compute the kernel of the

restriction map ClS → ClOS,pi . One tool developed is an algorithm to identify the type of
an An singularity via its local equation. We illustrate the method for representative Z and

use Noether-Lefschetz theory to compute PicS.

1. Introduction

The problem of computing Picard groups of surfaces S ⊂ P3
C has a long history. The solution

for smooth quadric and cubic surfaces was known in the 1800s in terms of lines on these surfaces.
In the 1880s Noether suggested what happens in higher degree, but it was not until the 1920s
that Lefschetz proved the famous theorem bearing their names: the very general surface S of
degree d > 3 has Picard group PicS ∼= Z, generated by the hyperplane section H. Here very
general refers to a countable intersection of nonempty Zariski open subsets. To produce typical
families of surfaces S with PicS not generated by H, Lopez proved that very general surfaces
S of high degree containing a smooth connected curve Z have Picard group freely generated by
H and Z [15, II, Thm. 3.1], a geometrically pleasing result with many applications [4, 5, 6, 7].

Recently we extended these results, proving that the class group ClS of the very general
surface S containing an arbitrary 1-dimensional subscheme Z with at most finitely many points
of embedding dimension three 1 is freely generated by H and the supports of the irreducible
curve components of Z [2, Thm. 1.1]. This allows access to the Picard group via the exact
sequence of Jaffe [11, Prop. 3.2] (see also [9, Prop. 2.15])

(1) 0→ PicS → ClS →
⊕

p∈SingS
ClOS,p

provided we can find the kernels of the restriction maps ClS → ClOS,p at the singular points
p ∈ S, where ClOS,p is the divisor class group of the local ring. The answer being known
at singular points of S where Z has embedding dimension ≤ 2 [2, Prop. 2.2], our motivating
question becomes:

Problem 1.1. For Z ⊂ P3 and p ∈ Z a point of embedding dimension three, find the kernel of
the restriction map ClS → ClOS,p.

A general solution to Problem 1.1 is out of reach because one would need to classify all
embedding dimension three points p on curves Z to state an answer. Instead we give a method
of attack on the problem:

Method 1.2. The kernel of the restriction ClS → ClOS,p can be computed as follows.

2000 Mathematics Subject Classification. Primary: 14B07, 14H10, 14H50.
1This is the weakest condition allowing S to be a normal surface, so that ClS is defined.
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Step 1. The natural map ClOS,p → Cl ÔS,p being injective, we consider the composite map

ClS → ClOS,p ↪→ Cl ÔS,p, where power series tools are available.

Step 2. Working in ÔS,p, use analytic coordinate changes to recognize the form of the singularity

and compute the local class group Cl ÔS,p when possible.
Step 3. Since ClS is freely generated by H and the supports of the curve components of Z

[2, Thm 1.1], it is enough to find the images of those supports for irreducible curve

components of Z passing through p in Cl ÔS,p (the rest map to zero).

Remark 1.3. Method 1.2 can always be carried out if Z is locally contained in two smooth
surfaces meeting transversely at p. This is because the analytic local equation of S at p contains
an xy term and we can employ our recognition theorem: Theorem 2.6 gives an inductive algorithm
that recognizes the type of an An singularity in at most n steps, but finishes in just 1 step with
probability 1. While most of this paper is devoted to illustrations of Method 1.2, Theorem 2.6
may be the most useful general result presented here.

Remark 1.4. Regarding Step 3, the images of the supports of the curve components of Z

containing p generate ClOS,p as a subgroup of Cl ÔS,p for very general S [3, Prop. 2.3]. This
gives a geometric way to see the class group of a ring in its completion.

(a) In particular, the map ClS → ClOS,p is zero if p is an isolated point of Z, since Z has no
curve components passing through p. Therefore only the 1-dimensional part of Z contributes to
the answer.

(b) Srinivas has asked [20, Ques. 3.1] which subgroups appear as ClB ⊂ ClA where B is

a local C-algebra with A = B̂. We proved that for complete local rings A corresponding to
the rational double points An,Dn,E6,E7,E8, the answer is every subgroup [3, Thm. 1.3]. We
constructed the rings B as the geometric local rings OS,p arising from general surfaces S ⊂ P3

containing a fixed base locus forcing the singularity at p. This poses a stark contrast to results
of Kumar [13], who showed that if B has fraction field C(x, y) and the singularity type is E6,E7

or An with n 6= 7, 8, then B is determined by A and hence ClB = ClA.

We illustrate Method 1.2 by giving complete answers for the following base loci Z:

(1) Unions of two multiplicity structures near p which are locally contained in smooth sur-
faces with distinct tangent spaces at p.

(2) Multiplicity structures on a smooth curve of multiplicity ≤ 4 near p.

Regarding organization, we review An singularities and their analytic equations in Section 2,
proving the recognition theorem, Theorem 2.6. In Sections 3 - 4 we solve Problem 1.1 in the
cases (1) and (2) listed above. Finally in Section 5 we prove Theorem 5.1, which shows how to
compute PicS and give examples.

2. Analytic expressions for rational double points

In this section we briefly review rational double points of type An and some results about
analytic change of coordinates.

2.1. An singularities. An An surface singularity has local analytic equation xy − zn+1, thus
it is analytically isomorphic to Spec(R) with R = k[[x, y, z]]/(xy − zn+1). The resolution of
this singularity is well known [10, 5.2]: an A1 resolves in a single blow-up with one rational
exceptional curve having self-intersection −2; an A2 resolves in one blow-up but with two (−2)-
curves meeting at a point. For n ≥ 3, blowing up with new variables x1 = x/z, y1 = y/z
gives two exceptional curves, namely Ex1 defined by (x1, z) and Ey1 defined by (y1, z), meeting
transversely at an An−2 at the origin. Blowing up and continuing inductively, the singularity
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unfolds and we obtain a resolution with exceptional divisors forming a chain of n rational (−2)-
curves meeting pairwise transversely. We will adopt the convention, identifying a curve with its
strict transform, that E1 = Ex1

, E2 = Ex2
, . . . , En = Ey1 .

To calculate ClR, identify a curve C with the sequence (C̃.E1, C̃.E2 . . . ) of intersection num-
bers of its strict transform with the exceptional curves. Then ClR is the quotient of the free
abelian group on the exceptional curves with relations given by the fact that the exceptional
curves themselves correspond to the trivial class [14, §14 and §17]. Let (uj) be the ordered basis
for the free group; then the relations for an An singularity are

−2u1 + u2, u1 − 2u2 + u3, . . . , un−1 − 2un

so that ClR ∼= Z/(n+ 1)Z generated by u1 and satisfying uj = ju1 for all j.

Example 2.1. Let R = k[[x, y, z]]/(xy − zn+1) be the complete local ring of an An surface
singularity. Under the identification Cl(R) ∼= Z/(n+ 1)Z, we identify the following classes:

(a) The class of the curve D1 given by (x, z) is 1.
(b) The class of the curve D2 given by (y, z) is −1.
(c) For 1 ≤ r ≤ n, the class of the curve (x− zn−r+1, y − zr) is r.

Parts (a) and (b) are contained in [10, Prop. 5.2] and part (c) is [10, Rem. 5.2.1], where the
class considered is (x− azn−r+1, y− a−1zr) for a unit a. To save a change of coordinates at the
end of a calculation, we will often apply part (c) to the curve (x− uzn−r+1, y− vzr) in the ring
k[[x, y, z]]/(xy − uvzn+1) with u, v units.

2.2. Analytic coordinate changes. We will use coordinate changes in k[[x, y, z]] to recognize
the structure of surface singularities. Let R = k[[x1, . . . , xn]] be the ring of formal powers series
over a field k with maximal ideal m. A change of variables for R is an assignment xi 7→ x′i ∈ m
inducing an automorphism of R. An assignment xi 7→ x′i induces an automorphism if and only
if induced maps m/m2 → m/m2 is an isomorphism if and only if the matrix A of coefficients
of linear terms in the x′i is nonsingular (this is noted by Jaffe [12, Prop. 3.2] when n = 2).
Examples include multiplication of variables by units and translations of variables by elements
in m2.

The following lemma allows us to take roots in power series rings.

Lemma 2.2. Let (R,m) be a complete local domain, and let n be a positive integer that is a
unit in R. If a0 ∈ R is a unit and u ≡ an0 mod mk for some fixed k > 0, then there exists a ∈ R
such that an = u and a ≡ a0 mod mk.

Proof. Using Hensel’s method, we construct a sequence {ai} with ai ≡ ai+1 modm(i+1)k and

ani ≡ umodm(i+1)k. Write u(i) = u − ani ∈ m(i+1)k and let ai+1 = ai + u(i)

nan−1
i

; then we have

ai+1 ≡ ai mod m(i+1)k and ani+1 = ani + u(i) + ũ, ũ ∈ m2(i+1)k ⇒ ani+1 ≡ u mod m(i+2)k. �

Lemma 2.3. Let R = k[[x, y]] with maximal ideal m ⊂ R. For f ∈ m3, there is a change of
coordinates X,Y such that

xy + f = XY

and X,Y may be chosen so that x ≡ X mod m2 and y ≡ Y mod m2.

Proof. (Cf. [8, I, Ex. 5.6.3]) Since f ∈ m3, we may write f = xh1 + yg1 with h1, g1 ∈ m2. Now
write x1 = x + g1, y1 = y + h1 so that xy + f = x1y1 − g1h1, where g1h1 ∈ m4. Continue the
process inductively, constructing a sequence of coordinate changes that converge to X,Y and
for which f = XY . �

We frequently encounter the complete local rings considered in the following Proposition.
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Proposition 2.4. Let R = k[[x, y, z]]/(xy − uyzt − vxn), where u, v ∈ k[[x, y, z]] are units and
t ≥ 1, n ≥ 3 are integers. Then SpecR is an Atn−1 singularity and the class of the curve (x, z)
(resp. (x, y)) maps to 1 (resp. tn− t) via the isomorphism ClR ∼= Z/tnZ.

Proof. In setting X = x− uzt, the expression xy − uyzt − vxn becomes

(2) Xy − v(X + uzt)n = Xy − vX (Xn−1 + nXn−2uzt + · · ·+ nun−1zt·(n−1))︸ ︷︷ ︸
α

−vunztn.

For α as shown, set Y = y − vα to obtain XY − vunztn. Absorbing vun into either X or Y
brings the expression to the standard form for an Atn−1 singularity, hence we have ClR ∼= Z/tnZ
from the previous section. Moreover (x, z) = (X +uzt, z) = (X, z) gives the canonical generator
1 in ClR = Z/tnZ by Example 2.1 (a).

For the second curve, write (x, y) = (X + uzt, y) = (X + uzt, Y + vα). Then

(X + uzt)n = Xα+ (uzt)n = (X + uzt)α− uztα+ (uzt)n

by definition of α so that (uzt)α ≡ (uzt)n mod (X + uzt). Since the quotient ring modulo
X + uzt is an integral domain in which uzt is nonzero, we see that α ≡ (uzt)n−1 mod (X + uzt)
and therefore (x, y) = (X + uzt, Y + vun−1ztn−t) which corresponds to the class tn− t ∈ Z/tnZ
by Example 2.1 (c).

�

2.3. Recognizing An Singularities. We develop an algorithm to identify the An-singularity
type defined by a power series F in three variables defining a double point with nondegenerate
tangent cone, so that the degree-2 part is not a square. In this case it is known [10, Thm. 4.5]
that F defines an An singularity for some n or F factors, which we interpret as n = ∞. Our
goal is to identify the answer by inspection if possible. Such F can be written

F =
∑

i+j+k>1

ci,j,kx
iyjzk ∈ m2 ⊂ k[[x, y, z]]

with c1,1,0 = 1, c2,0,0 = c0,2,0 = 0.
Let A be the sum of all terms satisfying i, j > 0 and i + j + k > 2. Then A = xyB with

B ∈ m and the remaining terms of F fall into three categories: (a) i = j = 0, which we write
as h(z) ∈ k[[z]], (b) i = 0, j > 0, which we can write as

∑
j=1 y

jgj(z) with gj ∈ k[[z]] and (c)

j = 0, i > 0 which can be written as
∑
i=1 x

ifi(z) with fi ∈ k[[z]]. With these choices F becomes

(3) F = xy + h(z) +

∞∑
i=1

xifi +

∞∑
j=1

yjgj + xyB

where h, fi, gj ∈ k[[z]], B ∈ m and ord g2 > 0. Letting u = 1 + B we can drop the last term
at the expense of multiplying the xy term by the unit u: now let X = ux and replace fi with
(u−1)ifi to obtain

(4) F = xy + h(z) +

∞∑
i=1

xifi +

∞∑
j=1

yjgj

with gj ∈ k[[z]] and fi(z) = zriui with ui a unit. To determine the singularity type, we may
assume r1 < ∞ or ord g1 < ∞, since f1 = g1 = 0 gives an Ah−1 with h = ordh(z). We make
one more simplification. Set X = x+ g1 to obtain

F = Xy + h(z) +

∞∑
i=1

(X − g1)ifi +

∞∑
j=2

yjgj .
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Regrouping the fi by powers of X after expanding the powers of (X − g1) we arrive at

(5) F = xy + h(z) +

∞∑
i=1

xifi +

∞∑
j=2

yjgj .

where the fi, gj are equal to a power of z times a unit, 0 < ord f1 <∞ and 0 < ord g2. Since we
only make variable changes which fix z, the crux of the matter is to understand the case when
h = 0.

Lemma 2.5. Consider the power series

(6) F = xy +

∞∑
i=1

xifi +

∞∑
j=2

yjgj

where fi, gj are powers of z up to units, (a) 0 < ord f1 < ∞ and (b) ord f2 > 0 or ord g2 > 0.

Set m = min{ord f j1gj} and write
∑∞
j=2(−1)jf j1gj = zm · δ. Then the change of variables

X = x, Y = y + f1 yields

(7) F = zm · δ +XY +

∞∑
i=2

XiFi +

∞∑
j=1

Y jGj

where Fi, Gj are powers of z up to units such that

(a) 0 < ordG1 <∞;
(b) ordF2 > 0 or ordG2 > 0;
(c) M = min{ordGi1Fi} > m; and
(d) ordG1 ≥ m− ord f1.

Proof. Setting Y = y + f1 we have

F = xY +

∞∑
i=2

xifi +

∞∑
j=2

(Y − f1)jgj .

The part of the last sum with degree 0 in Y is
∑∞
j=2(−1)jf j1gj = zm · δ by definition of δ.

We take Fi = fi for i ≥ 2 and calculate Gj by gathering terms with like powers of Y :

(8) G1 = −2f1g2 + 3f21 g3 − · · · =
∞∑
k=2

(−1)k−1kfk−11 gk

and for j ≥ 2,

Gj =

∞∑
k=j

(−1)k−j
(
k

j

)
fk−j1 gk.

Thus F takes the form of equation (7) and it remains to show that M = min{ordGi1Fi} > m.
When expanded, each term in Gi1Fi = Gi1fi has the form

cfif
k1+k2+···+ki−i
1 gk1gk2 · · · gki

where c is a constant and the k` ≥ 2 are not necessarily distinct. The order of this term is
strictly greater than ord fk11 gk1 ≥ m, unless i = 2, k1 = k2 = 2. In the case i = 2, k1 = k2 = 2 we
would like to see that ord f2f

2
1 g

2
2 > ord f21 g2, but this follows from the condition that ord f2 > 0

or ord g2 > 0. Thus ordGi1fi > m for all i and M > m.
For (d), the order of the kth term in sum (8) is (k − 1) ord f1 + ord gk ≥ m− ord f1. �

Theorem 2.6. For F as in equation (5), let m = min{jr1 +ord gj} and set µ = min{ordh,m}.
Let δ(µ) be the coefficient of zµ in H = h+

∑∞
j=2(−1)jf j1gj. Then
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(a) F defines an An singularity with n ≥ µ− 1 (n =∞ is possible).
(b) F defines an Aµ−1 singularity if δ(µ) 6= 0.

Proof. Apply the lemma to F − h(z) and then add h(z) back in to obtain the form

F = H +

∞∑
i=2

XiFi +

∞∑
j=1

Y jGj ;

then relabel and repeat. By Lemma 2.5 (c), m is strictly increasing. Note that after each change
of variables Y = y + f1( or X = x + g1), the new variables (x, Y, z) still form a regular system
of parameters at the origin. Now, consider two iterations of the algorithm; start with x, y and
fi, gj and m-value m; then change to x, Y with fi, Gj and m-value M > m, and next to X,Y
with Fi, Gj . Then

ordF1 ≥M − ordG1 > m− (m− ord f1) = ord f1

by Lemma 2.5(d), so ord f1 increases with every change of x-variable; and similarly for ord g1.
Thus the sequence of variable changes forms a Cauchy sequence and moreover in the limit the
terms f1 and g1 both vanish. Therefore the expression becomes

XY +H(z) +

∞∑
i=2

XiFi +

∞∑
j=2

Y jGj ,

and applying [10, Prop. 4.4] after subtracting H(z) brings us to the form

F = XY +H(z).

If some δ(µ) 6= 0, H retains a term of order µ in every subsequent change of variables because
each only involves terms of order ≥ m > µ, so µ stabilizes. Therefore in this case the form of F
is XY + unit · zµ, an Aµ−1 singularity. Otherwise δ(µ) = 0 for every µ and H → 0 as µ→∞,
so F factors. �

Remark 2.7. The inductive procedure given in Theorem 2.6 and Lemma 2.5 recognizes an An

singularity in at most n steps. However condition (b) in Theorem 2.6 is an open condition among
equations of fixed degree, so the algorithm terminates after only one step with probability 1.

Example 2.8. We illustrate the theorem with a few examples.
(a) Applying Theorem 2.6 to F = xy + xz2 + y2z − z6, we have m = 5, µ = min{5, 6} = 5

and δ(5) = 1 6= 0, so F represents an A4 singularity. The variable change Y = y + z2 gives
F = xY + (Y − z2)2z − z6 = xY + Y 2z − 2Y z3 + z5 − z6 so that H(z) = z5 − z6 has order 5.
After the sequence of variable changes suggested, the z5 term survives while the terms involving
x, Y eventually factor.

(b) For the singularity given by

F = xy + xz4 + y2z6 + y3z2 + y4z25 + x2z

we have m = µ = 14 and δ(14) = 0, so we make the variable change Y = y + z4 suggested by
the theorem. Then we have

F = xY + (Y − z4)2z6 + (Y − z4)3z2 + (Y − z4)4z25 + x2z

When multiplying this out, the z14 term drops out (because δ(14) = 0), but that the new
incarnation of F has linear Y -terms, namely

f = xY + Y (−2z10 + 3z10) + · · ·+ x2z = xY + Y z10 + · · ·+ x2z

where the dots represent higher power of Y terms. Continuing with X = x+ z10 gives

f = XY + · · ·+X2z − 2Xz11 + z21
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and it becomes clear that we are dealing with an A20.
(c) Proposition 2.4 follows readily from Theorem 2.6 as (with x, y reversed) we have µ = mn

and δ(mn) = unv 6= 0, yielding an Amn−1 singularity.

3. Two multiple curves intersect at a point

In this section we give a solution to Problem 1.1 when Z = Z1 ∪Z2 is a union of two multiple
curves of embedding dimension two with respective smooth supports C1, C2 meeting transversely
at p under the condition that Z1 and Z2 do not share the same Zariski tangent space at p. In
other words, we consider the following two cases:

(1) No Tangency: C1 is not tangent to Z2 and C2 is not tangent to Z1.
(2) Mixed Tangency: C1 is tangent to Z2 but C2 is not tangent to Z1.

For each of these we find canonical forms for the local ideals (Propositions 3.3 and 3.5) and
determine the local Picard groups at the corresponding fixed singularity on the very general
surface containing the curve (Propositions 3.4, 3.6, 3.7 and 3.8). The following local algebra
lemma will facilitate computing the intersection of ideals IZ = IZ1 ∩ IZ2 .

Lemma 3.1. Let R be a regular (local) ring. For a, b, c, d ∈ R, assume that a, c, d form a regular
sequence and that d ∈ (a, b). Then (a, b) ∩ (c, d) = (ac, bc, d).

Proof. Write d = as+ br with s, r ∈ R. Since d is a non-zero divisor mod (a), the same is true
of r, so that a, r and a, b also form regular sequences in R. Since (a, d) = (a, br), the ideals (a, b)
and (a, r) are linked by the complete intersection (a, d). It follows that (a, b)∩ (c, d) is linked to
(a, r) by the complete intersection (ac, d) = (a, d)∩ (c, d). The inclusion of ideals (ac, d) ⊂ (a, r)
lifts to a map of the corresponding Koszul complexes

0 → R
(−d,ac)−→ R2 (ac,d)−→ (ac, d)

↓ α ↓ β ↓
0 → R

(−r,a)−→ R2 (a,r)−→ (a, r)

where β(A,B) = (Ac+Bs,Bb) and α(C) = Cbc. By the mapping cone construction for liaison
[19, Prop. 2.6], the ideal (a, b)∩ (c, d) is the image of R3 → R given by the direct sum of α∨ and
(−d, ac)∨, so the ideal is (bc,−d, ac) = (ac, bc, d). �

Example 3.2. Lemma 3.1 fails if a, c, d do not form a regular sequence in R, for example
R = k[x, y, z], a = c = x, b = d = y when (x, y) ∩ (x, y) 6= (x2, yx, y) = (x2, y).

Proposition 3.3. Let Z = Z1∪Z2 be the union of two multiplicity structures on smooth curves
C1, C2 meeting at p with respective multiplicities t ≤ n. Assume Zi is contained in a local smooth
surface Si, i = 1, 2, C1 is not tangent to S2 and C2 is not tangent to S1. Then there are local
coordinates x, y, z at p for which IZ1

= (x, zt), IZ2
= (y, zn) and

IZ = (xy, yzt, zn).

Proof. Locally we may assume that S1 is given by equation x = 0 and S2 is given by equation
y = 0. Letting z = 0 be the equation of a smooth surface containing both C1 and C2 near p,
the lack of tangency conditions imply that x, y, z is a regular system of parameters at p and we
obtain IC1 = (x, z) and IC2 = (y, z). Given that Zi ⊂ Si with the multiplicities given, it’s clear
that IZ1

= (x, zt) and IZ2
= (y, zn). Taking a = x, b = zt, c = y, d = zn, we have d ∈ (a, b)

because t ≤ n, so the intersection ideal is (xy, yzt, zn) by Lemma 3.1. �

Proposition 3.4. For Z as in Proposition 3.3 above, the general surface S containing Z has
an An−1 singularity at p and C1 (resp. C2) maps to 1 (resp. −1) under the isomorphism

Cl ÔS,p ∼= Z/nZ.
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Proof. The general element of IZ has the form xy + byzt + czn with units b, c ∈ OP3,p. In the
language of Theorem 2.6, µ = n and δ(n) = c 6= 0, so the singularity is of type An−1. The first
change of variables X = x + bzt is the only one necessary, giving us immediately (up to units)
the form XY − zn; furthermore, the ideal defining C1 is is (x, z) = (X − czn, z) = (X, z) and
IC2 = (y, z) = (Y, z), so these curves correspond to the canonical generators ±1 for the group

Cl ÔS,p ∼= Z/nZ by Examples 2.1 (a) and (b).
�

The mixed tangency case is more complicated.

Proposition 3.5. Let C1, C2 be smooth curves meeting transversely at p, Ci ⊂ Si local smooth
surfaces, and Z1 = tC1 ⊂ S1, Z2 = nC2 ⊂ S2 multiplicity structures. Assume that C1 meets S2

transversely and C2 is tangent to S1 of order q > 1. Then there are local coordinates x, y, z at p
for which

IZ1 = (x− zq, zt), IZ2 = (y, xn)

and the intersection ideal IZ1∪Z2
= IZ1

∩ IZ2
takes the form:

(a) If t ≤ q, then IZ = (xy, yzt, xn).
(b) If q < t < qn, then IZ = (y(x− zq), yzt, xn).
(c) If t ≥ qn, then IZ = (y(x− zq), yzt, xnzt−qn).

Proof. Let x = 0 (resp. y = 0) be a local equation for S1 (resp. S2). Since C1 meets S2

transversely, we can extend x, y to a regular sequence x, y, z with IC1 = (x, z). Locally C2

meets S1 tangentially to order q > 1, so we may write IC2
= (x+ α, y) with α ∈ (x, y, z)q. Now

IC2∩S1
= (x, y, α) defines a scheme of length q, so α = uzq modulo (x, y) for some unit u; writing

α = uzq + xf + yg we have

IC2
= (x+ α, y) = (x+ uzq + xf + yg, y) = (x(1 + f) + uzq, y)

where (1 + f) is a unit. Replacing x with
x(1 + f)

u
+ zq we have

IZ1
= (x− zq, zt) IZ2

= (y, xn)

and it remains to find the intersection IZ = IZ1
∩ IZ2

.
If t ≤ q (including the case q = ∞ ⇒ α = 0 ⇒ C2 ⊂ S1), then IZ1

= (x, zt). Lemma 3.1
applies with a = x, b = zt, c = y and d = xn, showing that IZ = (xy, yzt, xn).

If q < t < qn, then zqn = zt · zqn−t ∈ IZ1
and also (x − zq)|(xn − zqn) ⇒ xn − zqn ∈ IZ1

so
xn ∈ IZ1 . Application of Lemma 3.1 with a = x − zq, b = zt, c = y, d = xn produces the ideal
IZ = (y(x− zq), yzt, xn).

If qn ≤ t, then we have the telescoping sum

zt + zt−q(x− zq) + xzt−2q(x− zq) + · · ·+ xn−1zt−qn(x− zq) = xnzt−qn ∈ IZ1

and so we can again apply Lemma 3.1 with a = x − zq, b = zt, c = y, d = xnzt−qn to obtain
IZ = (y(x− zq), yzt, xnzt−qn). �

Proposition 3.6. For Z = Z1 ∪ Z2 as in Proposition 3.5 (a) with t ≤ q, the general surface S
containing Z has a singularity of type Atn−1 at p and C1 (resp. C2) maps to 1 (resp. tn − t)
under the isomorphism Cl ÔS,p ∼= Z/tnZ.

Proof. In view of Prop. 3.5 (a), the general surface S containing Z1 ∪ Z2 has local equation
xy − uyzt − vxn with u, v units in OP3,p and x, y, z a regular sequence of parameters. Since C1

is given by the ideal (x, z) and C2 is given by (x, y), the result follows from Proposition 2.4. �
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Proposition 3.7. For Z = Z1 ∪ Z2 as in Proposition 3.5 (b) with q < t < qn, the general
surface S containing Z has a singularity of type Aqn at p and C1 (resp. C2) maps to 1 (resp.

qn− q) under the isomorphism Cl ÔS,p ∼= Z/qnZ.

Proof. The general surface containing Z has local equation xy − yzq − uyzt − vxn for units
u, v ∈ OP3,p and since w = 1 + uzt−q is a unit we may write the equation as xy − wyzq − vxn
and we can apply Proposition 2.4 to see the Aqn−1 singularity and that C1 with ideal (x, z)

corresponds to 1 ∈ Z/qnZ ∼= Cl ÔS,p while C2 with ideal (x, y) corresponds to qn− q. �

Proposition 3.8. For Z = Z1 ∪ Z2 as in Proposition 3.5 (c) with qn ≤ t, the very general
surface S containing Z has a singularity of type At−1 and C1 (resp. C2) maps to 1 (resp. t− q)
under the isomorphism Cl ÔS,p ∼= Z/tZ.

Proof. By Proposition 3.5 (c), the general surface S containing Z has local equation

xy − yzq + uyzt + vxnzt−qn

for units u, v in OP3,p. Using Theorem 2.6 with the roles of x and y reversed, we see that
µ = qn+ (t− qn) = t; moreover, δ(µ) = ±v 6= 0, so S has a type At−1 singularity.

In order to determine the classes of C1 and C2 in Cl ÔS,p ∼= Z/tZ, however, it is expedient to
calculate a coordinate change. Therefore set X = x − zq + uzt = x − βzq with β a unit in the
local ring. With this change of coordinates the defining equation for S becomes

Xy + v(X + βzq)nzt−qn.

Write this last expression as

X(y +Xn−1zt−qn + nβXn−2zt−q(n−1) + · · ·+ βn−1nzt−q︸ ︷︷ ︸
Y

) + βnzt.

The ideal of C1 is (x, z) = (X, z), corresponding to the generator 1 by Example 2.1(a). The
ideal of C2 is (x, y) = (X+βzq, y); evaluating the expression for Y at X = −βzq shows that this
ideal is (X + βz, Y − βn−1zt−q), which corresponds to the element t− q by Example 2.1(c). �

4. Multiple structures on a smooth curve

Let Z be a locally Cohen-Macaulay multiplicity structure supported on a smooth connected
curve C ⊂ P3. The ideal sheaves IZ + IiC define one-dimensional subschemes of Z and after
removing the embedded points we arrive at the Cohen-Macaulay filtration

(9) C = Z1 ⊂ Z2 ⊂ · · · ⊂ Zm = Z

from work of Banica and Forster [1] (see also [16, §2]). If Z has generic embedding dimension
two, then the quotient sheaves IZj

/IZj+1
= Lj are line bundles on C and the multiplicity of Z

is m (note that this use of the symbol m is different from that in Theorem 2.6 and thereabouts).
In this section we solve Problem 1.1 for such a multiplicity structure Z at a point p of embedding
dimension three assuming that Zm−1 or Zm−2 has local embedding dimension two at p. This
class of curves contains all multiplicity structures on C with multiplicity m ≤ 4. First we describe
the local ideal of Z at p.

Proposition 4.1. Let Z ⊂ P3
C be the subscheme with ideal IZ = (x2, xy, xzq − ym−1, ym)

for m ≥ 3. Then the very general surface S containing Z has an A(m−1)q−1 singularity at
p = (0, 0, 0, 1) and Picloc p ∼= Z/(m− 1)Z is generated by C.
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Proof. For appropriate units a, b, c ∈ OP3,p the general surface S containing Z has equation

(10) xy + ax2 + bym−1 + cym − bxzq = x (y + ax)︸ ︷︷ ︸
y1

+ (b+ cy)︸ ︷︷ ︸
u

ym−1 − bxzq.

With y1 = y + ax and unit u = b+ cy as above, we may write

(11) xy1 + u(y1 − ax)m−1 − bxzq = x1y1 + c(y1 + x1)m−1 − dx1zq

for new units c, d after setting x1 = −ax and multiplying by −1/a. If m = 3, the first two terms
are a homogeneous quadratic form: for general a, b, c, this factors into two linear terms and
making the corresponding change of variable brings the equation to the form XY +(AX+BY )zq

for units A,B.
For m ≥ 4, expand the (m− 1)st power in equation (11) as

c(y1 + x1)m−1 = y1 [cy1
m−2]︸ ︷︷ ︸
g1

+x1 [c((m− 1)y1
m−2 + · · ·+ x1

m−2)]︸ ︷︷ ︸
h1

and set x2 = x1 + g1, y2 = y1 + h1, when equation (11) becomes

(12) x2y2 − g1h1 − dxzq

with g1h1 ∈ (x, y)2m−4 ⊂ (x, y)m. Applying Lemma 2.3, we make another change of variables
from x2, y2 to X,Y for which x2y2 − g1h1 = XY . Looking at the last term, one observes that
dx = d(x2− cym−2) = d(x2− c(y2−h1)m−2) with h1 ∈ (x, y)m−2; extracting the multiples of x2
in the resulting power series this may be written A1x2 + B1y

m−2
2 with A1, B1 units. Switching

to the variables X,Y and noting that x2 ≡ X mod (x, y)m−1 and y2 ≡ Y mod (x, y)m−1 by the
proof of Lemma 2.3 (g1h1 ∈ (x, y)m), this may be written AX +BY m−2 with A,B units. Thus
S has local equation

XY − (AX +BY m−2)zq

with units A,B. Setting Y2 = Y − Azq, we obtain XY2 − B(Y2 + Azq)m−2zq. Multiplying out
the (m− 2)nd power, the second term may be written Y2L+BAm−2z(m−1)q with

L = B(Y m−32 +A(m− 2)Y m−42 zq + · · ·+Am−3(m− 2)z(m−3)q)zq.

Setting X2 = X − L gives the form

X2Y2 −Am−2Bz(m−1)q,
showing that S has an A(m−1)q−1 singularity.

We now follow the ideal (x, y) through its coordinate changes:

(x, y) = (x1, y1) = (x2, y2) = (X,Y ) = (X,Y2 +Azq) = (X2 + L, Y2 −Azq).
Working modulo Y2 −Azq, replacing Y2 with Azq reduces L to

BAm−3[1 + (m− 2) +

(
m− 2

2

)
· · ·+ (m− 2)]z(m−2)q = (2m−2 − 1)BAm−3z(m−2)q,

so the final form for our ideal is (X2 + (2m−2 − 1)BAm−3z(m−2)q, Y2 − Azq), which has class q

in Cl ÔS,p ∼= Z/(m− 1)Z by Example 2.1 (c). �

Proposition 4.2. Let C ⊂ P3 be a smooth curve and Let Z be a locally Cohen-Macaulay
multiplicity m structure on a C of generic embedding dimension two with filtration (9). Let
p ∈ Z be a point of embedding dimension three at which Zm−1 has embedding dimension two.
Then

(a) There are local coordinates x, y, z for which Z has local ideal

IZ = (x2, xy, xzq − ym−1).
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(b) The general surface S containing Z has an A(m−1)q−1 singularity at p and and the class

of C maps to q ∈ Cl ÔS,p ∼= Z/q(m− 1)Z.

Proof. Consider the exact sequence 0 → IZ → IZm−1

π→ Lm−1 → 0 near p. Since Zm−1 has
embedding dimension two at p, it locally lies on a smooth surface with equation x = 0 and
IC = (x, y) for suitable y, whence IZm−1 = (x, ym−1). Now IZ appears locally as the kernel of

a surjection π : (x, ym−1) → O/(x, y). If π(ym−1) = u is a unit and π(x) = h̄ with h ∈ O,
then x − u−1hym−1 ∈ Ker(π) = IZ , but then x − u−1hym−1 6∈ m2

p implies Z has embedding

dimension two at p, contrary to assumption. Therefore we may assume π(ym−1) = h̄ for h ∈ mp
and π(x) = 1 in which case IZ = Ker(π) = (x2, xy, hx−ym−1). If h ∈ O/(x, y) vanishes to order
q > 0 at p, we may write h = uzq mod (x, y) where u is a unit and z is a local parameter for C
at p. Absorbing u into x gives part (a).

The local ideal of Z is (x2, xy, xzq − ym−1, ym), the generator ym being redundant. By
Proposition 4.1, then, the associated class group is Z/(m− 1)Z ⊂ Z/q(m− 1)Z. �

Proposition 4.3. Let C ⊂ P3 be a smooth curve and Let Z be a locally Cohen-Macaulay
multiplicity m structure on a C of generic embedding dimension two with filtration (9). Fix a
point p ∈ Z of embedding dimension three. If Zm−2 has embedding dimension two at p and Zm−1
does not, then there are local coordinates x, y, z for which Z has local ideal

(a) (x2, xy2, xyzq − ym−1, xy − uzw(zqx− ym−2)), u a unit and w ≥ 0, or
(b) (x2, xy2, fxy − (zqx− ym−2)) where f = 0 or f = uzw for some w > 0 and unit u.

Proof. Use Prop. 4.2 (a) to write I = IZm−1 = (x2, xy, xzq − ym−2). At the level of sheaves,
the map π factors through F = IZm−1

⊗ OC/{torsion}, a vector bundle on C which has rank
two because Zm−1 is a generic local complete intersection. Working in the free O/(x, y)-module
F = (I ⊗O/(x, y))/{torsion} near p,

zq(x2) = x(xzq − ym−1) + ym−2(xy) = 0

shows that x2 is torsion, hence zero. Therefore F ∼= (O/(x, y))2 is freely generated by xy and
xzq − ym−2.

The kernel of the map I → F is

(x2) + (x, y)I = (x2, xy2, xyzq − ym−1).

and we obtain IZ = Kerπ by adding the Koszul relation for the surjection of free modules
F → O/(x, y). Surjectivity implies that π(xy) or π(zqx − ym−2) is a unit in O/(x, y). If
π(zqx− ym−2) = 1 and π(xy) = f ∈ O/(x, y), the Koszul relation is xy − f(zqx− ym−2); here
f = uzw for some unit u, since f = 0 leads to the ideal (x2, xy, ym−1) which does not have
generic embedding dimension two; this gives the ideal in part (a). Otherwise take π(xy) = 1
and π(zqx − ym−1) = f where f = 0 or f = uzw for some w > 0 and unit u, when the Koszul
relation is fxy − (zqx− ym−2), giving ideal in part (b). �

Remark 4.4. Propositions 4.2 and 4.3 give a local description of ideals of certain multiplicity
structures Z on a smooth curve C. Using the ideals in the Propositions to define multiple curves
in A3, one can obtain global examples by taking closures in P3. When C ⊂ P3 is a line and
m ≤ 4, all such global structures have been classified [16, 17].

Proposition 4.5. Let Z be a multiplicity-m structure on a smooth curve C with local ideal at
p as in Prop. 4.3(a). Then at p the general surface S containing Z has an A(m−2)(q+w)+w−1

singularity and C has class q + w ∈ Z/((m− 2)(q + w) + w)Z ∼= Cl ÔS,p.
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Proof. The very general surface S of sufficiently high degree containing Z has equation

xy + ax2 + bxy2 + cym + dxyzq − dym−1 − uxzq+w + uym−2zw

for units a, b, c, d, u in the local ring at the origin p by assumption.
We first apply the preparation steps in the first part of subsection 2.3 to bring the equation

into a form recognizable by Theorem 2.6, beginning with changing variables to Y = y + ax.
Expanding and gathering xY -terms brings the equation to the form

unit ·xY +u1x
3 +u2Y

m+u3x
m+u4x

2zq+u5Y
m−1 +u6x

m−1−uxzq+w+uY m−2zw+u7x
m−2zw

where u1 = a2b, u2 = c, u3 = c(−a)m, u4 = −ad, u5 = −d, u6 = −d(−a)m and u7 = u(−a)m−2

are units. Applying Theorem 2.6 we have r1 = q + w, µ = (m − 2)(q + w) + w, and since
δ((m− 2)(q +w) +w) 6= 0 for general choice of units, the singularity type is A(m−2)(q+w)+w−1.

To determine the class of C in the completed local ring, we will look at the resolution of
the singularity and determine which exceptional curve meets the strict transform of C. On the
patch Z = 1 on the first blowup, the singularities must lie on the exceptional locus z = 0. This
gives the equation (recycling the symbols x and y) xy + ax2 = 0; partials similarly give x = 0
and y+ 2ax = 0, so the blown-up surface is singular only at the origin on this patch. On X = 1
the exceptional locus has equations x = 0, y = 0, which is smooth, and similarly on the other
patch. This situation persists until we get to the (q + w)th blow-up, which on the patch Z = 1
has equation

xy + ax2 − ux+ bxy2zq+w + dxyzq + dym−1z(q+w)(m−3) + uym−2z(q+w)(m−4)+w.

This surface is smooth at the origin and singular at (0, u, 0). Changing variables to y′ = y + u
produces an equation of the form

xy′ + (terms of order at least 2 in x and y′ times powers of z) + unit · z(q+w)(m−4)+w.

As in subsection 2.3, this becomes XY − Z(q+w)(m−4)+w where the variable changes to obtain
X and Y do not affect z and then Z is a unit times z.

To determine the class of C, note that its strict transform passes through the origin all the way
to the (q+w)th blowup, at which point it still passes through the origin but misses the singular
point. This gives C the class q+w in the complete local Picard group Z/((q+w)(m− 2) +w)Z.
As C generates the class group of the original singular point, the order of this group depends on
the greatest common divisor of q + w and (q + w)(m− 2) + w. �

Proposition 4.6. For p ∈ Z as in Prop. 4.3(b) with C = SuppZ, let S be the general surface
containing Z. Then locally the equation of S at p has the form

F = ax2 + bxy2 + e(fxy − (zqx− ym−2))

for local parameters x, y, z general units a, b, e ∈ OP3,p and f = uzw for some w > 0 (interpret

w =∞ as f = 0) and C has order m− 2 in Cl ÔS,p. Furthermore

(1) If m = 4, then S has an A2q−1 singularity at p and C 7→ q ∈ Z/2qZ ∼= Cl ÔS,p.
(2) If m > 4, q = 1, then S has an Am−3 singularity at p and C 7→ 1 ∈ Z/(m− 2)Z.

(3) If m = 5, q = 2, then S has an E6 singularity at p and C 7→ 1 ∈ Z/3Z ∼= Cl ÔS,p.
(4) For m = 5 and q ≥ 3 or m ≥ 6 and q ≥ 2, the singularity of S at p is not a rational

double point.

Proof. The local equation for S follows immediately from Prop. 4.3 (b). To see that C has order
m− 2, first observe that (m− 2)C is Cartier on S at p simply because

(x, F ) = (x, ax2 + bxy2 + fxy − (zqx− ym−2)) = (x, ym−2).
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This shows that the order of C divides m − 2 and it remains to show the order cannot be less.
For this, recall that by construction dC has local ideal (x, yd) for all d ≤ m−2, so we must show
that (x, yd) is not Cartier on S at p for d < m− 2. By Nakayama’s lemma, this is equivalent to
showing that the O/(x, y, z)-vector space

(x, yd)

(x, y, z)(x, yd) + (F )

has dimension > 1, but this is clear because F ∈ (x, y, z)(x, yd) for d < m− 2, so the dimension
is 2.

First assume m = 4. Take e = −1 so that the local equation for S at p is

F = ax2 − y2 − dy3 + cy4 + bxy2 + dxyzq − fxy + xzq.

By Lemma 2.2 a has a square root
√
a in the complete local ring; set x1 =

√
ax + y and

y1 =
√
ax− y so that the equation takes the form

x1y1 +G+
(x1 + y1)

2
√
a

zq

with G ∈ (x1, y1)2m. By Lemma 2.3 there is a coordinate change X,Y for which

F = XY + (AX +BY )zq

where A,B are units for general choices of a, b, c, d. Making the elementary transformation
X1 = X+Bzq and Y1 = Y +Azq brings the equation to the form F = X1Y1−ABz2q displaying
the A2q−1 singularity. Tracing the class of the supporting curve we have

(x, y) = (x1, y1) = (X,Y ) = (X1 −Bzq, Y1 −Azq)

which has class q ∈ Z/(2q)Z ∼= Cl ÔS,p by Example 2.1 (c).
Now assume m > 4 and q = 1; again take e = −1 so that the local equation for S at p is

xz − ym−2 − fxy + ax2 + bxy2 + cym + d(xyz − ym−1)

for units a, b, c, d ∈ OP3,p. For Z = z+ fy+ ax+ by2 + dyzq and unit u = 1 + dy− cy2 this takes
the form xZ − uym−2, defining an Am−3 singularity. The class of the curve with ideal (x, y) is
1 ∈ Z/(m− 2)Z by Example 2.1 (a).

The case m = 5 and q = 2 has a different flavor: Write the equation for S as

x2 + 2axy2 + by5 + 2cxyz2 − cy4 + 2uxyzw︸ ︷︷ ︸
or 0

−2vxz2 + 2vy3;

let x1 = x+ y2 + cyz2 + uyzw − vz2, and note that the expression takes on the form

x21 + αy3 + βy2z2 + γz4,

where α, β, γ are units. We may assume α = 1; rewrite this expression as

x21 +

(
y +

β

3
z2
)3

+ γ′z4

where γ′ is another unit. Taking y1 = y + β
3 z

2 shows that S has an E6 singularity at the origin

with Cl ÔS,p ∼= Z/3Z. (The ideal for the curve C has become (x1 − γz4, y).)
For the case m = 5, q ≥ 3 in part (4), a calculation entirely analogous to the previous one

gives the form X2 + Y 3 + aY Z4 + bZ6, a, b units. Lemma 2.2 shows that b has a square root,
so the ideal of C can be written (X + i

√
bZ3, Y ). The first blow-up of this surface on the patch

(recycling variables as usual) has equation X2 +Y 3z+aY z3 + bz4, which is not the equation for
a rational double point, since it is congruent to a square mod m4 (see the classification given in
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[14, §24]). Therefore the original singularity is not a rational double point, since the resolution
of a rational double point only involves other rational double points.

Finally, for m ≥ 6, q ≥ 2 in part (4), after the first algebraic step of completing the square,
we see that the equation for S is congruent to a square modm4, so again the singularity is not
a rational double point. �

5. Global Picard groups of normal surfaces

In this section we give a formula for the Picard group of very general high degree surfaces
containing a fixed curve Z with at most finitely many points of embedding dimension three. The
solution to Problem 1.1 is required to apply the formula and we illustrate this with the examples
worked out in the previous two sections.

Theorem 5.1. Let Z ⊂ P3 be a closed one-dimensional subscheme with curve components
Z1, . . . Zr having respective supports Ci and suppose that the set T of points where Z has embed-
ding dimension three is finite. If S is a very general surface of degree d� 0 containing Z with
plane section H, then

(1) S is normal and ClS is freely generated by H and the Ci.
(2) The Picard group of S is

(13) PicS =
⋂
p∈T

Ker(ClS → ClOS,p) ∩ 〈Z1, Z2, . . . , Zr, H〉 ⊂ ClS.

Remark 5.2. The condition d � 0 can be expressed effectively, namely that IZ(d − 1) is
generated by global sections and either (1) Z is reduced of embedding dimension le2 at each
point or (2) h0(IZ(d− 2)) 6= 0 [2, Sections 1 and 2].

Proof. Part (1) is [2, Thm. 1.1]. It follows from sequence (1) in the introduction that

(14) PicS =
⋂

p∈SingS
Ker(ClS → ClOS,p).

Along with the fixed singularities T , which forcibly lie on every surface S containing Z, there
are moving singularities p, which vary with the surface and lie on exactly one component Zi of
multiplicity mi > 1 [2, Prop. 2.2]: these are Ami−1 singularities and the corresponding map

ClS → Cl ÔS,p ∼= Z/miZ sends Ci to 1 and the remaining Ci to 0, therefore the corresponding
kernel is 〈C1, C2, . . . ,miCi = Zi, Ci+1, . . . , Cr, H〉. Intersecting these subgroups for 1 ≤ i ≤ r
yields 〈Z1, Z2, . . . , Zr, H〉, which gives equation (13) provided there is at least one component
Zi of multiplicity mi > 1. If there are no components of multiplicity mi > 1, then Z is reduced
and there are no moving singularities: here formula (13) still works because Zi = Ci for each
1 ≤ i ≤ r and hence 〈Z1, . . . , Zr, H〉 = 〈C1, . . . , Cr, H〉 = ClS. �

We first note some easy special cases.

Corollary 5.3. Let Z and S be as in Theorem 5.1. Then

(a) If Z is reduced of embedding dimension at most two, then PicS = ClS.
(b) If Z is reduced, then PicS =

⋂
p∈F Ker(ClS → ClOS,p).

(c) If Z has embedding dimension ≤ 2, then PicS = 〈Z1, . . . , Zr, H〉.

Proof. (a) Here T is empty and Zi = Ci for each i, so part (2) of the theorem says that PicS
is generated by H and the Ci, which is exactly ClS by part (1). (b) Here Zi = Ci again, so
〈Zi, H〉 = ClS. (c) Here again T is empty. �

Remarks 5.4. We make a few observations about Corollary 5.3.
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(1) [2, Cor. 1.3] highlights some other special cases of the Theorem.
(2) In part (a), S is in fact globally smooth by [18, Thm. 1.2]; see also [2, Cor. 2.3].
(3) We see that the Picard groups aren’t very interesting for nicely behaved curves, which

explains why we have focused on non-reduced base locus Z. For example, if Z has at
worst nodes, then by Corollary 5.3 (a) the Picard group of S is freely generated by H
and the components of Z, extending Lopez’ theorem [15, II, Thm. 3.1].

Example 5.5. To see what can happen to smooth curves intersecting at a point, consider the
simplest case when Z =

⋃r
i=1 Li is the union of r lines passing through p.

(a) If r = 2, then S is smooth at p and PicS is freely generated by the two lines and H by
Corollary 5.3 (a).

(b) If 3 ≤ r ≤ 5 and the lines are not coplanar, then p is a fixed singularity, but a mild one.
Even when the lines are in general position with respect to containing p, S has an A1

singularity at p and the map ClS → ClOS,p takes each line to 1 ∈ Z/2Z. Therefore the
Picard group is

PicS = {
∑

aiLi + bH : 2|
∑

ai}

in this case. We had worked out the case r = 4 in [2, Ex. 1.4].
(c) If r > 5 and the lines are in general position, then by [3, Cor. 5.2] p is a non-rational

singularity and the local class group OS,p contains an Abelian variety. Moreover the
images of the lines are involved in no relations in OS,p, so that PicS = 〈H〉.

(d) There are many ways that the lines can lie in special position. We have not explored all
of them, but we did work out the case of r planar lines L1, . . . , Lr through p union a line
L0 not in the plane, this configuration resembles a pinwheel [3, Ex. 5.3 (b)]. Here the

point p is an Ar−1-singularity on S and the map ClS → ĈlOS,p ∼= Z/rZ sends L0 to 1
and the other lines Li to −1. Therefore PicS = 〈rL0, L0 + L1, L0 + L2, . . . L0 + Lr, H〉.

Now we consider examples in which Z is non-reduced, but the set T of embedding dimension
three points is non-empty.

Example 5.6. Consider the very general high-degree surface S containing a locally Cohen-
Macaulay m-structure Z of generic embedding dimension two supported on a line L.

(a) If Z has embedding dimension two at each point (note that this always holds if m = 2),
then PicS = 〈H,Z〉 by Cor. 5.3 (c).

(b) If the underlying (m − 1)-structure has embedding dimension two but Z itself does
not, then S has an A(m−1)q−1-singularity at p for some q > 0 and the restriction map

ClS → ĈlOS,p ∼= Z/q(m − 1)Z sends L to q ∈ Z/q(m − 1)Z by Prop. 4.2. Applying
Theorem 5.1 (c) we have

PicS = 〈mL,H〉 ∩ 〈(m− 1)L,H〉 = 〈m(m− 1)L,H〉.

For example, the very general surface S containing a typical triple line Z supported on
L has Picard group PicS = 〈6L,H〉.

(c) The story is more complicated if the underlying (m−2)-structure has embedding dimen-
sion two and the underlying (m−1)-structure does not because there are two possibilities
for the local ideal of Z at p by Prop. 4.3. For the form of the local ideal given in Propo-
sition 4.6 (b), L has order m− 2 in ClOS,p and Theorem 5.1 gives

PicS = 〈mL,H〉 ∩ 〈(m− 2)L,OS(1)〉 = 〈LCM(m,m− 2)L,H〉.

The actual singularity may be an An, an E6 or even irrational.
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Example 5.7. In section 3 consider the very general high degree surface S containing a union
of two multiple lines Z1, Z2 supported on L1, L2.

(a) If Z1 ∩ Z2 = ∅, then PicS = 〈Z1, Z2, H〉 by Corollary 5.3 (c).
(b) Now suppose IZ1 = (x, zm) and IZ2 = (y, zn) with m ≤ n so that Z1 ∩ Z2 is a length n

subscheme supported at p = (0, 0, 0, 1). By Props. 3.3 and 3.4, p is an An−1 singularity

of S and the restriction map ClS → Cl ÔS,p ∼= Z/nZ takes L1, L2 to 1,−1. Taking the
kernel of this map we find that PicS = 〈nL1, L1 + L2, H〉.

(c) Now replace Z1 with the multiple line with having (xm, z). The support of Z1∪Z2 is the
same as the last example, but now L2 is contained in the plane S1 : {z = 0} containing
Z1, so L2 has order of tangency q = ∞ to S1. According to Proposition 3.6, S has an

Amn−1 singularity at p and the restriction ClS → Cl ÔS,p ∼= Z/mnZ takes L1 to 1 and
L2 to mn−m. Therefore PicS = 〈mnL1, L2 − (mn−m)L1, H〉.

Example 5.8. These results can be used in combination, so we close with an example illustrating
several behaviors at once. Start with three non-planar lines L1, L2, L3 meeting at p1. Let Z4

be a 4-structure on a line L4 intersecting L1 at p2 6= p1, and assume that Z4 is contained in a
smooth quadric surface Q which is tangent to L1. Let Z5 be a 3-structure on a line L5 which
intersects L2 in a reduced point p3 6= p1, and suppose that Z5 has at least one point p4 6= p3 of
embedding dimension three. Finally, let Z6 be a double line supported on L6 which intersects
Z5 at a point p5 6= p4, p3 and assume that L6 intersects a local surface S5 defining Z5 in a double
point. Finally let Z = L1 ∪ L2 ∪ L3 ∪ Z4 ∪ Z5 ∪ Z6 and consider the very general surface S of
high degree containing Z.

By Theorem 5.1 (a), ClS is freely generated by H and L1, L2, . . . , L6 and to find PicS we
must compute the kernels of the maps ClS → ClOS,pi for 1 ≤ i ≤ 5:

(1) By Ex. 5.5 (b) the kernel at p1 is 〈2L1, L2 − L1, L3 − L1, L4, L5, L6, H〉 and S has an
A1 singularity at p1.

(2) By Prop. 3.8 with m = 4, n = 1, q = 2, the natural restriction map is given by L4 7→
1, L1 7→ 2 ∈ Z/4Z, so the kernel at p2 is 〈L1 − 2L4, L2, L3, 4L4, L5, L6, H〉 and S has an
A3 singularity at p2.

(3) By Prop. 4.2, the kernel at p3 is 〈L1, L2 + L3, 3L3, L4, L5, L6, H〉.
(4) By Ex. 5.6 (b) the kernel at p4 is 〈L1, L2, L3, L4, 6L5, L6, H〉.
(5) By Prop. 3.8 with n = q = 2,m = 3, the kernel at p5 is 〈L1, L2, L3, L4, L6−2L5, 4L5, H〉.

Using Hermite Normal Form and Mathematica, we compute the intersection of

〈L1, L2, L3, 4L4, 3L5, 2L6, H〉
and the above kernels to be PicS = 〈2L1, 6L2, L3 + L2, 4L4, 12L5, 2L6, H〉.
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10.1007/BF01425554

[20] V. Srinivas, Some geometric methods in commutative algebra, in Computational commutative algebra and
combinatorics (Osaka, 1999), 231–276, Adv. Stud. Pure Math. 33, Math. Soc. Japan, Tokyo, 2002.

California State University at Long Beach, Department of Mathematics and Statistics, Long

Beach, CA 90840

E-mail address: jbrevik@csulb.edu

Texas Christian University, Department of Mathematics, Fort Worth, TX 76129

E-mail address: s.nollet@tcu.edu

http://dx.doi.org/10.1007/BF00960866
http://dx.doi.org/10.1007/BF00960866
http://dx.doi.org/10.1215/S0012-7094-88-05738-9
http://dx.doi.org/10.1007/BF01934346
http://dx.doi.org/10.1007/BF01389014
http://dx.doi.org/10.1007/BF01389014
http://dx.doi.org/10.1007/BF02684604
http://dx.doi.org/10.1023/B:COMP.0000005083.20724.cb
http://dx.doi.org/10.1007/BF01425554
http://dx.doi.org/10.1007/BF01425554

	1. Introduction
	2. Analytic expressions for rational double points
	2.1. An singularities
	2.2. Analytic coordinate changes
	2.3. Recognizing An Singularities

	3. Two multiple curves intersect at a point
	4. Multiple structures on a smooth curve
	5. Global Picard groups of normal surfaces
	References

