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A COMPLETE CHARACTERIZATION OF A0-SUFFICIENCY OF
PLANE-TO-PLANE JETS OF RANK 1

OLAV SKUTLABERG

Abstract. Sufficient conditions for A0-sufficiency of plane-to-plane r-jets are known. These

conditions are stated in the form of two  Lojasiewicz inequalities which have to be satisfied.
The first of these inequalities is known to be necessary for A0-sufficiency, and in this article
we prove that the second inequality is also necessary for A0-sufficiency of all jets of rank 1.

We also prove that a simpler  Lojasiewicz inequality is equivalent to the second inequality for
rank 1 jets.

1. Introduction

Let E[r](n, p) be the set of Cr map germs (Rn, 0) → (Rp, 0). Two map germs f and g in
E[r](n, p) are As-equivalent if there exist germs of Cs diffeomorphisms h : (Rn, 0) → (Rn, 0) and
k : (Rp, 0) → (Rp, 0) such that g = k ◦ f ◦ h−1. If f, g ∈ E[r](2, 2) are As-equivalent, then we
write f ∼As g. If f and g are A0-equivalent, then we say that they are topologically equivalent,
and if f and g are not A0-equivalent, then they are topologically different. A jet ω ∈ Jr(n, p)
is A0-sufficient in E[r](n, p) if every f ∈ E[r](n, p) with jrf(0) = ω is A0-equivalent to ω. There
exists no general theorem giving necessary and sufficient conditions for A0-sufficency of r-jets
in E[r](n, p) for arbitrary n and p. Known results include a characterization of A0-sufficient
jets with 0 as an isolated singular point (see [1]), and a study of A0-sufficiency in E[r](2, 2) of
jets from R2 to R2 (see [2]). The result in [2] gives a complete characterization of A0-sufficent
plane-to-plane jets for a restricted class of jets, and it is the aim of this article to extend the
result of [2] to a complete characterization of A0-sufficient plane-to-plane jets of rank 1.

We identify r-jets in Jr(2, 2) with polynomial maps R2 → R2 of degree ≤ r with zero constant
term. Let ω ∈ Jr(2, 2). Let Jω(p) denote the Jacobian determinant of ω at p and let Σ(ω) =
Jω−1(0) denote the singular set of ω. Σ(ω) is an algebraic set. Let B(x, ρ) denote the open ball
in R2 with center x and radius ρ. If ω is a nonzero singular jet, then there is a real number
ρ0 > 0 and a natural number N such that (Σ(ω) \ {0}) ∩ B(0, ρ) has exactly N topological
components whenever 0 < ρ < ρ0. These components are called branches of ω.

Let C1, C2, . . . , CN denote the branches of ω. Since Σ(ω) is an algebraic set, the Curve
Selection Lemma implies that each of these branches has a well defined tangent direction at the
origin. We think of these directions as points on S1. If all these points are distinct, then we say
that ω has different tangent directions at 0. Note that a line through the origin represents two
different tangent directions corresponding to antipodal points on S1.

Identify J1(2, 2) with R4 by identifying (ax + by, cx + dy) with (a, b, c, d) and let Σ =
{(a, b, c, d)|ad − bc = 0} ⊂ J1(2, 2). Let F : R2 → R2 be a Cr map with r ≥ 2. The germ
of F at a singular point p is a fold singularity if two conditions are satisfied. The first condition
is that j1F t Σ at p. If the first condition is satisfied, then Σ(F ) is a Cr−1 manifold in a neigh-
bourhood of p. The second condition for fold singularities is that TpΣ(F ) + ker D(JF )(p) = R2.
Whether or not the germ of F at a point p in the source of F is a fold singularity is determined
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by the non-constant part of the 2-jet extension of F at p, i.e. the 2-jet extension at 0 of the map
q 7→ F (q + p) − F (p) which will be denoted by J2F (p).

An element of J2(2, 2) is then thought of as a polynomial map as above. We may use the
coefficients of these polynomials as coordinates of J2(2, 2), and hence identify J2(2, 2) with
R4 × R6 by identifying the polynomial map given by

(x, y) 7→ (ax + by + ex2 + 2fxy + gy2, cx + dy + hx2 + 2ixy + jy2)

with (L,H) = ((a, b, c, d), (e, f, g, h, i, j)). It is shown in [2] that in these coordinates, the set of
singular 2-jets which are not folds is given by

Γ =
{

(a, . . . , j) | ad − bc = 0,

(
a b
c d

)(
aj − bi − cg + df

−ai + bh + cf − de

)
=
(

0
0

)}
.

For every C2 map F : R2 → R2 we may define a map (LF ,HF ) : R2 → J2(2, 2) = R4 × R6

induced by J2F via the identifications above.
Let d(·, Σ) denote the distance function from a point in R4 to Σ with respect to the norm on

J1(2, 2) induced by the Euclidean norm on R4. For all f ∈ E[r](2, 2), define

df (p) = d(j1f(p), Σ).

For all ϵ, ρ > 0 and f ∈ E[r](2, 2), define

Hϵ,ρ(f) =
{

p | d(j1f(p), Σ) ≤ ϵ ∥p∥r−1
, 0 < ∥p∥ < ρ

}
.

Hϵ,ρ(ω) is a semialgebraic set with Σ(ω) ∩ B(0, ρ) \ {0} ⊂ Hϵ,ρ(ω).

Proposition 1.1 (Proposition 2.1 of [2]). Let r ≥ 2 and let ω ∈ Jr(2, 2) be a singular, nonzero
jet such that 0 is not isolated in Σ(ω). Let Γ and C1, . . . , CN and Hϵ,ρ(ω) be as explained above.
Consider the following condition:

(I) There is a neighbourhood U of 0 and a constant C > 0 such that if p ∈ U and (L,H) ∈ Γ,
then

∥Lω(p) − L∥ + ∥Hω(p) − H∥ ∥p∥ ≥ C ∥p∥r−1
.

Assume that condition (I) is satisfied. Then there exist ϵ0 > 0 and ρ0 > 0 such that the following
is satisfied: For each ρ such that 0 < ρ < ρ0, and for each ϵ such that 0 < ϵ < ϵ0, Hϵ,ρ(ω) has
exactly N connected components and we can label these components by H1

ϵ,ρ, . . . , H
N
ϵ,ρ, such that

for i = 1, . . . , N , Ci ⊂ Hi
ϵ,ρ.

Theorem 1.2 (Theorem 2.3 of [2]). If ω ∈ Jr(2, 2) has an isolated singularity at the origin,
then ω is A0-sufficient in E[r](2, 2) if and only if inequality (I) of Proposition 1.1 holds.

In this article, whenever ω is an r-jet which satisfies (I) and we speak about Hϵ,ρ(ω), it is
understood that ϵ < ϵ0 and ρ < ρ0 where ϵ0 and ρ0 have the properties stated in Proposition
1.1.

Theorem 1.3 (Main Theorem of [2]). Let r > 2 and let ω ∈ Jr(2, 2) be a jet as described in
Proposition 1.1 . Let Γ, C1, . . . , CN and Hϵ,ρ(ω) be as defined above and assume that condition
(I) from Proposition 1.1 is satisfied. Let ρ0 and ϵ0 be as in the conclusion of 1.1. Consider the
following condition :

(II) There exist ρ > 0 with ρ < ρ0 and ϵ > 0 with ϵ < ϵ0 and a constant C such that if Hi
ϵ,ρ(ω)
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and Hj
ϵ,ρ(ω) are distinct components of Hϵ,ρ(ω) and p ∈ Hi

ϵ,ρ(ω) ∪ {0} and q ∈ Hj
ϵ,ρ(ω) ∪ {0}

then
∥ω(p) − ω(q)∥ ≥ C(∥p∥r−1 + ∥q∥r−1) ∥p − q∥ .

Assume also that the condition (II) above is satisfied, then ω is A0-sufficient in E[r](2, 2) .

Moreover, the condition (I) of Proposition 1.1 is a necessary condition for A0-sufficiency in
E[r](2, 2) for all jets in Jr(2, 2) with r > 2, and if we consider singular, nonzero jets ω where
0 is not isolated in Σ(ω), and where ω has different tangent directions at 0, then condition (II)
above is also a necessary condition for A0-sufficiency in E[r](2, 2).

Proposition 1.4. If ω ∈ Jr(2, 2) satisfies (I), then every Cr realization of ω has only regular
points and fold singularities outside the origin. If ω does not satisfy (I), then there is a Cr

realization of ω with a sequence of simple cusp points converging to the origin. Furthermore,
simple cusps are topologically different from folds and regular points.

Proof. The first assertion follows from the defining property of Γ and Lemma 4.1 of [2]. The
second assertion is the content of Lemma 6.3 of [2]. The last assertion is the content of Lemma
6.6 of [2]. �

Proposition 1.5. If ω ∈ Jr(2, 2) satisfies (I) and (II), then the restriction of every Cr realiza-
tion of ω to its singular set is injective. If ω has different tangent directions and satisfies (I)
but does not satisfy (II), then there is a Cr realization of ω having a sequence of singular double
points converging to the origin.

Proof. The first part of the Proposition follows from Lemma 4.12 of [2] and the last part follows
from Lemma 6.4 of [2]. �

Definition 1.6. A map germ z = (z1, z2) : (R2, 0) → (R2, 0) of rank 1 is in standard form if
z1(x, y) = x.

Theorem 1.3 can be quite difficult to apply in practice. In the case of rank 1 jets in standard
form, the following theorem gives the neat conditions that characterize A0-sufficient jets.

Theorem 1.7. Let r > 2 and let ω(x, y) = (x, f(x, y)) ∈ Jr(2, 2) and let C1, . . . , CN be as
above. Then ω is A0-sufficient in E[r](2, 2) if and only if the conditions (i) and (ii) below are
satisfied:

(i) There are a neighbourhood U of 0 and a constant C > 0 such that if p ∈ U , then

|fy(p)| + |fyy(p)| ∥p∥ ≥ C ∥p∥r−1
.

(ii) There are a neighbourhood U of 0 and a constant C > 0 such that if Ci and Cj are
different components of Σ(ω) \ {0} and p = (x, y) ∈ Ci ∪ {0} ∩U and q = (x, v) ∈ Cj ∪ {0} ∩U ,
then

|f(p) − f(q)| > C(∥p∥r−1 + ∥q∥r−1)|y − v|.

There is also an analogue of Theorem 1.2 for rank 1 jets in standard form.

Theorem 1.8. If ω ∈ Jr(2, 2) is in standard form and has an isolated singularity at the origin,
then ω is A0-sufficient in E[r](2, 2) if and only if (i) of Theorem 1.7 holds.

Proof. This follows immediately from Theorem 1.2 and Lemma 2.2 of Section 2.2 which says
that for jets in standard form, (i) and (I) are equivalent. �

From now on we consider only singular jets where 0 is not an isolated singularity. The main
step in the proof of Theorem 1.7 is to prove the following proposition:
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Proposition 1.9. For jets of rank 1 in standard form, (II) ⇔ (ii).

The virtue of Theorem 1.7 is that both the set Γ and the sets Hϵ,ρ are left out of the theorem.
Also, when verifying (ii) one only needs to consider pairs of points with the same x-components.
Finally, the validity of Theorem 1.7 is not restricted to the case of jets with different tangent
directions at 0.

Theorem 1.7 holds for rank 1 jets given in a special form. For rank 1 jets in general, the
following theorem holds.

Theorem 1.10. Let r > 2 and let ω ∈ Jr(2, 2) be a jet of rank 1. Then ω is A0-sufficient in
E[r](2, 2) if and only if (I) of Theorem 1.3 and (II’) below hold:

(II’) There is a neighbourhood U of 0 and a constant C > 0 such that if i ̸= j and p ∈ Ci ∩U
and q ∈ Cj ∩ U , then

∥ω(p) − ω(q)∥ > C(∥p∥r−1 + ∥q∥r−1) ∥p − q∥ .

The article is organized as follows: In Section 2 we prove that Theorem 1.7 implies Theorem
1.10. Section 3 contains a thorough study of the hornshaped neighbourhoods Hϵ,ρ. This enables
us to prove that inequality (II’) implies inequality (II) for rank 1 jets. This is the topic of Section
4. In Section 4 we also give the proof of Proposition 1.9. This proposition is the key to the
construction of a certain Whitney field in Section 5. This Whitney field is the main technical
tool in the proof of the necessity of (ii) for all rank 1 jets in standard form, and will conclude
the demonstration of Theorem 1.7 and Theorem 1.10.

In the rest of the article, A0-sufficiency of an r-jet is understood to mean A0-sufficiency in
E[r](2, 2). Sometimes only the term ’sufficiency’ will be used.

Notation 1 (., &, ∼). Let F and G be two nonnegative real-valued functions defined on some
subset of some Euclidean space E. We will use the notation F & G if there is a constant a > 0
such that F ≥ aG. The notation F . G means that there is a constant b > 0 such that F ≤ bG.
If F . G and F & G, then we write F ∼ G. For two sequences (pn) and (qn) in E and positive
real valued functions F and G, F (pn) & G(qn) means that there is a positive constant a and a
natural number N such that F (pn) ≥ aG(qn) when n > N . Similarly, F (pn) . G(qn) means
that there is a positive constant b and a natural number N such that F (pn) ≤ bG(qn) when
n > N . Of course, F (pn) ∼ G(qn) means that F (pn) & G(qn) and F (pn) . G(qn).

Notation 2 (O, o). If F and G are real-valued functions defined in a neighbourhood of 0 in
some Euclidean space, then F (x) = o(G(x)) means that F (x)/G(x) → 0 as x → 0. If (pn) and
(qn) are sequences converging to 0, then F (pn) = o(G(qn)) means that F (pn)/G(qn) → 0 as
n → ∞. For fractional power series β and γ, O(β) denotes the order of β and β = o(γ) means
that O(β) > O(γ).

Acknowledgements: The author wishes to thank Professor Hans Brodersen for sharing his
ideas and for many helpful discussions.

2. Coordinate changes

2.1. Suitable coordinates. To establish the connection between Theorem 1.7 and Theorem
1.10, we have to investigate how our  Lojasiewicz inequalities behave under coordinate changes.
Let ω ∈ Jr(2, 2) and let ω′ = k ◦ ω ◦ h−1 where h and k are germs of Cr diffeomorphisms
(R2, 0) → (R2, 0).

Lemma 2.1. ω is A0-sufficient if and only if jrω′ is A0-sufficient.
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Proof. Assume that ω is sufficient and let ω̃ be a Cr realization of jrω′. Then jr(k−1 ◦ ω̃ ◦ h) =
jr(k−1◦jrω′◦h) = ω. Thus ω̃ ∼A0 jrω′, and hence, jrω′ is sufficient. Conversely, suppose jrω′ is
sufficient and let ω̄ be a Cr realization of ω. Then clearly jr(k◦ ω̄◦h−1) = jr(k◦ω◦h−1) = jrω′.
Thus ω̄ ∼A0 k ◦ ω̄ ◦ h−1 ∼A0 jrω′ ∼A0 ω′ ∼A0 ω, which shows that ω is sufficient.

�
Lemma 2.2. ω satisfies (I) ⇔ jrω′ satisfies (I).

Proof. Assume that ω satisfies (I) and that jrω′ does not satisfy (I). By Proposition 1.4, jrω′

has a Cr realization ω̃ with a sequence of singular points converging to 0, all topologically
different from folds. Then ω = jr(k−1 ◦ ω̃ ◦ h) has a realization which has a sequence of singular
points converging to 0, all of which are topologically different from folds. This contradicts the
assumption that ω satisfies (I).

Let ω2 = jrω′. Then ω = jr(k−1 ◦ω′ ◦h) = jr(k−1 ◦ω2 ◦h), and hence, the other implication
follows from the first implication. �
Lemma 2.3. Let z and z′ in E[r](2, 2) be such that z′ = k ◦ z ◦h−1 for some germs at the origin
of origin-preserving Cr diffeomorphisms h and k . For each ϵ, ρ > 0, there are ϵ′, ρ′ > 0 such
that h(Hϵ′,ρ′(z)) ⊂ Hϵ,ρ(z′).

Proof. It is enough to show that ∥p∥ ∼ ∥h(p)∥ and dz(p) ∼ dz′(h(p)). An application of Taylor’s
formula gives ∥p∥ ∼ ∥h(p)∥. We also have

dz(p) = inf{∥Dz(p)v∥ | ∥v∥ = 1} (by (3.11) in [2])

∼ inf{∥D(k ◦ z)(p)v∥ | ∥v∥ = 1}
∼ inf{∥Dz′(h(p))v∥ | ∥v∥ = 1}
= dz′(h(p)),

and the lemma follows. �
Lemma 2.4. Suppose z and z′ in E[r](2, 2) are such that jrz(0) = jrz′(0). Let ϵ, ρ > 0. Then
there are ϵ′, ρ′ > 0 such that

Hϵ′,ρ′(z′) ⊂ Hϵ,ρ(z).

Proof. Assume that z and z′ satisfy the premises of the lemma. Let z̃ = z−z′. Then jr z̃(0) = 0,
and hence, ∥Dz̃(p)∥ = o(∥p∥r−1). Using this, we see that

dz(p) = inf{∥Dz(p)v∥ | ∥v∥ = 1} ≤ inf{∥Dz′(p)v∥ + ∥Dz̃(p)v∥ | ∥v∥ = 1}

≤ inf{∥Dz′(p)v∥ | ∥v∥ = 1} + sup{∥Dz̃(p)v∥ | ∥v∥ = 1} = dz′(p) + o(∥p∥r−1).

The lemma follows. �
Lemma 2.5. For every sequence (pn) of points converging to 0 such that d(j1ω(pn), Σ) =
o(∥pn∥r−1), there is a subsequence (pn(k)) of (pn) and a Cr realization ωp of ω such that pn(k) ∈
Σ(ωp) for every k.

Proof. Let (pn) be as in the lemma. Choose pn(k) such that
∥∥pn(k+1)

∥∥ < 1
2

∥∥pn(k)

∥∥. For every
k, let Mk be a matrix such that ∥Mk∥ = d(j1ω(pn(k)), Σ) and Dω(pn(k)) + Mk is singular. Let
Q be the r-th order Taylor field defined on K = {0} ∪ (∪k{pn(k)}) with values in R2 given by
Q1(p) = Mk for p = pn(k) and Q = 0 otherwise. It is clear that Q is a Whitney field. Let h be a
Cr extension of Q. Then jrh(0) = 0. Let ωp = ω + h. It is clear that ωp satisfies the conditions
in the lemma. �
Lemma 2.6. (I) and (II) hold for ω ⇔ (I) and (II) hold for jrω′.
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Proof. Assume that (I) holds and (II) fails for ω. By Lemma 2.2, (I) holds for jrω′ as well. We
proceed to show that (II) fails for jrω′. Since (II) fails for ω, there are sequences (pn) and (qn)
of points converging to 0 such that

d(j1ω(pn), Σ) = o(∥pn∥r−1) and d(j1ω(qn), Σ) = o(∥qn∥r−1)

and
∥ω(pn) − ω(qn)∥ = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

and pn and qn belong to different components of Hϵ̃,ρ̃(ω). Since h and k are germs of diffeo-
morphisms, an application of Taylor’s formula shows that ∥h(p)∥ ∼ ∥k(p)∥ ∼ ∥p∥ for all p close
to 0. Furthermore, since h and k are diffeomorphisms, the definition of differentiability gives
∥h(p) − h(q)∥ ∼ ∥k(p) − k(q)∥ ∼ ∥p − q∥ for p, q close to 0. Furthermore, jrω′ = ω′ + ω̃ where
jrω̃(0) = 0 and hence, ∥ω̃(p)∥ = o(∥p∥r) and ∥Dω̃(p)∥ = o(∥p∥r−1). Using this and the Mean
Value Theorem, we get

∥jrω′(h(pn)) − jrω′(h(qn))∥
≤ ∥k ◦ ω(pn) − k ◦ ω(qn)∥ + ∥ω̃(h(pn)) − ω̃(h(qn))∥
. ∥ω(pn) − ω(qn)∥ + sup

t∈[0,1]

∥Dω̃(th(pn) + (1 − t)h(qn))∥ ∥h(pn) − h(qn)∥

= o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ + o(∥h(pn)∥r−1 + ∥h(qn)∥r−1) ∥h(pn) − h(qn)∥

= o(∥h(pn)∥r−1 + ∥h(qn)∥r−1) ∥h(pn) − h(qn)∥ .

By Lemma 2.5 there are subsequences (pn(k)) and (qn(k)) of (pn) and (qn) and Cr realizations
ωp and ωq of ω such that for each k, pn(k) ∈ Σ(ωp) and qn(k) ∈ Σ(ωq). Hence, for each of the
sequences (h(pn(k))) and (h(qn(k))), there are Cr realizations of jr(ω′) having singular points
along the sequence. It follows that, given small positive ϵ and ρ, then eventually the sequences
(h(pn(k))) and (h(qn(k))) are in Hϵ,ρ(jrω′).

We need to show that for small ϵ, ρ, eventually the sequences (h(pn(k))) and (h(qn(k))) lie
in different components of Hϵ,ρ(jrω′). To this end, use Lemma 2.3 to pick ϵ′, ρ′ so small that
h−1(Hϵ′,ρ′(ω′)) ⊂ Hϵ̃,ρ̃(ω) where ϵ̃ and ρ̃ are as above, i.e. such that (pn) and (qn) lie in different
components of Hϵ̃,ρ̃(ω). Then use Lemma 2.4 to pick ϵ, ρ such that Hϵ,ρ(jrω′) ⊂ Hϵ′,ρ′(ω′). As-
sume that there are subsequences (h(pn(k(l)))) and (h(qn(k(l)))) which lie in the same component
of Hϵ,ρ(jrω′). Since h−1 is a homeomorphism, the component of Hϵ,ρ(jrω′) containing (h(pn))
and (h(qn)) is mapped by h−1 into one component of Hϵ̃,ρ̃(ω). This contradicts the assumption
that (pn) and (qn) lie in different components of Hϵ̃,ρ̃(ω). Hence, (II) fails for jrω′.

To finish the proof, observe that ω = jr(k−1 ◦ jrω′ ◦ h), and hence the other implication
follows from the first. �

2.2.  Lojasiewicz inequality (I) for rank 1 jets. When ω is in standard form, we have a
particularly convenient version of inequality (I).

Lemma 2.7. Let ω(x, y) = (x, f(x, y)) be an r-jet in standard form. Then (I) holds for ω if
and only if (i) of Theorem 1.7 holds for ω.

Proof. To prove that (I) implies (i), notice that

(L,H) = (1, 0, fx, 0, 0, 0, 0, fxx, fxy, 0)(p) ∈ Γ

for all p, and hence, if (I) holds, then

|fy(p)| + |fyy(p)| ∥p∥ = ∥Lω(p) − L∥ + ∥Hω(p) − H∥ ∥p∥ ≥ C ∥p∥r−1
.
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Conversely, if (I) fails, then there are a sequence (pn) in R2 converging to 0 and a sequence
(Ln, Hn) ∈ Γ such that

∥Lω(pn) − Ln∥ + ∥Hω(pn) − Hn∥ ∥pn∥ = o(∥pn∥r−1).

Let (Ln,Hn) = (an, . . . , dn, en, . . . , jn) ∈ R10. We get that an = 1 − o(∥pn∥r−1) and bn =
o(∥pn∥r−1). Also, since Ln is singular, dn = cnbn/an = o(∥pn∥r−1), which implies |fy(pn)| =
o(∥pn∥r−1). We have Hω(pn) = (0, 0, 0, fxx, fxy, fyy)(pn). Thus we also have en, fn, gn =
o(∥pn∥r−2). Furthermore, from the definition of Γ, we get that

an(anjn − bnin − cngn + dnfn) + bn(−anin + bnhn + cnfn − dnen) = 0.

It follows that jn = o(∥pn∥r−2) and hence, |fyy(pn)| = o(∥pn∥r−2). This shows that (i) fails. �

Lemma 2.8. Let a be a real number and let Φ be the diffeomorphism Φ(x, y) = (Φ1(x, y), Φ2(x, y)) =
(x, ax + y). Let ω ∈ Jr(2, 2) be in standard form. Then ωΦ = ω ◦ Φ−1 is an r-jet in standard
form and ω satisfies (i) and (ii) if and only if ωΦ satisfies (i) and (ii).

Proof. The first assertion is clear from the form of Φ. For the second assertion, assume that
ω satisfies (i) but not (ii). Lemma 2.2 and Lemma 2.7 imply that ω ◦ Φ−1 satisfies (i). Since
ω does not satisfy (ii), there are distinct components Ci and Cj of Σ(ω) \ {0} and sequences
pn = (xn, yn) ∈ Ci and qn = (xn, vn) ∈ Cj , both converging to 0 and such that

|f(pn) − f(qn)| = o(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.

From the definition of Φ, it is clear that ωΦ(x, y) = (x, fΦ(x, y)) is in standard form. Furthermore,
Φ(Ci) and Φ(Cj) are different components of Σ(ωΦ) and

|fΦ(Φ(pn)) − fΦ(Φ(qn))| = |f(pn) − f(qn)| = o(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|

= o(∥Φ(pn)∥r−1 + ∥Φ(qn)∥r−1)|Φ2(pn) − Φ2(qn)|,

and hence (ii) fails for ωΦ.
Observe that Φ−1(x, y) = (x,−ax + y), and hence the other implication follows directly from

the argument above. �

Lemma 2.9. Let ω be an r-jet which satisfies (I), and let ω′ be a Cr map germ with ω ∼Ar ω′.
Then (II’) holds for ω if and only if (II’) holds for jrω′.

Proposition 2.10. If ω is an r-jet in standard form satisfying (i), then (ii) and (II’) are
equivalent for ω.

The proofs of Lemma 2.9 and Proposition 2.10 will be postponed until Section 4.

Proof that Theorem 1.7 ⇒ Theorem 1.10. Assume that Theorem 1.7 is true. Assume now that
(I) and (II’) hold for an r-jet ω ∈ Jr(2, 2) of rank 1. By Lemma 2.2, Lemma 2.7, Lemma
2.9 and Proposition 2.10, we may choose Cr coordinates transforming ω to the standard form
ω̄(x, y) = (x, f(x, y)) such that (i) and (ii) hold for jrω̄. By Theorem 1.7, jrω̄ is A0-sufficient.
Lemma 2.1 implies that ω is A0-sufficient.

Conversely, if (I) fails for ω, then, by Lemma 2.2 and Lemma 2.7, (i) fails for jrω̄ and hence,
jrω̄ is not sufficient by Theorem 1.7. By Lemma 2.1, ω is not sufficient. If (I) holds and (II’) fails
for ω, then (II’) fails for jrω̄ by Lemma 2.9. By Proposition 2.10, (ii) fails for jrω̄. Theorem 1.7
shows that jrω̄ is not A0-sufficient, and hence, by Lemma 2.1 again, ω is not A0-sufficient. �
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3. Hornshaped neighbourhoods

3.1. Consequences of inequality (i). Let ω(x, y) = (x, f(x, y)) be an r-jet of rank 1 in
standard form for which (I), or equivalently (i) holds. By Lemma 2.8, we may choose coordinates
such that no branch of Σ(ω) is tangent to the x-axis. Let

H̃ϵ,ρ = {p : |fy(p)| ≤ ϵ ∥p∥r−1
, 0 < ∥p∥ ≤ ρ}.

Recall from (3.3) in [2] that

dω(p) = d(j1ω(p), Σ) ∼ |Jω(p)|
∥Dω(p)∥

∼ |fy(p)|.

It follows that for every ϵ > 0 there are ϵ1, ϵ2, ϵ3 > 0 such that

Hϵ1,ρ(ω) ⊆ H̃ϵ2,ρ(ω) ⊆ Hϵ,ρ(ω) ⊆ H̃ϵ3,ρ(ω).

Lemma 3.1. Proposition 1.1 holds when we replace Hϵ,ρ by H̃ϵ,ρ.

Proof. Let
S = {(x, y)|∇fy(x, y) · (y,−x) = 0}.

The proof of Proposition 1.1 in [2] applies to H̃ϵ,ρ(ω) once we have shown that

(3.1)
∣∣(fy|S)(p)

∣∣ & ∥p∥r−1
.

This corresponds to Lemma 3.1 in [2]. Let

D = {p ∈ S : |fy(p)| ≤ |fy(q)| for all q ∈ S with ∥p∥ = ∥q∥ ̸= 0}.

An application of the Tarski-Seidenberg Theorem shows that D is semialgbraic. Assume that
(3.1) does not hold. Then 0 ∈ D and the Curve Selection Lemma implies that we can find an
analytic curve γ = (γ1, γ2) : [0, δ) → R2 with γ(0) = 0, γ(0, δ) ⊂ D and |fy(γ(t))| = o(∥γ(t)∥r−1).
Assume that ∥γ(t)∥ ∼ ts and |fy(γ(t))| ∼ td. Then d

s > r − 1. Also, ∥γ′(t)∥ ∼ ts−1 and∣∣∣∣∇fy(γ(t)) · γ′(t)
∥γ′(t)∥

∣∣∣∣ ∼ td−s.

Let v(t) = (γ2(t),−γ1(t))/ ∥γ(t)∥ and w(t) = γ′(t)/ ∥γ′(t)∥. Then v(t) ·w(t) → 0 as t → 0+. Let
e2(t) = ∂

∂y ◦ γ(t). Then e2(t) = a(t)v(t) + b(t)w(t) where |a(t)| < 2 and |b(t)| < 2. Using that
γ(t) ∈ S, it follows that

|fyy(γ(t))| = |∇fy(γ(t)) · e2(t)| . td−s = o(∥γ(t)∥r−2),

and hence (i) fails along γ, contrary to our assumptions. Therefore (3.1) must hold and the rest
of the proof goes as the proof of Proposition 1.1 in [2]. �

In the rest of the article, when we consider jets in standard form, we will only talk about H̃ϵ,ρ

and by abuse of notation, it will be denoted by Hϵ,ρ. Lemma 3.1 gives very specific geometric
information about Hϵ,ρ. The situation for ϵ < ϵ0 and ρ < ρ0 is illustrated in Figure 1.

For the proof of Theorem 1.7 we need information about Hϵ,ρ of more quantitative character.
This section and the next contain the results we need.

Lemma 3.2. There is a δ > 0 and a neighbourhood U of 0 such that

{(x, y) ∈ R2 | |x| ≤ δ|y|r−1} ∩ Σ(ω) ∩ U \ {0} = ∅.
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y

Components of Σ(ω)

x

Components of Hϵ,ρ(ω)

B(0, ρ)

Figure 1. The figure shows 6 different components of Hϵ,ρ. The branches of
Σ(ω) are contained in different components of Hϵ,ρ.

Proof. Assume that the lemma is false. Then there is a branch of Σ(ω) parametrized by an
analytic curve α(t) = (α1(t), α2(t)) with α(0) = 0 and such that α1(t) = o(|α2(t)|r−1). Let
m = O(α1(t)), n = O(α2(t)). Then m > n(r − 1). We compute

(3.2) 0 =
d

dt
fy(α(t)) = ∇fy(α(t)) · α′(t) = fyx(α(t))α′

1(t) + fyy(α(t))α′
2(t).

By (i),
|fyy(α(t))α′

2(t)| & ∥α(t)∥r−2
tn−1 ∼ tn(r−2)+n−1 = tn(r−1)−1.

By continuity of fyx at 0, we have that O(fyx(α(t))α′
1(t)) ≥ m − 1 > n(r − 1) − 1. It follows

that (3.2) cannot hold, and this contradiction proves the lemma. �

Lemma 3.3. If ϵ and t are small enough, then (0, t) /∈ Hϵ,ρ.

Proof. It is enough to check that the order in t of fy(0, t) is not greater than r− 1. Assume that
O(fy(0, t)) > r − 1. We have

d

dt
fy(0, t) = fyy(0, t),

and our assumption implies that O(fyy(0, t)) > r − 2. This contradicts (i). �

3.2. Newton-Puiseux roots of Jω. The real polynomial Jω = fy has a Newton-Puiseux
factorisation of the form

fy(x, y) = u(x, y) · xE ·
p∏

i=1

[y − βi(x)]
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where u ∈ C{x, y} is a unit, E ≥ 0 and each βi is a formal fractional power series in x with
complex coefficients. We may assume that O(βi) > 0 for all i. Furthermore, all of the fractions
occuring as exponents in these formal fractional power series have a common denominator N .
This means that for each i, the formal fractional power series obtained by substituting tN for x
is an ordinary formal power series in t. This factorization is a purely algebraic rewriting of the
original polynomial, but since the product is a holomorphic function, each of the power series
βi(tN ) are in fact convergent power series, and hence, they are holomorphic functions of t for
small t. We call the βi convergent fractional power series.

Lemma 3.3 implies that E = 0, and we also assume that O(βi) ≤ 1 for each i. This can
always be obtained by composition of ω with a diffeomorphism of the type in Lemma 2.8.

Lemma 3.4. For each branch C of ω contained in the first quadrant of R2 there is a uniquely
determined index i with 1 ≤ i ≤ p such that t 7→ (tN , βi(tN )), t > 0, is a parametrization of C.

Proof. Let C be a branch of ω contained in the first quadrant of R2. The Curve Selection Lemma
gives an analytic parametrization γ(t) of C for t > 0. By a change of parameter if necessary, we
may assume that γ(t) = (tM ·N , γ̃(tN )). Now,

fy(γ(t)) = u(γ(t)) ·
p∏

i=1

[γ̃(tN ) − βi(tM ·N )] ≡ 0.

This is an equality between analytic functions, and hence, for some i, γ̃(tN ) ≡ βi(tM ·N ). It
only remains to show that βi = βj ⇒ i = j. If there are i ̸= j such that βi = βj , then
fyy(tN , βi(tN )) = fy(tN , βi(tN )) = 0, and this contradicts (i). �

For real x > 0, we may think of the βi as complex valued functions of x. By Lemma
3.4, each branch of ω in the first quadrant is a part of the graph of one of these functions
βi(x). Any such fractional power series βi can have only real coefficients, for we may write
βi(x) = Re βi(x) + IIm βi(x) where I is the imaginary unit and both terms on the right side
are convergent fractional power series of x. If Im βi ̸= 0, then Im βi(x) ̸= 0 for small x, and
this cannot be the case. We may assume that β1, β2, . . . , βs correspond to the components
of Σ(ω) \ {0} in the first quadrant and that β1(x) < β2(x) < . . . < βs(x) for small x. The
corresponding components will be denoted by C1, C2, . . . , Cs.

In our factorisation of fy, we have in effect solved the equation fy(x, y) = 0 in terms of
x. We might equally well have solved the same equation in terms of y and obtained another
factorisation

fy(x, y) = u′(x, y) · yF ·
q∏

i=1

[x − β∗
i (y)]

where u′ ∈ C{x, y} is a unit, F ≥ 0 and each β∗
i is a convergent fractional power series in y

with O(β∗
i ) ≥ 0. As before, we may assume that y 7→ (β∗

i (y), y), y > 0 is a parametrization of
Ci for i = 1, . . . , s. For (x, y) ∈ Ci, (x, βi(x)) = (β∗

i (y), y), and hence, both βi ◦ β∗
i and β∗

i ◦ βi

are the identity maps. In our case, F = 0 and O(β∗
i ) ≥ 1 for i = 1, . . . s because O(βi) ≤ 1 for

i = 1, . . . , s.
We will call the βi the x-roots of fy and the β∗

i the y-roots of fy.
Notice that if γ ̸= 0 is a convergent real fractional power series in x for which the exponents

in the powers of x in the terms of γ have a common denominator N and the term of lowest order
has positive coefficient, then γ(tN ) = g(t) for some real analytic function g(t) = tmh(t) where
h is real analytic and h(0) > 0. Then s = t(h(t))

1
m is a real analytic change of parameter near

t = 0, and t = k(s) for some real analytic function k. We have (tN , g(t)) = (k(s)N , sm). Thus,
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if we set γ∗(y) = k(y
1
m )N , then we get a fractional power series γ∗ such that γ∗ ◦ γ = γ ◦ γ∗ is

the identity map.

Lemma 3.5. Let β be a convergent fractional power series with real coefficients. Let c be the
coefficient of the lowest-order term of β. Assume that c > 0. Then O(β) · O(β∗) = 1 and the
coefficient of the lowest-order term of β∗ is c−

1
O(β) .

Proof. Let d be the coefficient of the lowest-order term of β∗. Since β and β∗ are both convergent
fractional power series, y = β◦β∗(y) = cdO(β)yO(β)·O(β∗)+terms of higher order. The conclusion
follows immediately from this. �
Lemma 3.6. Let βi be one of the x-roots of fy, and let β∗

j be a y-root of fy. Let a ∈ Q+

and let t ∈ R and let γs(x) = βi(x) + sxa + α(x) and let σ∗
t (y) = β∗

j (y) + tya + α(y), where α
is a convergent fractional power series with O(α) > a. Then there are finite sets S(i, a) ⊂ R
and T (j, a) ⊂ R, independent of α such that 0 ∈ S(i, a) ∩ T (j, a) and Ox(fy(x, γs(x)) and
Oy(fy(σ∗

t (y), y) are constant numbers A and B, respectively, for all s /∈ S(i, a) and t /∈ T (j, a).
If s ∈ S(i, a), then Ox(fy(x, γs(x)) > A, and if t ∈ T (j, a), then Oy(fy(σ∗

t (y), y)) > B.

Proof. We prove only the part of the lemma concerning the x-roots, since the other part is
completely analogous. From the factorisation above we get

fy(x, γs(x)) = u(x, γs(x)) · (sxa + α(x)) ·
∏
j ̸=i

[γs(x) − βj(x)].

The coefficient of the term of lowest order in this fractional power series is a nonzero polynomial
in s. Let S(i, a) be the set of real zeros of this polynomial. It is clear by definition that s = 0
has to be a root of this polynomial. �
Definition 3.7. Let βi be an x-root of fy and let β∗

j be a y-root of fy.
We say that a fractional power series γ is an a-perturbation of βi if γ(x) = βi(x) + sxa + α(x)

and α is a convergent fractional power series with O(α) > a. We say that γ is a generic
a-perturbation of βi if s /∈ S(i, a) and either a ̸= O(βi) or O(γ) = O(βi).

We say that a fractional power series σ∗ is an a-perturbation of β∗
j if σ∗(y) = β∗

j (y)+tya+α(y)
and α is a convergent fractional power series with O(α) > a. We say that σ∗ is a generic a-
perturbation of β∗

j if t /∈ T (j, a) and either a ̸= O(β∗
j ) or O(σ∗) = O(β∗

j ).

Lemma 3.8. Let a = O(βj) and let γ be a generic a-perturbation of βj. Then γ∗ is a generic
1
a -perturbation of β∗

j .

Proof. Assume βj(x) = cxa + β(x) where O(β) > a. Let γs(x) = βj(x) + sxa + α(x). Then
γ(x) = γs̃(x) for some s̃ /∈ S(j, a). Since γ is a generic a-perturbation of βj , s̃ ̸= −c. Therefore
γ(x) = (c + s̃)xa + β(x) + α(x) is of order a. It follows that

β∗
j (y) =

1
c1/a

y1/a + β̄(y)

and
γ∗(y) =

1
(c + s̃)1/a

y1/a + ᾱ(y).

Since S(j, a) is finite and s̃ /∈ S(j, a), γs(x) is generic for s in some small interval I containing s̃
and such that −c /∈ I. Therefore, Ox(fy(x, γs(x))) is constant for s ∈ I, and hence,

Oy(fy(γ∗
s (y), y)) =

1
a
Ox(fy(x, γs(x)))

is constant for s ∈ I. Since T (j, 1
a ) is finite , this means that 1/(c + s̃)1/a /∈ T (j, 1

a ). It follows
that γ∗(y) is a generic 1

a -perturbation of β∗
j . �
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3.3. Width of Hϵ,ρ(ω). To obtain the necessary estimates of the next section, it is of great
importance to know more about how large Hϵ,ρ(ω) is and, in some sense, how well separated the
components of Hϵ,ρ(ω) are.

For every j = 1, . . . , s−1, the map y 7→ |fy(x, y)| has a local maximum γj(x) ∈ (βj(x), βj+1(x)).
The γj(x) have to lie in the open intervals because, by (i), |fyy(p)| > 0 for all p ∈ Σ(ω) \ {0}.
The functions γj have to be Newton-Puiseux roots of fyy, and are therefore convergent fractional
power series in x with real coefficients.

For a convergent real fractional power series β, we denote by G(β) the set {(x, β(x))|x > 0}
and by G∗(β∗) the set {(β∗(y), y)|y > 0}.

Lemma 3.9. If i > j, a = O(βi −βj) and O(βi) = O(βj), then for every generic a-perturbation
β of βi and βj, there are ϵ > 0, ρ > 0 such that G(β) ∩ Hϵ,ρ(ω) = ∅.

Proof. There is a root γ of fyy with βj(x) < γ(x) < βi(x). Since O(βi) = O(βj), γ has to be an a-
perturbation of βi and βj .  Lojasiewicz inequality (i) implies that |fy(x, γ(x))| & ∥(x, γ(x))∥r−1.
Since β is a generic a-perturbation, it follows that O(fy(x, β(x))) ≤ O(fy(x, γ(x))). We also
have O(β) = O(βi) = O(βj) = O(γ), and hence, ∥(x, γ(x))∥ ∼ ∥(x, β(x))∥. Altogether this
shows that |fy(x, β(x))| & ∥(x, β(x))∥r−1, and the conclusion follows. �

Lemma 3.10. Let b = O(β∗
i ), and let β∗ be a generic b-perturbation of β∗

i . Then, for small
enough ϵ, ρ > 0, G∗(β∗) ∩ Hϵ,ρ(ω) = ∅.

Proof. The fractional power series γ∗(y) = 0 is a b-perturbation of β∗
i , and from Lemma 3.3

we know that |fy(γ∗(y), y)| & ∥(γ∗(y), y)∥r−1. Since β∗ is a generic b-perturbation of β∗
i ,

Oy(fy(β∗(y), y)) ≤ Oy(fy(γ∗(y), y)), and since we also have ∥(β∗(y), y)∥ ∼ ∥(γ∗(y), y)∥ ∼ y,
the lemma follows. �

Lemma 3.11. Let a = O(βi), and let β be a generic a-perturbation of βi. Then there are
ϵ > 0, ρ > 0 such that G(β) ∩ Hϵ,ρ(ω) = ∅.

Proof. Using Lemma 3.8, we see that β∗ is a generic 1
a -perturbation of β∗

i , and by Lemma 3.10,
for small ϵ > 0, ρ > 0 we have G∗(β∗) ∩ Hϵ,ρ(ω) = G(β) ∩ Hϵ,ρ(ω) = ∅. �

Lemma 3.12. Let ϵn, ρn be sequences of real numbers such that ϵn → 0 and ρn → 0 and let
pn = (xn, yn) and qn = (un, vn) be in Hϵn,ρn(ω). If un < 0 < xn, then

∥ω(pn) − ω(qn)∥ & ∥pn∥r−1 + ∥qn∥r−1
.

Proof. We claim that xn & ∥pn∥r−1 and |un| & ∥qn∥r−1. Any branch of Σ(ω) may be parametrized
by some convergent fractional power series β(x) which by Lemma 3.2 must satisfy O(β) ≥ 1

r−1 .
By Lemma 3.11 there is a generic O(βs)-perturbation β̃ of βs such that β̃(x) > βs(x). By Lemma

3.2, O(β̃) = O(βs) ≥ 1
r−1 and this shows that yn < β̃(xn) < δx

1
r−1
n for some δ > 0. Consider

ωΦ = ω ◦ Φ where Φ(x, y) = (x,−y). From Lemma 2.8 we know that (i) holds for ωΦ, and
it is clear that Hϵ,ρ(ω) = Hϵ,ρ(ωΦ). It is also obvious that the branches of Σ(ωΦ) in the first
quadrant correspond to the branches of Σ(ω) in the fourth quadrant. A similar analysis of ωΦ

as the above analysis of ω will show that −δx
1

r−1
n < yn. This shows that xn & ∥pn∥r−1. Let

Ψ(x, y) = (−x, y). A similar analysis of ω ◦ Ψ shows that |un| & ∥qn∥r−1. Altogether we get

∥ω(pn) − ω(qn)∥ ≥ |xn − un| & ∥pn∥r−1 + ∥qn∥r−1
.

�
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3.4. Preliminary estimates. The proof of Theorem 1.7 depends on a number of estimates.
The actual proofs of those estimates are a bit lengthy and quite delicate, so we include them
here in a separate section.

3.4.1. The first quadrant. For i = 1, . . . , s, let Hi
ϵ,ρ(ω) be the component of Hϵ,ρ(ω) containing

G(βi) ∩ Hϵ,ρ(ω). Let ϵn, ϵ̃n, ρn and ρ̃n be sequences of positive real numbers converging to 0.
Let 1 ≤ j < i ≤ s and let pn = (xn, yn) ∈ Hi

ϵn,ρn
(ω) and qn = (un, vn) ∈ Hj

ϵn,ρn
(ω) be two

sequences. We assume that (II) fails along these sequences, that is,

(3.3) ∥ω(pn) − ω(qn)∥ = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .

Let p̃n = (xn, ỹn) ∈ Hi
ϵ̃n,ρ̃n

(ω) and q̃n = (un, ṽn) ∈ Hj
ϵ̃n,ρ̃n

(ω). We want to see that

∥ω(p̃n) − ω(q̃n)∥ = o(∥p̃n∥r−1 + ∥q̃n∥r−1) ∥p̃n − q̃n∥ .

To this end we need to show that

(1) ∥p̃n∥ = ∥pn∥ + o(∥pn∥)
(2) ∥q̃n∥ = ∥qn∥ + o(∥qn∥)
(3) ∥pn − qn∥ = ∥p̃n − q̃n∥ + o(∥pn − qn∥)
(4) ∥pn − p̃n∥ = o(∥pn − qn∥)
(5) ∥qn − q̃n∥ = o(∥pn − qn∥).

We have assumed that βi(x) > βj(x). Let δ > 0 be a small number. We claim that there are
generic O(βi − βj)-perturbations β

i
and βi of βi and generic a-perturbations β

j
and βj of βj

where a = O(βi − βj) if O(βi) = O(βj) and a = O(βj) if O(βj) > O(βi), such that for small x,

(3.4) β
j
(x) < βj(x) < βj(x) < β

i
(x) < βi(x) < βi(x),

(3.5) βj(x) − β
j
(x) < δ(β

i
(x) − βj(x))

and

(3.6) βi(x) − β
i
(x) < δ(β

i
(x) − βj(x)).

To justify the claim, assume first that O(βi) = O(βj) and let γt(x) = tβi(x) + (1 − t)βj(x).
Let

βi(x) = γ1+ϵ(x)

β
i
(x) = γ1−ϵ(x)

βj(x) = γϵ(x)

β
j
(x) = γ−ϵ(x).

All these fractional power series are generic O(βi − βj) perturbations of βi and βj for all but
finitely many choices of ϵ. We compute

βi − β
i

= βj − β
j

=
2ϵ

1 − 2ϵ
(β

i
− βj).

The claim follows in this case if we choose ϵ < min{1
4 , δ

4}. If O(βi) < O(βj), then we choose βi

and β
i

as before, but we choose

βj(x) = (1 + ϵ)βj(x)

β
j
(x) = (1 − ϵ)βj(x).
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Again, for all but finitely many ϵ, these fractional power series are generic O(βj)-perturbations
of βj and we compute

βi − β
i

= 2ϵ(βi − βj)

βj − β
j

= 2ϵβj

β
i
− βj = (1 − ϵ)βi − βj .

Since O(βi) < O(βj), βj(x) < 1
2βi(x) for small x. So for small x,

βi(x) − β
i
(x) <

2ϵ
1
2 − ϵ

(β
i
(x) − βj(x))

βj(x) − β
j
(x) <

2ϵ
1
2 − ϵ

(β
i
(x) − βj(x))

and the claim follows from choosing ϵ < min{1
4 , δ

8}.

Lemma 3.13. There are ϵ > 0 and ρ > 0 such that Hi
ϵ,ρ ∪ Hj

ϵ,ρ ⊂ {(x, y) | β
i
(x) < y <

βi(x) or β
j
(x) < y < βj(x)}.

Proof. It is enough to check that

(G(β
j
) ∪ G(βj) ∪ G(β

i
) ∪ G(βi)) ∩ (Hi

ϵ,ρ ∪ Hj
ϵ,ρ) = ∅.

This follows directly from Lemma 3.9 and Lemma 3.11. �

Estimates (1) and (2) above can be shown by the same argument. To show (1), let δ > 0 be
arbitrary and notice that by Lemma 3.13 and (3.5), there is an N such that | ∥pn∥ − ∥p̃n∥ | ≤
| ∥pn − p̃n∥ | = |yn − ỹn| < |βi(xn) − β

i
(xn)| ≤ δ(β

i
(xn) − βj(xn)) < δβ

i
(xn) < δyn for all

n > N . Estimate (1) follows since ∥pn∥ ∼ yn. To justify (3), (4) and (5) we introduce a pair
of new sequences which help clarify the geometry of the situation. Let ϵ and ρ be given by
Lemma 3.13. Let n be so large that ϵn and ϵ̃n are less than ϵ and ρn and ρ̃n are less than ρ.
Let p̄n = (un, β

i
(un)) and q̄n = (xn, βj(xn)). One possible configuration of these sequences is

illustrated in Figure 2.
We have

∥p̃n − q̃n∥ ≥ ∥pn − qn∥ − ∥pn − p̃n∥ − ∥qn − q̃n∥
≥ ∥pn − qn∥ − δ ∥pn − q̄n∥ − δ ∥qn − p̄n∥ .

We consider the cases xn > un and xn ≤ un separately. If xn > un, then both ∥pn − q̄n∥ and
∥p̄n − qn∥ are less than or equal to ∥pn − qn∥. In this case, ∥p̃n − q̃n∥ ≥ (1 − 2δ) ∥pn − qn∥.

Next is the case xn ≤ un. If there is a K > 0 such that
qn − q̄n

∥qn − q̄n∥
· (1, 0) > K,

then ∥qn − q̄n∥ < |xn − un|/K = o(∥pn − qn∥). The last inequality follows from (3.3). If
qn − q̄n

∥qn − q̄n∥
· (1, 0) → 0 as n → ∞,

then we may assume that either vn < βj(xn) for all n or that vn > βj(xn) for all n by passing to
a subsequence. If vn ≤ βj(xn), then ∥pn − q̄n∥ ≤ ∥pn − qn∥. Now, assume that vn > βj(xn). In
this case, O(βj) < 1. To see this, let θn be the angle between qn−q̄n and (1, 0). If O(βj) = 1, then
| tan θn| ≤ 2βj

′
(xn) < 2M for a bound M on βj

′
. It follows that cos θn is bounded away from 0,

and that (qn− q̄n) ·(1, 0)/ ∥qn − q̄n∥ does not converge to 0, contrary to our current assumptions.
Therefore O(βj) < 1. Lemma 3.2 also implies that β∗

k(y) & yr−1 for k = i, j. This implies
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βi

βi

p̃n p̄n

βj

βjqn
q̄n

q̃n

pn

Figure 2. Example of a possible configuration of points when xn < un.

that βk(x) . x1/(r−1) and β′
k(x) . x−(r−2)/(r−1) for k = i, j. Since O(βj) = O(βj), similar

inequalities must hold for β
∗
j and βj as well. We also claim that ∥qn∥ / ∥pn∥ is bounded. Assume

this is not the case. Then, by passing to a subsequence, we may assume that ∥pn∥ = o(∥qn∥) for
large n. Then yn = o(vn) for large n, but by Lemma 3.2 again, this implies

|xn − un| > |βi
∗(yn) − βj

∗
(vn)| > |βj

∗
(yn) − βj

∗
(vn)| & vr−1

n ∼ ∥qn∥r−1

which is false, because, since (II) fails,

|xn − un| = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .

This proves the claim. Using these observations, we see that

∥qn − q̄n∥ ≤ |xn − un|(β
′
j(xn) + 1)

. |xn − un|
1

x
r−2
r−1
n

(since O(β
′
j) = O(β′

j) ≥ − r−2
r−1 )

. |xn − un|
1

∥pn∥r−2 (since ∥pn∥ ∼ yn ∼ βi(xn) . x
1

r−1
n )

=
o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

∥pn∥r−2 (by (3.3))

= o(∥pn − qn∥). (since ∥qn∥ / ∥pn∥ is bounded)
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We conclude that

∥pn − q̄n∥ ≤ ∥pn − qn∥ + ∥qn − q̄n∥ = ∥pn − qn∥ + o(∥pn − qn∥).

Completely analogous arguments show that ∥qn − p̄n∥ ≤ ∥pn − qn∥ + o(∥pn − qn∥). Altogether
we have

∥p̃n − q̃n∥ ≥ ∥pn − qn∥ − δ ∥pn − q̄n∥ − δ ∥qn − p̄n∥ ≥ (1 − 3δ) ∥pn − qn∥ .

To finish the justification of (3), let δk be a sequence of positive real numbers converging to 0. By
the above, for each k there is a natural number N(k) such that ∥p̃n − q̃n∥ ≥ (1− 3δk) ∥pn − qn∥
when n > N(k). Since δk → 0, (3) follows. To justify (4), notice that there is a natural number
M(k) such that ∥pn − p̃n∥ < δk ∥pn − q̄n∥ ≤ δk(∥pn − qn∥+o(∥pn − qn∥)) when n > M(k). This
clearly implies (4), and (5) follows by similar arguments.

3.4.2. The other quadrants. Let Φ(x, y) = (x,−y) and let ωΦ = ω ◦ Φ. By Lemma 2.2 and
Lemma 2.7, (i) holds for ωΦ. Hence, we may parametrize the components of Σ(ωΦ) in the first
quadrant by Newton-Puiseux roots βΦ,i, i = 1, . . . , sΦ and the analysis of Section 3.4.1 holds for
ωΦ as well.

The fractional power series −βΦ,i, i = 1, . . . , sΦ parametrize the components of Σ(ω) contained
in the fourth quadrant, and also, Hϵ,ρ(ωΦ) = Φ(Hϵ,ρ(ω)). Hence, if we instead of βi and βj

consider −βΦ,i and −βΦ,j in the discussion of Section 3.4.1, we get the same estimates (1)-(5). If
we instead of βi and βj consider −βΦ,i and βj , we also obtain (1)-(5) after a minor modification
of the justification of (3)-(5). In the latter case the corresponding branches of Σ(ω) have different
tangent directions.

To study Hϵ,ρ(ω) in the second and third quadrant, let Ψ(x, y) = (−x, y), and study the
r-jet ωΨ = ω ◦ Ψ. The components of Hϵ,ρ(ωΨ) contained in the first and fourth quadrant
can be studied in the manner explained above, and since Hϵ,ρ(ωΨ) = Ψ(Hϵ,ρ(ω)), this gives
the estimates (1)-(5) when we consider parametrizations of components of Σ(ω) in the second
and/or third quadrant instead of βi and βj .

Since, by Lemma 3.12, (II) only fails along pairs of sequences on the same side of the y-axis,
this establishes our estimates in all possible cases.

4. Relations between the  Lojasiewicz inequalities

Le ω be an r-jet of rank 1 such that (I) holds. Let {Ci} be the components of Σ(ω) \ {0}.
Recall the second Lojasiewicz inequality of Theorem 1.10:

There is a constant C > 0 and a neighbourhood U of 0 such that if p ∈ Ci ∩ U and q ∈ Cj ∩ U
for some i ̸= j, then

(II’) ∥ω(p) − ω(q)∥ ≥ C(∥p∥r−1 + ∥q∥r−1) ∥p − q∥

Proposition 4.1. If ω is of rank 1 and in standard form, then (II) holds for ω iff (II’) holds.

Proof. (II) ⇒ (II’) is obvious, (II’) being a weakening of (II). We assume ω(x, y) = (x, f(x, y))
and proceed to show that (II’) ⇒ (II). If (II) fails, then there are i ̸= j and sequences ϵn

and ρn of positive real numbers converging to 0 and sequences pn = (xn, yn) ∈ Hi
ϵn,ρn

and
qn = (un, vn) ∈ Hj

ϵn,ρn
. Then we have fy(pn) = o(∥pn∥r−1), fy(qn) = o(∥qn∥r−1) and

(4.1) ∥ω(pn) − ω(qn)∥ = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .
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Let p̃n and q̃n be the points on Ci and Cj having the same x-component as pn and qn respectively.
These points exist by Lemma 3.2. By the estimates (3)-(5) of the previous section we have

(4.2) ∥pn − qn∥ ∼ ∥p̃n − q̃n∥

and

(4.3) ∥pn − p̃n∥ = o(∥pn − qn∥)

and

(4.4) ∥qn − q̃n∥ = o(∥pn − qn∥).

As remarked in Section 3.4.2, (1)-(5) hold regardless of whether (pn) and (qn) are in the same
quadrant or not. By (1) and (2), ∥pn∥ ∼ ∥p̃n∥ and ∥qn∥ ∼ ∥q̃n∥. Let ϵ < ϵ0 where ϵ0 is given
by Proposition 1.1. Assume that n is so large that ϵn < ϵ. Then pn, p̃n ∈ Hi

ϵ and since Hi
ϵ

is semialgebraic and connected, the line segment between pn and p̃n must be contained in Hi
ϵ.

If bn is a sequence such that for every n, bn lies on the line segment between pn and p̃n or
on the line segment between qn and q̃n, then ∥bn∥ ∼ ∥pn∥ or ∥bn∥ ∼ ∥qn∥, and since (I), and
therefore (i) holds, we must have |fyy(xn, y)| > 0 on the open line segment between pn and p̃n.
It follows that |fy(bn)| < |fy(pn)| = o(∥pn∥r−1) = o(∥bn∥r−1). In a similar fashion we obtain
similar inequalities for points on the line segment between qn and q̃n. Now, using the Mean Value
Theorem, we can find cn on the line segment between pn and p̃n and dn on the line segment
between qn and q̃n such that

∥ω(p̃n) − ω(q̃n)∥ ≤ ∥ω(p̃n) − ω(pn)∥ + ∥ω(pn) − ω(qn)∥
+ ∥ω(qn) − ω(q̃n)∥

= |fy(cn)| ∥p̃n − pn∥ + o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥
+ |fy(dn)| ∥qn − q̃n∥

= o(∥pn∥r−1)o(∥pn − qn∥) + o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

+ o(∥qn∥r−1)o(∥pn − qn∥)

= o(∥p̃n∥r−1 + ∥q̃n∥r−1) ∥p̃n − q̃n∥ .

This shows that (II’) fails. �

Lemma 4.2 (=Lemma 2.9). Let ω be an r-jet which satisfies (I), and let ω′ be a Cr map germ
with ω ∼Ar ω′. Then (II’) holds for ω if and only if (II’) holds for jrω′.

Proof. Let ω be an r-jet, h and k Cr-diffeomorphisms of neighbourhoods of 0 and ω′ = k◦ω◦h−1.
We may assume that ω is in standard form. Assume that (I) holds for ω and that (II’), and
hence (II), fails for ω along sequences in Hi and Hj which are different components of Hϵ,ρ(ω).
Let Ci and Cj be the branches of Σ(ω) corresponding to Hi and Hj respectively. From the proof
of Lemma 2.6 we know that in a small neighbourhood of 0, h(Ci) and h(Cj) are in different
components of Hϵ,ρ(jrω′). Let C ′

i and C ′
j denote the components of Σ(jrω′) contained in the

same components of Hϵ,ρ(jrω′) as h(Ci) and h(Cj) respectively. Since h−1(C ′
i) and h−1(C ′

j)
belong to the singular set of k−1 ◦ jrω′ ◦ h, which is a Cr realization of ω, h−1(C ′

i) and h−1(C ′
j)

belong to Hi
ϵ,ρ(ω) and Hj

ϵ,ρ(ω) for every small ϵ. It now follows from the proof of Proposition
4.1 that (II) fails for ω along sequences in h−1(C ′

i) and h−1(C ′
j). Then it follows from the proof

of Lemma 2.6 again that (II) fails for jrω′ along sequences in C ′
i and C ′

j . This shows that (II’)
fails for jrω′ and finishes the proof of the lemma. �
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Proposition 4.3 (=Proposition 2.10). If ω is in standard form and satisfies (i), then (II’) and
(ii) are equivalent.

Proof. (II’)⇒ (ii) is obvious, (ii) being a weakening of (II’). Assume that ω is in standard form
and satisfies (i), but not (II’). Since (i) is satisfied, Lemma 3.12 implies that (II’) fails along
sequences on the same side of the y-axis. Assume they are in the 1st or 4th quadrant. Note that
Lemma 3.4 also holds for singular branches in the 4th quadrant, and by arguments similar to
the arguments in Section 3.4.2, we may parametrize the branches of Σ(ω) in the 4th quadrant
by convergent fractional power series. Let now βi, i = 1, . . . , S be parametrizations of the S
branches of Σ(ω) in these quadrants. Then there are i ̸= j and sequences pn = (xn, yn) and
qn = (un, vn) both converging to 0 such that pn ∈ G(βi), qn ∈ G(βj) and

∥ω(pn) − ω(qn)∥ = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .

We may assume that xn > un > 0 Let ṽn = βj(xn). Then q̃n = (xn, ṽn) ∈ G(βj). Let β(t) =
(β1(t), β2(t)) be the parametrization of G(βj) by arclength with β(0) = 0 and β(t) ∈ G(βj) for
t > 0. Assume that (un, vn) = β(tun) and (xn, ṽn) = β(txn). Then there are parameter values
cn and dn between tun and txn such that

∥ω(un, vn) − ω(xn, ṽn)∥ = ∥ω(β(tun)) − ω(β(txn))∥

=
∥∥∥∥( β1(tun) − β1(txn)

Df(β(cn)) · β′(cn)(tun − txn)

)∥∥∥∥
=
∥∥∥∥( d

dtβ
1(dn)

fx(β(cn)) d
dtβ

1(cn)

)∥∥∥∥ |tun − txn | (since fy(β(t)) ≡ 0)

. max
{∣∣∣∣ d

dt
β1(cn)

∣∣∣∣ , ∣∣∣∣ d

dt
β1(dn)

∣∣∣∣} |tun − txn |.

If O(βj) = 1, then t ∼ ∥β(t)∥ ∼ |β1(t)|, and in that case,

∥ω(un, vn) − ω(xn, ṽn)∥ . |xn − un|.
If O(βj) < 1, then ∣∣∣∣ d

dt
β1(cn)

∣∣∣∣ ∼
∣∣∣∣∣ d

dtβ
1(cn)

d
dtβ

2(cn)

∣∣∣∣∣ ,
since β is parametrised by arclength. Since we have assumed that xn > un, we have txn

> tun
.

Then ∣∣∣∣∣ d
dtβ

1(cn)
d
dtβ

2(cn)

∣∣∣∣∣ < |β′
j(xn)|−1.

Now, since O(βj) < 1, there is a small ϵ > 0 such that |βj(x)| is a concave function on [0, ϵ).
This implies that for large enough n,

|β′
j(xn)| <

∣∣∣∣ vn − ṽn

xn − un

∣∣∣∣ < |βj(xn)|
|xn|

.

But since βj is a fractional power series in x, |βj(xn)| ∼ |xn||β′
j(xn)|. Thus

|β′
j(xn)| ∼

∣∣∣∣ vn − ṽn

xn − un

∣∣∣∣ ,
and hence, ∣∣∣∣ d

dt
β1(cn)(tun − txn)

∣∣∣∣ . ∣∣∣∣xn − un

vn − ṽn

∣∣∣∣ |vn − ṽn| = |xn − un|.
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The same holds if we replace cn with dn. In any case,

∥ω(un, vn) − ω(xn, ṽn)∥ . |xn − un| = o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥ .

Using this we get
∥ω(pn) − ω(q̃n)∥ ≤ ∥ω(pn) − ω(qn)∥ + ∥ω(qn) − ω(q̃n)∥

= o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

= o(∥pn∥r−1 + ∥q̃n∥r−1) ∥pn − q̃n∥ ,

which means that (ii) fails to hold. The last equality needs some justification. Notice that
un < xn implies that ∥qn∥ < ∥q̃n∥. We also have to show that ∥pn − qn∥ . ∥pn − q̃n∥. We claim
that un = xn +o(xn). If not, then |xn−un| = xn−un ∼ xn. By Lemma 3.2, xn & ∥pn∥r−1. This
implies that |xn−un| & ∥pn∥r−1 which contradicts the failure of (II’). Therefore, we may assume
that un = xn + o(xn). This gives |βj(un)| ∼ |βj(xn)| and hence, ∥qn∥ ∼ ∥q̃n∥. Assume that
∥qn∥ = o(∥pn∥). In this case, ∥q̃n∥ = o(∥pn∥) and it follows that ∥pn∥ ∼ ∥pn − qn∥ ∼ ∥pn − q̃n∥.
Assume now that ∥pn∥ . ∥qn∥. We have

∥pn − qn∥ ≤ ∥pn − q̃n∥ + |βj(xn) − βj(un)| + |xn − un|.
Using that |βj(xn) − βj(un)| ≤ (|β′

j(xn)| + |β′
j(un)|)|xn − un|, we get

∥pn − qn∥ ≤ ∥pn − q̃n∥ + (|β′
j(xn)| + |β′

j(un)| + 1)|xn − un|.

As in the justification of (3) in Section 3.4.1, Lemma 3.2 implies that |β′
j(xn)| . x

− r−2
r−1

n .
1/ ∥q̃n∥r−2 ∼ 1/ ∥qn∥r−2 and similarly, |β′

j(un)| . 1/ ∥qn∥r−2. Now we have

∥pn − qn∥ ≤ ∥pn − q̃n∥ + (1 +
2

∥qn∥r−2 )|xn − un|

= ∥pn − q̃n∥ + (1 +
2

∥qn∥r−2 )o(∥pn∥r−1 + ∥qn∥r−1) ∥pn − qn∥

= ∥pn − q̃n∥ + o(∥pn − qn∥).

The last equality follows from the assumption that ∥pn∥ . ∥qn∥. This completes the proof of
Proposition 4.3. �
Proof of Proposition 1.9. This is a direct consequence of Proposition 4.1 and Proposition 4.3. �

5. Construction of Whitney field and proof of Theorem 1.7

This section deals with the construction of a Whitney field which leads to the proof of the only
if part of Theorem 1.7. Let ω(x, y) = (x, f(x, y)) be an r-jet of rank 1 in standard form having
no branches of its singular set tangent to the x-axis. Assume that (i) holds and (ii) fails for ω.
We only consider the case when (ii) fails along sequences in the first quadrant. Then there are
sequences pn = (xn, yn) ∈ Ci and qn = (xn, vn) ∈ Cj such that ∥pn∥ → 0, ∥qn∥ → 0 and

|f(pn) − f(qn)| = o(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.
In this case, ∥pn∥ ∼ yn and ∥qn∥ ∼ vn. We assume that yn > vn and that ∥pn − qn∥ =
o(∥pn∥ + ∥qn∥) and thus, ∥pn∥ ∼ ∥qn∥.

Lemma 5.1. There are sequences of real positive numbers ϵ̃n and ρ̃n converging to 0 and se-
quences p̃n = (xn, ỹn) ∈ Hi

ϵ̃n,ρ̃n
and q̃n = (xn, ṽn) ∈ Hj

ϵ̃n,ρ̃n
such that

fy(xn, ỹn) = fy(xn, ṽn) =
f(xn, ỹn) − f(xn, ṽn)

ỹn − ṽn
= o(∥p̃n∥r−1 + ∥q̃n∥r−1).
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ỹnṽn y

f(xn, ·)

Figure 3. Illustration of the geometric idea behind Lemma 5.1.

The points ỹn and ṽn are chosen such that we obtain the geometric situation illustrated in
Figure 3.

Proof of Lemma 5.1. If there are subsequences (pnk
) and (qnk

) of (pn) and (qn) respectively such
that f(xnk

, ynk
) = f(xnk

, vnk
), then, since fy(xn, yn) = fy(xn, vn) = 0, we may take ỹn = yn

and ṽn = vn. If there are no such subsequences, let pn(t) = (xn, yn + t) and qn(s) = (xn, vn + s).
Recall that we have assumed that (pn) and (qn) are in the first quadrant. We have also assumed
that yn > vn, and hence, yn + t > vn + s and ∥pn(t)∥ > ∥qn(s)∥ for small s and t. In particular,
∥pn(t)∥ > ∥qn(s)∥ when pn(t) ∈ Hi

ϵ,ρ and qn(s) ∈ Hj
ϵ,ρ. Since (i) holds, there is a constant C > 0

such that
|fy(p)| + |fyy(p)| ∥p∥ ≥ C ∥p∥r−1

for all p in a neighbourhood B(0, ρ) of 0. Let ϵ < C and as always, assume that ϵ < ϵ0 where
ϵ0 is chosen such that the conclusion of Lemma 3.1 holds. Since fyy(p) ̸= 0 for all p ∈ Hϵ,ρ, the
restriction of the function u 7→ fy(p + (0, u)) to any component of the set {u|p + (0, u) ∈ Hϵ,ρ}
is injective. Assume that ρ is large enough to ensure that

sup{∥pn(t)∥ | pn(t) ∈ Hi
ϵ,ρ} < ρ.

Since ∥pn(t)∥ > ∥qn(s)∥, {fy(qn(s)) | qn(s) ∈ Hj
ϵ,ρ} ⊂ {fy(pn(t)) | pn(t) ∈ Hi

ϵ,ρ}. In fact, both
these sets are intervals. Using that fyy(p) ̸= 0 for all p ∈ Hϵ,ρ together with the definition of the
Hϵ,ρ and the assumption on ρ, we see that there are real numbers s1, s2, t1, t2 such that

{fy(qn(s)) | qn(s) ∈ Hj
ϵ,ρ} = [−ϵ ∥qn(s1)∥r−1

, ϵ ∥qn(s2)∥r−1]

and
{fy(pn(t)) | pn(t) ∈ Hi

ϵ,ρ} = [−ϵ ∥pn(t1)∥r−1
, ϵ ∥pn(t2)∥r−1].
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It follows that when qn(s) ∈ Hj
ϵ,ρ, the equation fy(qn(s)) = fy(pn(t)) has a unique solution

t = h(s) with pn(t) ∈ Hi
ϵ,ρ.

Let F : R2 → R be given by F (s, t) = fy(pn(t)) − fy(qn(s)). We have

∂F

∂t
(s, t) = fyy(pn(t)) ̸= 0

when pn(t) ∈ Hϵ,ρ. The function h(s) above satisfies F (s, h(s)) = 0, and by the Implicit Function
Theorem, h is a smooth function.

Define the function G by

G(s) =
f(pn(h(s))) − f(qn(s))

pn(h(s)) − qn(s)
− fy(qn(s)).

Clearly G is continuous near s = 0. Let ϵn be defined by

(5.1) |f(pn) − f(qn)| = ϵn(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.
Note that ϵn > 0 and that ϵn → 0 as n → ∞. For constants K and indices n such that |K|ϵn < ϵ,
let S(K, n) ∈ {s | qn(s) ∈ Hj

ϵ,ρ} be defined by

fy(qn(S(K, n))) = Kϵn ∥qn(S(K, n))∥r−1
.

This definition is unambiguous because fyy ̸= 0 in Hϵ,ρ. There are eight cases to consider, one
for each possible value of

Sign(ω) =
(

f(pn) − f(qn)
|f(pn) − f(qn)|

,
fyy(pn)
|fyy(pn)|

,
fyy(qn)
|fyy(qn)|

)
∈ {−1, 1}3.

The denominators in the definition of Sign(ω) cause no problems, because fyy(p) ̸= 0 when
fy(p) = 0 as a consequence of (i). Suppose Sign(ω) = (−1,−1,−1). This situation is illustrated
in Figure 3. Since h(0) = 0, G(0) < 0. Let S = S(K,n) for some fixed K < 0 and assume that
G(S) < 0. Notice that necessarily, S > 0. There is a sequence ρn converging to 0 such that
pn(h(S)) ∈ Hi

|K|ϵn,ρn
and qn(S) ∈ Hj

|K|ϵn,ρn
. We get

f(pn(h(S))) − f(qn(S)) < fy(qn(S))(yn + h(S) − vn − S) < 0.

By our assumption that ∥pn − qn∥ = o(∥pn∥ + ∥qn∥), we have ∥pn∥ = ∥qn∥ + o(∥qn∥). By the
estimates (1)-(3) of Section 3, |yn + h(S) − vn − S| = |yn − vn| + o(|yn − vn|), ∥pn(h(S))∥ =
∥pn∥ + o(∥pn∥) and ∥qn(S)∥ = ∥qn∥ + o(∥qn∥). This gives

|f(pn(h(S))) − f(qn(S))| >
|K|
4

ϵn(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.

Let 0 < δ < 1
4 . By estimates (4) and (5) of Section 3, ∥pn(h(S)) − pn∥ = o(|yn − vn|) and

∥qn(S) − qn∥ = o(|yn−vn|). Furthermore, since fyy ̸= 0 in Hϵ,ρ, the maximum of
∣∣fy|pnpn(h(S))

∣∣
is |fy(pn(h(S)))| and the maximum of

∣∣fy|qnqn(S)
∣∣ is |fy(qn(S))|. Using this and our assumption

that ∥pn∥ = ∥qn∥ + o(∥qn∥), we get

|f(pn) − f(qn)| ≥ |f(pn(h(S))) − f(qn(S))| − |f(pn(h(S))) − f(pn)| − |f(qn(S)) − f(qn)|

≥ |f(pn(h(S))) − f(qn(S))| − |K|ϵn ∥qn(S)∥r−1 (∥pn(h(S)) − pn∥ + ∥qn(S) − qn∥)

≥ |f(pn(h(S))) − f(qn(S))| − |K|ϵnδ(∥qn∥r−1 + ∥pn∥r−1)|yn − vn|

≥ |K|
4

ϵn(1 − 4δ)(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.

When n is large, we may take |K| > 4/(1−4δ) and this contradicts (5.1), and hence, G(S(K,n)) >
0. By the Intermediate Value Theorem, there is a sequence (sn) with 0 < sn < S(K, n) such
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that G(sn) ≡ 0. The proof is finished in this case by choosing ϵ̃n = |K|ϵn, ỹn = yn + h(sn) and
ṽn = vn + sn.

All the other seven cases are checked by essentially the same argument. It is just a matter of
keeping track of the signs and the directions of the inequalities, so the details are left out. �

Let p̃n = (xn, ỹn) and q̃n = (xn, ṽn) be the sequences given by Lemma 5.1. We may assume
that for all n, ∥p̃n+1∥ < 1

2 ∥q̃n∥. Remember that we have also assumed that ∥p̃n∥ ≥ ∥q̃n∥ and
∥p̃n − q̃n∥ = o(∥p̃n∥). Let K = {0} ∪

∪
n{p̃n, q̃n}. We define an r-th order Taylor field Q on K

with values in R by

Qm(p) =


f(q̃n) − f(p̃n), p = p̃n, m = (0, 0);
− f(p̃n)−f(q̃n)

ỹn−ṽn
, p = p̃n, q̃n, m = (0, 1);

0 otherwise.

Lemma 5.2. Q is a Whitney field.

Proof. Let X = (x, y). We have to show that for all p, q ∈ K, m ∈ N2,

(RqQ)m(p) = Qm(p) − ∂|m|

∂Xm

(∑
α

(
1
α!

Qα(q)(X − q)α)

)∣∣∣∣∣
X=p

= o(∥p − q∥r−|m|).

There are a number of cases to consider, each of which is straightforward. In any of the cases
(p, q) = (p̃n, q̃n) or (p, q) = (q̃n, p̃n), the definition of Q gives us that (RqQ)m(p) = 0 =
o(∥p − q∥r−|m|) for m = (0, 0) and m = (0, 1). In the remaining combinations, ∥p − q∥ >
1
2max{∥p∥ , ∥q∥} and (RqQ)m(p) = o((max{∥p∥ , ∥q∥})r−|m|) for m = (0, 0) and m = (0, 1).
Since (RqQ)m(p) ≡ 0 when m = (1, 0) or |m| > 1, it follows that Q is a Whitney field. �
Proof of Theorem 1.7. Assume first that (i) and (ii) hold for ω of rank 1 in standard form
ω(x, y) = (x, f(x, y)). By Lemma 2.7 and Proposition 1.9, (I) and (II) holds for ω as well. Then
we may use Theorem 1.3 to conclude that ω is A0-sufficient.

Now, suppose that (i) fails for ω. By Lemma 2.7, (I) also fails for ω, and by Theorem 1.3, ω
is not A0-sufficient.

Finally, suppose that (i) holds and (ii) fails for ω. Then there are distinct components Ci and
Cj of Σ(ω) and sequences pn = (xn, yn) ∈ Ci and qn = (xn, vn) ∈ Cj such that

|f(pn) − f(qn)| = o(∥pn∥r−1 + ∥qn∥r−1)|yn − vn|.
By passing to a subsequence, we may also assume that ∥pn∥ ≥ ∥qn∥ and ∥pn+1∥ < 1

2 ∥qn∥ for
all n. If there are subsequences (pnk

) and (qnk
) of (pn) and (qn), respectively, with

∥pnk
− qnk

∥ ∼ max{∥pnk
∥ , ∥qnk

∥},
then it is easy to see that the Taylor field

Qm
1 (p) =

{
f(qnk

) − f(pnk
), p = pnk

, m = (0, 0);
0, otherwise

is a Whitney field. By Whitney’s Extension Theorem ([3]), we may extend Q1 by a Cr map
h1 defined in a neighbourhood of 0. By construction of Q1, jrh1(0) = 0, and hence, ω + h1

is a Cr realization of ω. However, pnk
and qnk

are singular points of ω + h1 for every n, and
(ω+h1)(pnk

) = (ω+h1)(qnk
). This gives sequences of singular double points of ω+h1 converging

to 0, and it is shown in [2] that a sufficient jet cannot have any such representative. Thus, ω is
not A0-sufficient.
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If there are no subsequences as above, then we may assume that ∥pn − qn∥ = o(∥pn∥+ ∥qn∥).
By Lemma 2.1, Lemma 2.6, Lemma 2.8 and Proposition 1.9, we may assume that pn and qn are in
the first quadrant and that ∥pn∥ ∼ yn and ∥qn∥ ∼ vn. In this situation, we can find the sequences
(p̃n) and (q̃n) of Lemma 5.1 and construct the Whitney field Q of Lemma 5.2. By Whitney’s
Extension Theorem again, we may extend Q by a Cr map h defined in a neighbourhood of 0.
By construction of Q, jrh(0) = 0, and hence, ω + h is a Cr realization of ω. Again, p̃n and q̃n

are singular points of ω + h for every n, and (ω + h)(p̃n) = (ω + h)(q̃n). This gives sequences of
singular double points of ω + h converging to 0, and hence, ω is not A0-sufficient. The proof is
finished. �

6. Examples

Example 6.1 (Example 1 of [2] revised). Let r > 3 and let ω(x, y) = (x, f(x, y)) = (x, xy +yr).
Since ω is given in standard form, we can apply Theorem 1.7 to prove that ω is A0-sufficient in
E[r](2, 2). We have fy(x, y) = x + ryr−1 and fyy(x, y) = r(r − 1)yr−2.

Assume that (i) does not hold for ω. Then there is a sequence pn = (xn, yn) converging to 0
such that

|fy(pn)| + |fyy(pn)| ∥pn∥ = o(∥pn∥r−1).

Thus, |fy(pn)| = |xn + ryr−1
n | = o(∥(xn, yn)∥r−1) and this implies that |xn| ∼ |yn|r−1 and

∥pn∥ ∼ |yn|. But then fyy(pn) ≥ ∥pn∥r−2, which contradicts that (i) fails. This proves that ω
satisfies (i).

If r is even, then ω has one branch on each side of the y-axis, and (ii) is trivially satisfied.
Assume that r is odd. Then Σ(ω) = {(x, y)|x = −ryr−1}. Let p = (−ryr−1, y) and q =
(−ryr−1,−y). Then ∥p − q∥ ∼ ∥p∥ = ∥q∥ ∼ |y| and we get

|f(p) − f(q)| = |2ryr + 2yr| & (∥p∥r−1 + ∥q∥r−1)|y|.
This shows that (ii) holds, and by Theorem 1.7, ω is sufficient as claimed.

Example 6.2. Let a > b > c > 0 and let ω(x, y) = (x, f(x, y)) in J7(2, 2) be such that
fy(x, y) = (x − ay2)(x − by2)(x − cy2). Let

F (x, y) = x − y − 1
3

(a + b + c)(x3 − y3) +
1
5

(ab + ac + bc)(x5 − y5) − 1
7
abc(x7 − y7).

We claim that ω is A0-sufficient in E[7](2, 2) if 0 /∈ {F (a− 1
2 , b−

1
2 ), F (a− 1

2 , c−
1
2 ), F (b−

1
2 , c−

1
2 )}.

This means that we need to verify (i) and (ii) of Theorem 1.7 for ω with r = 7.
Assume that (i) fails. Then there is a sequence pn = (xn, yn) converging to 0 such that

|fy(pn)| + |fyy(pn)| ∥pn∥ = o(∥pn∥6).

From the expression for fy we conclude that (i) can only fail along the sequence if xn = dy2
n+o(y2

n)
for some d ∈ {a, b, c}. We also have

fyy(x, y) = −2(a + b + c)x2y + 4(ab + ac + bc)xy3 − 6abcy5.

Suppose xn = ay2
n + o(y2

n). Then ∥pn∥ ∼ |yn| and

fyy(pn) = −[2a2(a + b + c) − 4a(ab + ac + bc) + 6abc]y5
n + o(y5

n).

But fyy(pn) = o(y5
n) since (i) fails, and hence,

2a2(a + b + c) − 4a(ab + ac + bc) + 6abc = 0.

Since a ̸= 0, this implies the equation

(6.1) (a − b)(a − c) = 0



112 OLAV SKUTLABERG

which cannot hold since a > b > c. The same argument applies when xn = by2
n + o(y2

n) and
when xn = cy2

n + o(y2
n) and gives equations

(b − c)(b − a) = 0

and
(c − a)(c − b) = 0.

None of these two equations can have a solution with a > b > c. Altogether this shows that (i)
holds for ω when r = 7.

To verify (ii), notice that for s, t > 0,∣∣∣∣f(x,

√
x

s
) − f(x,

√
x

t
)
∣∣∣∣ = x

7
2 |F (s−

1
2 , t−

1
2 )|.

This proves that (ii) holds with r = 7, since we have assumed that

0 /∈ {F (a− 1
2 , b−

1
2 ), F (a− 1

2 , c−
1
2 ), F (b−

1
2 , c−

1
2 )}.
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