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MILNOR FIBRATIONS AND THE THOM PROPERTY FOR MAPS fḡ

ANNE PICHON AND JOSÉ SEADE

Abstract. We prove that every map-germ fḡ : (Cn, 0)→(C, 0) with an isolated critical value

at 0 has the Thom afḡ-property. This extends Hironaka’s theorem for holomorphic mappings
to the case of map-germs fḡ and it implies that every such map-germ has a Milnor-Lê fibration

defined on a Milnor tube. One thus has a locally trivial fibration φ : Sε \K → S1 for every

sufficiently small sphere around 0, where K is the link of fḡ and in a neighbourhood of K the
projection map φ is given by fḡ/|fḡ|.

Introduction

Soon after J. Milnor published his book [14], there were several interesting articles about
Milnor fibrations for real singularities published by various people, as for instance by E. Looi-
jenga, P. T. Church and K. Lamotke, N. A’Campo, B. Perron, L. Kauffman and W. Neu-
mann, A. Jacquemard and others. More recently, there has been a new wave of interest in
the topic and a number of articles have been published by various authors (see for instance
[1, 2, 3, 5, 7, 13, 15, 17, 18, 19, 20, 22]).

Unlike the fibration theorem for complex singularities, which holds for every map-germ
(Cn, 0)→ (C, 0), in the real case one needs to impose stringent conditions to get a fibration on
a “Milnor tube”, or a fibration on a sphere, as in the holomorphic case.

In [18] we observed that Lê’s arguments in [10] for holomorphic mappings extend to every real
analytic map germ (Rn, 0)→ (Rp, 0), n > p, with an isolated critical value, provided it has the
Thom af -property and V := f−1(0) has dimension more than 0. Hence one has in that setting
a Milnor-Lê fibration:

f : N(ε, δ)→ Dδ \ {0} .
Here N(ε, δ) denotes a “solid Milnor tube”: it is the intersection f−1(Dδ \ {0}) ∩ Bε, where
Bε is a sufficiently small ball around 0 ∈ Rn and Dδ is a ball in Rp of radius small enough
with respect to ε. This was later completed in [5] (see also [7]), giving necessary and sufficient
conditions for one such map-germ to define a Milnor fibration on every small sphere around the
origin, with projection map f/|f |.

Then, an interesting problem is finding families of map germs (Rn, 0)→ (Rp, 0), n > p, having
an isolated critical value and the Thom property. This is even better when the given families
further have a rich geometry one can use in order to study the topology of the corresponding
Milnor fibrations (cf. [3]).

In this article we prove:

Theorem. Let f, g be holomorphic map germs (Cn, 0) → (C, 0) such that the map fḡ has an
isolated critical value at 0 ∈ C. Then fḡ has the Thom afḡ-property.
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In fact our proof is of a local nature and therefore extends, with same proof, to the case of
holomorphic map-germs defined on a complex analytic variety X with an isolated singularity.
This result generalizes to higher dimensions the corresponding theorem in [18] for n = 2, and it
has the following corollaries:

Corollary 1. Let f, g be holomorphic map-germs defined on a complex analytic variety X with
an isolated singularity at a point 0, such that the germ fḡ has an isolated critical value at 0.
Then one has a locally trivial fibration

N(ε, δ)
f−→ Dδ \ {0} , ε� δ > 0 sufficiently small ,

where N(ε, δ) := [(fḡ)−1(Dδ \ {0}) ∩Bε] is a solid Milnor tube for fḡ.

Corollary 2. Let LX := X ∩ Sε be the link of X, V := (fḡ)
−1

(0) and LV := LX ∩ V be the
link of V . Then one has a locally trivial fibration,

φ : LX \ LV −→ S
1 ,

which restricted to LX ∩N(ε, δ) is the natural projection φ = fḡ
|fḡ| .

In fact we know from [18] that for n = 2 the projection map φ in Corollary 2 can be taken

to be fḡ
|fḡ| everywhere on LX \ LV , not only near the link of V . It would be interesting to know

whether or not this statement holds also in higher dimensions. By [5], this is equivalent to asking
whether all germs fḡ are d-regular (we refer to [5] for the definition); this is so when n = 2, by
[18] and [2].

We notice too that holomorphic map-germs actually have the stronger strict Thom wf -
property, by [16] and [4, Theorem 4.3.2], even for functions defined on spaces with non-isolated
singularities. We do not know whether or not these statements extend to map-germs fḡ in
general. Perhaps this can be proved using D. Massey’s work [13] about real analytic Milnor
fibrations and a  Lojasiewicz inequality.

The authors are grateful to Arnaud Bodin for several useful comments and joyful conversa-
tions.

1. The theorem

Let U be an open neighbourhood of the origin 0 in Rm and let X ⊂ U be a real analytic
variety of dimension n > 0 with an isolated singularity at 0. Let f̃ : (U, 0) → (Rk, 0) be a real

analytic map-germ which is generically a submersion, i.e., its Jacobian matrix Df̃ has rank k
on a dense open subset of U . We denote by f the restriction of f̃ to X. As usual, we say that
x ∈ X \{0} is a regular point of f if Dfx : TxX → Rk is surjective, otherwise x is a critical point.
A point y ∈ Rk is a regular value of f if there is no critical point in f−1(y); otherwise y is a
critical value. We say that f has an isolated critical value at 0 ∈ Rk if there is a neighbourhood
Dδ of 0 in Rk so that all points y ∈ Dδ \ {0} are regular values of f .

Now let U and X be as before, and let f̃ : (U, 0) → (Rk, 0) be a real analytic map-germ

such that f = f̃ |X has an isolated critical value at 0 ∈ Rk. We set V = f−1(0) = f̃−1(0) ∩X.
According to [9, 11], there exist Whitney stratifications of U adapted to X and V . Let (Vα)α∈A
be such an stratification.

Definition 1.1. The Whitney stratification (Vα)α∈A satisfies the Thom af -condition with re-

spect to f if for every pair of strata Sα, Sβ such that Sα ⊂ Sβ and Sα ⊂ V , one has that for
every sequence of points {xk} ∈ Sβ converging to a point x such that the sequence of tangent
spaces Txk

(f−1(f(xk)) ∩ Sβ) has a limit T , one has that T contains the tangent space of Sα at
x. We say that f has the Thom property if such an stratification exists.
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Notice that this condition is automatically satisfied for pairs of strata contained in V , since
in that case this regularity condition simply becomes Whitney’s (a)-regularity.

Thom’s property for complex analytic maps was proved by Hironaka in [9, Section 5 Corol-
lary 1] for all holomorphic maps into C defined on arbitrary complex analytic varieties. We
remark that the critical values of holomorphic maps are automatically isolated, while for real
analytic maps into R2 this is a hypothesis we need to impose. We refer to [18] for examples
of maps fḡ with isolated critical values, and also for examples with non-isolated critical values.
Hironaka’s theorem was an essential ingredient for Lê’s fibration theorem in [10]. The corre-
sponding statement was shown by Lê Dũng Tráng to be false in general for complex analytic
mappings into C2 (see Lê’s example, for instance in [21, p. 290]). Similarly, there are real
analytic map-germs into R2 which do not have the Thom Property. Here we prove:

Theorem 1.2. Let (X, 0) be a germ of an n-dimensional complex analytic set with an isolated
singularity and let f, g : (X, 0)→ (C, 0) be holomorphic map-germs such that fḡ has an isolated
critical value at 0 ∈ C. Then the real analytic germ fḡ has the Thom afḡ-property.

Proof. The proof is inspired by the proof of Pham’s theorem given in [8] (Theorem 1.2.1), which
concerned holomorphic germs of functions defined on complex analytic subsets of Cm.

We first prove the theorem in the case when the germ of X at 0 is smooth, i.e., X ∼= Cn.
Let U be an open neighbourhood of the origin 0 in Cn so that f, g : U → C represent the

germs f and g. We identify Cn+1 ∼= Cn × C and denote by (z1, . . . , zn+1) the coordinates in
Cn+1.

Let us denote by V the subset in Cn with equation fg = 0 and by Sing(fḡ) the critical locus
of fḡ. Since fḡ has an isolated critical value at 0, Sing(fḡ) is contained in V .

We need the following lemma:

Lemma 1.3. For each integer N ≥ 1 , let G = G(N) be the subset of U × C defined by the
equation

FN (z1, · · · zn+1 := (fḡ)(z1, . . . , zn)− zNn+1 = 0 .

Then the singular locus of G is contained in Sing(fḡ)× {0}.

Proof. This follows by a straightforward computation of the 2 × 2(n + 1) Jacobian matrix of
fḡ − zNn+1. �

Therefore, according to [24] (just as in [8, 1.2.4] for the real analytic case), there exists a
Whitney stratification σN of G such that G ∩ (Cn × {0}) = V × {0} is a union of strata and
such that G \ (V ×{0}) is the union of the strata having dimension 2n. We assume further that
0 is itself a stratum and that U is chosen small enough so that every other stratum contains 0
in its closure.

Let SN be the stratification induced by σN on V × {0}. Adapting the arguments of [8], we
will prove that for N sufficiently large, SN has the Thom condition with respect to fḡ. For
this we must show that given a sequence of points in Cn \ V which converges to a point x in a
stratum in SN , such that the corresponding sequence of spaces tangent to the fibers of fḡ has a
limit T , then T contains the tangent space at x of the corresponding stratum.

For this we will prove that whenever we have a sequence of points (xk) = (z
(k)
1 , . . . , z

(k)
n+1) in

G \ (V × {0}) such that:

(1) limk→∞ xk = x ∈ V × {0} , and

(2) if we set tk = (fḡ)(z
(k)
1 , . . . , z

(k)
n ), we have that the sequence of (2n−2)-planes Txk

(
(fḡ)−1(tk)×

{z(k)
n+1}

)
converges to a limit T ,
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then, if N is sufficiently large, the space T must contain the tangent space TxVα to the strata
Vα of SN containing x. It is clear that this will imply Theorem 1.2 since G ⊂ Cn+1 is a union
of fibers of fḡ.

We will prove this claim by contradiction. In other words, we assume that there is a sequence
(xk) as above, such that the limit T does not contain the tangent space TxVα, then we will show
that when N is large enough, we necessarily come to a contradiction.

Notice that we can assume that the sequence of 2n-planes Txk
G converges to a limit τ since

the Grassmanian of 2n-planes in the Euclidian space is a compact manifold.
For each k one has

Txk

(
(fḡ)−1(tk)× {z(k)

n+1}
)
⊂ Txk

G,

therefore T ⊂ τ and the intersection τ ∩(Cn×{0}) has real dimension at least 2n−2. Moreover,
as TxVα 6⊂ T , one gets TxVα 6= τ ∩Cn × {0}.

But, since σN satisfies Whitney’s condition (a), one has TxVα ⊂ τ . This implies that in fact
the intersection τ ∩ (Cn ×{0}) has real dimension at least 2n− 1. We will show that this is not
possible if N is sufficiently large.

According to [12], there exists an open neighbourhood of 0 in Cn and a real number θ,
0 < θ < 1, such that for each z = (z1, . . . , zn) ∈ Ω one has :

‖(gradf)(z)‖ ≥ |f(z)|θ and ‖(gradg)(z)‖ ≥ |g(z)|θ

The Jacobian matrix of the map fḡ − zNn+1 with respect to the coordinates

(z1, z̄1, z2, z̄2, · · · , zn+1, zn+1) in R2(n+1) is the 2× 2(n+ 1) matrix given in blocks by

D(fḡ)(z1, z̄1, . . . , zn+1, zn+1) =
(
M1 . . . Mi . . . Mn+1

)
,

where for each i = 1, . . . , n the block Mi is:

Mi =


∂(<(fḡ))
∂zi

∂(<(fḡ))
∂z̄i

∂(=(fḡ))
∂zi

∂(=(fḡ))
∂z̄i

 ,

and

Mn+1 = −N
2

 zN−1
n+1 zn+1

N−1

1
i z
N−1
n+1 − 1

i zn+1
N−1

 .

Then an easy computation leads to the following equation for the tangent space Txk
G at xk =

(z, zn+1) ∈ G (we omit the k in the coordinates in order to simplify the notations) :
n∑
i=1

(
∂f

∂zi
(z)ḡ(z)vi +

∂g

∂zi
(z)f̄(z)vi

)
−NzN−1

n+1 vn+1 = 0 .

We consider the 2n-vector appearing in the equation :

wk(z) =

(
∂f

∂z1
(z)ḡ(z),

∂g

∂z1
(z), . . . ,

∂f

∂zn
(z)ḡ(z),

∂g

∂zn
(z)

)
.

For simplicity we omit to write that the functions below are evaluated at (z). We have:(
‖wk‖

N |zn+1|N−1

)2

=
|ḡ|2

∑n
i=1

∣∣ ∂f
∂zi

∣∣2 + |f̄ |2
∑n
i=1

∣∣ ∂g
∂zi

∣∣2
N2|fḡ|2 N−1

N

=
|ḡ|2‖gradf‖2 + |f̄ |2‖gradg‖2

N2|fḡ|2 N−1
N

.

Thus, (
‖wk‖

N |zn+1|N−1

)2

=
(|ḡ||f̄ |θ)2 + (|f̄ ||ḡ|θ)2

N2|fḡ|2 N−1
N

≥ 2

N2
|fḡ|θ−

N−1
N .
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When N is sufficiently large, i.e., θ − N−1
N < 0, one has :

lim
k→∞

‖wk‖
N |zn+1|N−1

= +∞ .

Therefore the normalized limit of the vector (wk,−N(z
(k)
n+1)N−1) when k → ∞, is a vector

contained in Cn × {0}. Then the 2n-plane τ contains the complex line {0} × C ⊂ Cn × C.
This contradicts the fact that τ ∩ Cn × {0} has dimension at least 2n − 1. Thus, if we set

tk = (fḡ)(z
(k)
1 , . . . , z

(k)
n ), then every sequence of (2n− 2)-planes Txk

(
(fḡ)−1(tk)× {z(k)

n+1}
)

that
converges to a limit T contains the tangent space TxVα to the strata Vα of SN containing x.
This completes the proof of the theorem when X is smooth at 0.

When X ↪→ Cm has an isolated singularity at the origin, we take a Whitney stratification
of a neighbourhood U of X in Cm adapted to X and to V := (fḡ)−1(0), and such that 0 is a
stratum. We choose U small enough such that any other stratum contains 0 in its closure. Now
we consider a sequence of points (xk) in X \ V converging to a point x ∈ V and such that there
is a limit T of the corresponding sequence of spaces tangent to the fibers. If x = 0, then there
is nothing to prove since T contains the space tangent to this 0-dimensional stratum. If x 6= 0,
then we consider a coordinate chart U1 for X around x and argue exactly as in the previous
case, when X was assumed to be smooth. �

We now look at the corollaries. We know, by Bertini-Sard’s theorem in [23], that there is
ε > 0 such that all spheres in Rm centered at 0 with radius ≤ ε meet transversally each stratum
in {fḡ = 0}. Since fḡ has Thom’s afḡ-property, by Theorem 1.2, we get that given ε > 0
as above, there exists δ > 0 sufficiently small with respect to ε such that all fibers (fḡ)−1(t)
with |t| ≤ δ are transversal to the link LX . As usual, following the proof of Ehresmann’s
fibration theorem (see for instance [14, 10, 18]), this implies that one has a locally trivial fibration

N(ε, δ)
f−→ Image(fḡ) ⊂ Dδ \ {0} , where N(ε, δ) := [(fḡ)−1(Dδ \ {0})] ∩ Bε is a solid Milnor

tube for fḡ. Thus to complete the proof of Corollary 1 we must show that the image of fḡ covers
all of Dδ \ {0}. This follows from the lemma below.

Lemma 1.4. Let X, f and g be as above, so that fḡ is not constant and it has an isolated critical
value at 0 = fḡ(0). Then the germ fḡ is locally surjective at 0.

Proof. If either f or g is constant, the statement in this lemma is a well-known property of
holomorphic mappings. So we assume none of these maps is constant, neither is constant the
map fḡ. We may further assume that f, g have no common factor, for otherwise we may divide
both map-germs by that common factor and this will not change the image of the map fḡ. We
claim that since f and g are both holomorphic, we have that the map-germ

(f, g) : Cn → C×C

is locally surjective for all n ≥ 2. That is, the image of every neighbourhood of 0 ∈ Cn covers a
neighbourhood of (0, 0) ∈ C ×C. In fact, for n = 2 the map germ (f, g) is a finite morphism,
which is a finite covering map with ramification locus the discriminant curve; so it is locally
surjective. When n ≥ 3 we may consider a generic complex 2-plane P in Cn which is transversal
to the fibers of (f, g) and apply the above arguments. Hence (f, ḡ) is locally surjective, and so
is fḡ. �

There are in [6] examples of analytic map-germs (Rn, 0)
h→ (R2, 0) with an isolated critical

value at 0 which are not surjective. The image of h misses a neighbourhood of an arc converging
to 0.
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The proof of Corollary 2 is just as that of Theorem 1.3 in [18], replacing the Milnor tube
[(fḡ)−1(∂Dδ)] ∩Bε by the solid Milnor tube [(fḡ)−1(Dδ \ {0})] ∩Bε, so we leave the details to
the reader. (Compare with the first part of the proof of Theorem 1 in [5]).
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[16] A. Parusiński. Limits of tangent spaces to fibres and the wf condition. Duke Math. J., 72(1), (1993), 99–108.

DOI: 10.1215/S0012-7094-93-07205-50
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