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APPARENT CONTOURS OF STABLE MAPS INTO THE SPHERE

TAISHI FUKUDA AND TAKAHIRO YAMAMOTO

Abstract. For a stable map ϕ : M → S2 of a closed and connected surface into the sphere,
let c(ϕ) and n(ϕ) denote the numbers of cusps and nodes respectively. In this paper, for each
integer i ≥ 1, in the given homotopy class with i fold curve components, we will determine
the minimal number c + n.

1. Introduction

Let M be a closed and connected surface and N a connected surface. Let ϕ : M → N be a
C∞ map. Define the set of singular points of ϕ as

S(ϕ) = {p ∈ M | rank dϕp < 2}.

We call ϕ(S(ϕ)) the apparent contour (or contour for short) of ϕ and denote it by γ(ϕ).
A C∞ map ϕ : M → N is said to be stable if it satisfies the following two properties.

(1) The map germ at each p ∈ M is C∞ right-left equivalent to one of the map germs at
0 ∈ R

2 below;
(a, x) 7→ (a, x): p is a regular point,
(a, x) 7→ (a, x2): p is a fold point,
(a, x) 7→ (a, x3 + ax): p is a cusp point.

Hence, S(ϕ) is a finite disjoint union of circles.
(2) For each q ∈ γ(ϕ), the map germ (ϕ|S(ϕ), ϕ

−1(q) ∩ S(ϕ)) is right-left equivalent to one
of the three multi-germs as depicted in Figure 1.

According to a classical result of Whitney [8], stable maps form an open everywhere dense set in
the space of all C∞ maps M → N . Thus, for a C∞ map M → N , there is a stable map M → N
homotopic to the C∞ map.

In this paper, we consider stable maps with singular points. When ϕ is stable, S(ϕ) is called
the fold curve of ϕ, and the numbers of cusps, fold curve components and nodes on γ(ϕ) are
denoted by c(ϕ), i(ϕ) and n(ϕ) respectively.

An oriented closed surface of genus g is denoted by Σg. The 2-dimensional sphere and the
plane are denoted by S2 and R

2 respectively.
Let ϕ0 : M → S2 be a C∞ map and ϕ : M → S2 be a stable map which is homotopic to ϕ0

and whose contour consists of i components. Then, call γ(ϕ) an i-minimal contour of ϕ0 if the
number c+n for γ(ϕ) is the smallest among the contours of stable maps which are homotopic to
ϕ0 and whose contours consist of i components. A 1-minimal contour, which is called a minimal

contour in [4], of a C∞ map M → R
2 was studied by Pignoni [4]. A 1-minimal contour of a

C∞ map M → S2 was studied by Demoto [1], Kamenosono and the second author [2]. They
obtained the following result:
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Figure 1. The multi-germs of ϕ|S(ϕ)

Theorem 1.1 ([1], [2]). Let d ≥ 0 and f : Σg → S2 be a degree d stable map whose contour
consists of one component. The contour γ(f) is 1-minimal if and only if the pair (c, n) for γ(f)
is one of the items below:

(c, n) =





(2d, 0) if g = 0,

(2(d − 1), 4) or (2d + 2, 0) if g = 1 and for each d ≥ 1,

(2, 4) or (6, 0) if (d, g) = (1, 2),

(2(d − g), 2g + 2) if d ≥ g > 1,

(2, d + g + 1) if d ≤ g and g 6≡ d (mod 2), (d, g) 6= (1, 2),

(0, d + g + 2) if d ≤ g and g ≡ d (mod 2), (d, g) 6= (1, 1).

On the other hand, the second author [9] introduced and studied a (c, i, n)-minimal contour
of a C∞ map Σg → S2: The apparent contour of a stable map ϕ : M → S2 is a (c, i, n)-minimal
contour of a C∞ map ϕ0 : M → S2 if the triple (c(ϕ), i(ϕ), n(ϕ)) is the smallest with respect to
the lexicographic order among the stable maps homotopic to ϕ0. Furthermore, he introduced
some lemmas concerning apparent contours of stable maps M → S2 whose contours consist of
some components.

In this paper, we will study an i-minimal contour of a C∞ map Σg → S2 for each i ≥ 2.
Note that, for each number i ≥ 1, there is a C∞ map Σg → S2 whose contour consists of i
components.

Recall that by virtue of Hopf’s theorem (see [3] for example), two C∞ maps Σg → S2 are
homotopic if and only if their degrees coincide. Thus, the homotopy class of stable maps Σg → S2

of degree d is represented by the pair (d, g).
The main theorem of this paper is the following.

Theorem 1.2. Let f : Σg → S2 be a degree d stable map whose contour consists of i components.
Then, the contour γ(f) is i-minimal if and only if the pair (c, n) for γ(f) is one of the items
below:

g = 0:

(c, n) =





(0-i) (2(|d| − i + 1), 0) if 1 ≤ i ≤ |d| + 1,

(0-ii) (2, 0) if i ≥ |d| + 2, i ≡ d (mod 2),

(0-iii) (0, 0) if i ≥ |d| + 2, i 6≡ d (mod 2),

g = 1:

(c, n) =





(1-i) (2(|d| − i), 4) or (2(|d| − i) + 4, 0) if 1 ≤ i ≤ |d|,

(1-ii) (2, 2) if (d, i) = (0, 1),

(1-iii) (2, 0) if i ≥ |d| + 1, i 6≡ d (mod 2) except (d, i) = (0, 1),

(1-iv) (0, 0) if i ≥ |d| + 1, i ≡ d (mod 2),
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g = 2:

(c, n) =





(2-i) (2(|d| − i − 1), 6) if 1 ≤ i ≤ |d| − 1,

(2-ii) (2, 4) or (6, 0) if i = |d|,

(2-iii) (0, 4) if i = |d| + 1,

(2-iv) (2, 2) if (d, i) = (0, 2),

(2-v) (2, 0) if i ≥ |d| + 2, i ≡ d (mod 2) except (d, i) = (0, 2),

(2-vi) (0, 0) if i ≥ |d| + 2, i 6≡ d (mod 2),

g ≥ 3:

(c, n) =





(g-i) (2(|d| − g − i + 1), 2 + 2g) if 1 ≤ i ≤ |d| − g + 1,

(g-ii) (2, |d| + g − i + 2) if |d| − g + 2 ≤ i < |d| + g − 1 and d + g ≡ i (mod 2),

(g-iii) (0, |d| + g − i + 3) if |d| − g + 2 ≤ i ≤ |d| + g − 1 and d + g 6≡ i (mod 2),

(g-iv) (2, 2) if (d, i) = (0, g),

(g-v) (2, 0) if i ≥ |d| + g, i ≡ d + g (mod 2) except (d, i) = (0, g),

(g-vi) (0, 0) if i ≥ |d| + g, i 6≡ d + g (mod 2).

Theorem 1.2 yields the following corollaries.

Corollary 1.3. Let f : Σg → S2 be a degree d stable map whose contour consists of i compo-
nents. Then, the contour γ(f) is i-minimal if and only if the number c + n for γ(f) is one of the
items below:

g = 0:

c + n =





2(|d| − i + 1) if 1 ≤ i ≤ |d| + 1,

2 if i ≥ |d| + 2, i ≡ d (mod 2),

0 if i ≥ |d| + 2, i 6≡ d (mod 2).

g ≥ 1:

c + n =






2(|d| − i + 2) if 1 ≤ i ≤ |d| − g + 1,

|d| + g − i + 4 if |d| − g + 2 ≤ i < |d| + g − 1 and d + g ≡ i (mod 2),

|d| + g − i + 3 if |d| − g + 2 ≤ i ≤ |d| + g − 1 and d + g 6≡ i (mod 2),

4 if (d, i) = (0, g),

2 if i ≥ |d| + g, i ≡ d + g (mod 2) except (d, i) = (0, g),

0 if i ≥ |d| + g, i 6≡ d + g (mod 2),

Corollary 1.4. (1) For each i, any i-minimal contour of a C∞ between S2 has no node.
(2) For each i, the number of nodes on any i-minimal contour of a C∞ map Σg → S2 is an

even number.

We remark that the number of cusps on each stable map Σg → S2 is an even number, see [6]
for details.

Note that for each d and i, there is a degree d stable map Σg → S2 whose contour consists of
i components and whose contour has odd number of nodes.

This paper is organized as follows: In §2, we introduce some notions concerning the apparent
contour of a stable map between surfaces. In §3, some stable maps Σg → S2 are described. In
§4, Theorem 1.2 is proved. In §5, we consider the case of a stable map which has no cusps. In
§6, some problems are posed.
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Throughout this paper, all surfaces are connected and of class C∞, and all maps are of class
C∞. The symbols d, g ≥ 0, i ≥ 1 denote integers unless stated otherwise.

The authors would like to express their gratitude to Osamu Saeki for helpful comments and
constant encouragement. The authors also thank the referee for useful comments which improved
this paper. The second author also expresses special thanks to Akiko Neriugawa for useful advice
on English grammar and for encouraging support.

2. Preliminaries

In the following, we describe some notions concerning the apparent contour of a stable map
M → S2 of a closed surface which is not necessary orientable.

Let M be a closed surface and ϕ : M → S2 a stable map with singular points. Let S(ϕ) =
S1 ∪ · · · ∪ Sℓ be the decomposition of S(ϕ) into the connected components and set γi = ϕ(Si)
(i = 1, . . . , ℓ). Then, γ(ϕ) = γ1 ∪ · · · ∪ γℓ. Denote by n1(ϕ) the total number of self-intersection
points of γi (i = 1, . . . , ℓ) and n2(ϕ) the total of the number of points γi ∩ γj for all i and j with
i 6= j. Note that n2(ϕ) is an even number and that n(ϕ) = n1(ϕ) + n2(ϕ). Let m(ϕ) be the
smallest number of elements in the set ϕ−1(y), where y ∈ S2 runs over all regular values of ϕ.
Fix a regular value ∞ such that ϕ−1(∞) consists of m(ϕ) points. For each γi, denote by Ui the
component of S2 \ γi which contains ∞. Note that ∂Ui ⊂ γi.

Orient γi so that at each fold point image, the surface is “folded to the left”. More precisely,
for a point y ∈ γi which is not a cusp or a node of γi, choose a normal vector v of γi at y such
that ϕ−1(y′) contains more elements than ϕ−1(y), where y′ is a regular value of ϕ close to y in
the direction of v. Let τ be a tangent vector of γi at y with respect to the above orientation
of γi. Then, orient S2 by the ordered pair (τ, v). It is easy to see that this gives a well-defined
orientation of S2.

Definition 2.1. A point y ∈ ∂Ui \{cusps, nodes} is said to be positive if the normal orientation
v at y points toward Ui. Otherwise, it is said to be negative.

A component γi is said to be positive if all points of ∂Ui\{cusps, nodes} are positive; otherwise,
γi is said to be negative. The numbers of positive and negative components are denoted by i+

and i− respectively. Note that there is at least one negative component unless S(ϕ) = ∅.

Definition 2.2. A point y ∈ ∂Ui \ {cusps, nodes} is called an admissible starting point if

(1) y is a positive point of a positive component γi or
(2) y is a negative point of a negative component γi.

Note that for each i, there always exists an admissible starting point in γi.

Definition 2.3. Let y ∈ γi be an admissible starting point. Suppose that Q ∈ γi is a node,
and let α : [0, 1] → γi be a parameterization consistent with the orientation which is singular
only when the image is a cusp such that α−1(y) = {0, 1}. Then, there are two numbers t1 < t2
satisfying α(t1) = α(t2) = Q.

We say that Q is positive if the orientation of S2 at Q defined by the ordered pair (α′(t1), α
′(t2))

coincides with that of S2 at Q; negative, otherwise. See Figure 2 for details.

The numbers of positive and negative nodes on γi are denoted by N+
i and N−

i respectively.
The definition of a positive (or negative) node of γi depends on the choice of an admissible
starting point y. However, it is known that the algebraic number N+

i −N−

i does not depend on

the choice of y, see [7] for details. Thus, the algebraic number N+ − N− =
∑k

i=1(N
+
i − N−

i ) is
well defined. Note that nodes arising from γi ∩ γj (i 6= j) play no role in the computation.

Then, the following formula was obtained in [2].
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Figure 2. A positive node and a negative node.

Proposition 2.4 ([2]). For a stable map ϕ : M → S2 of a closed surface of genus g, we have

(2.1) g = ε(M)

[
(N+ − N−) +

c(ϕ)

2
+ (1 + i+ − i−) − m(ϕ)

]

where ε(M) is equal to 1 if M is orientable and 2 if M is not orientable.

The second author has obtained an extension of the formula (2.1) to a stable map M → Σh

(h ≥ 1) whose contour consists of one component that will be published in the forthcoming
paper [10].

In the following, we assume γi∩γj = ∅ for all i 6= j. Denote by U∞ ⊂ S2\γ(ϕ) the component
which contains ∞. Denote by γ1 the component of γ(ϕ) which contains ∂U∞. Note that γ1 is a
negative component of ϕ. Then, the following lemmas and corollary were obtained in [9].

Lemma 2.5. If γ1 has a node, then it has a negative node.

Lemma 2.6. If a positive component γi has a node, then it has a positive node.

Corollary 2.7. If the number of negative components of γ(ϕ) is equal to one and γ(ϕ) has a
node, then it has a negative node.

3. Stable maps Σg → S2

In this section, we introduce some stable maps Σg → S2 which we employ the following
sections. In the following, the symbol fa,b,c denote the degree a stable map of Σb into S2 having
c connected components of singular set.

For each g ≥ 0, define a degree zero stable map f0,g,g+1 : Σg → S2 by f0,g,g+1 = ι ◦ pg, where
pg : Σg → R

2 is defined by Figure 3 and ι is the inclusion ι : R
2 →֒ R

2 ∪ {∞} = S2. Then, the
triple (c, n, i) for γ(f0,g,g+1) is equal to (0, 0, g + 1).

The following lemma can be easily proven as illustrated in Figure 4.

Lemma 3.1. Let f : Σg → S2 be a degree d stable map. Then, there is a degree d sta-

ble map f̃ : Σg → S2 whose triple (c, n, i) is equal to (c(f), n(f), i(f) + 2) such that γ(f̃) =
γ(f)

∐
S1

∐
S1.
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= Σg

gpg

⊂ R
2

γ(pg)

Figure 3. The contour γ(pg)

⊂ Σg⊂ Σg

γ(f)
γ(f)

γ(f̃)

S(f̃) ⊃

f f̃

Figure 4. Proof of Lemma 3.1.

Modify slightly

Figure 5. Making a pleat

By applying Lemma 3.1 inductively to f0,g,g+1 , we obtain the degree zero stable map
f0,g,i : Σg → S2 whose triple (c, n, i) is equal to (0, 0, i) for each pair (g, i) which satisfies i ≥ g+1
and i ≡ g + 1 (mod 2).

By making a pleat to f0,g,i (see Figure 5 for details), we obtain a degree zero stable map
f0,g,i+1 : Σg → S2 whose triple (c, n, i) is equal to (2, 0, i + 1).

For each odd number g, by attaching (g − 1) handles vertically (see Figure 6 for details) to a
degree zero stable map T 2 → S2 whose contour is in Figure 7(a) with ℓ1 = 0, we obtain a degree
zero stable map f0,g,g : Σg → S2 whose contour is in Figure 7(a) with ℓ1 = (g − 1). Similarly,
for each even number g ≥ 2, by attaching (g − 2) handles vertically to a degree zero stable
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Attaching a handleAttaching a handle

vertically horizontally

Figure 6. Attaching a handle

ℓ1 ℓ2

(a) (b)

Figure 7. The contours γ(f0,g,g) (g is odd), and γ(f0,g,g−1) (g is even)

T 2 T 2#T 2 T 2#(T 2#T 2)
f0,1,1 f0,3,1

Figure 8. Attaching a pair of handles to f0,1,1

map Σ2 → S2 whose contour is in Figure 7(b) with ℓ2 = 0, we obtain a degree zero stable map
f0,g,g−1 : Σg → S2 whose contour is in Figure 7(b) with ℓ2 = (g − 2). Remark that the degree
zero stable maps f0,1,1 and f0,2,1 were obtained in [2].

For each g ≥ 1, by attaching a pair of handles, attaching a handle vertically first and attaching
a handle horizontally, see Figure 6 for details, second, see Figure 8 for example, or by attaching a
handle vertically inductively to the degree zero stable map Σg → S2 whose contour is 1-minimal,
the degree zero stable map is in Theorem 1.1, we obtain a degree zero stable map f0,g,i : Σg → S2
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S2

g

g

Σg

γ(f1,g,g+1)

Figure 9. The stable map f1,g,g+1

whose contour consists of i components and whose pair (c, n) is equal to

(c, n) =

{
(2, g − i + 2) if 1 ≤ i ≤ g and i ≡ g (mod 2),

(0, g − i + 3) if 1 ≤ i ≤ g and i 6≡ g (mod 2).

Thus, we obtain the following maps.

Proposition 3.2. For each i ≥ 1 and g ≥ 0, there is a degree zero stable map f0,g,i : Σg → S2

whose contour consists of i components and whose pair (c, n) is one of the items below:

(c, n) =






(a) (2, g − i + 2) if 1 ≤ i ≤ g and i ≡ g (mod 2),

(b) (0, g − i + 3) if 1 ≤ i ≤ g and i 6≡ g (mod 2),

(c) (2, 0) if i ≥ g + 1 and i ≡ g (mod 2),

(d) (0, 0) if i ≥ g + 1 and i 6≡ g (mod 2).

For a sufficiently large sphere whose center is the origin of R
3, make a pleat. Then, by

attaching g handles to the sphere, we obtain a Σg as in Figure 9. Then, define the map
f1,g,g+1 : Σg → S2 by π|Σg

, where π : R
3 \ {0} → S2 defined by π(x) = x/|x|. Thus, we

obtain the following Lemma.

Proposition 3.3. The map f1,g,g+1 : Σg → S2 is a degree one stable map whose triple (c, n, i)
is equal to (2, 0, g + 1).

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Note that for a C∞ map Σg → S2 of degree d, by
changing the orientation of Σg, we obtain a C∞ map Σg → S2 of degree −d. In the following,
we assume d ≥ 0.

Proof of Theorem 1.2. The contour γ(f0,g,i), the degree zero stable map f0,g,i in Proposition 3.2(d),
is trivially i-minimal.

The following lemma can be easily proven as illustrated in Figure 10 where (Σg)− denotes the
closure of the set of regular points whose neighborhoods are orientation reversed by the map.

Lemma 4.1. Let f : Σg → S2 be a degree d stable map having a singular point. Then, there
is a degree d + 1 stable map f ′ : Σg → S2 such that γ(f ′) = γ(f)

∐
S1. The triple (c, n, i) for

γ(f ′) is equal to (c(f), n(f), i(f) + 1).
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⊂ (Σg)−⊂ (Σg)−

γ(f) γ(f)

γ(f ′)

f f ′

⊂ S(f ′)

Figure 10. Proof of Lemma 4.1

Thus, the contour of the map Σg → S2 which is obtained by applying Lemma 4.1 inductively
to the degree zero stable map f0,g,i in Proposition 3.2(d) is trivially i-minimal. The cases (0-iii),
(1-iv), (2-vi) and (g-vi) of Theorem 1.2 are proved.

We introduce the following lemma.

Lemma 4.2. Let f : Σg → S2 be a degree d stable map whose contour consists of i components.
If the number d + g + i is even, then γ(f) has at least two cusps.

Proof. To prove this Lemma, apply a result of Quine [5]: for a stable map f : M → N between
oriented surfaces, we have

χ(M) − 2χ(M−) +
∑

qk:cusp

sign(qk) = (deg f)(χ(N)),

where M− denotes the closure of the set of regular points whose neighborhoods are orientation
reversed by f , and sign(qk) = ±1 the sign of a cusp qk, see [5] for definition.

Apply our situation to the Quine’s formula:

(4.1)
∑

qk:cusp

sign(qk) = 2(d + g − 1 + χ((Σg)−)).

Note that χ((Σg)−) ≡ i (mod 2). Then, it follows immediately. �

Lemma 4.2 shows that the following:

Proposition 4.3. (1) The contour of the degree zero stable map f0,g,i in Proposition 3.2(c)
is i-minimal.

(2) The contour of the degree one stable map f1,g,g+1 in Proposition 3.3, is (g + 1)-minimal
for each g ≥ 1.

Thus, the contours of the maps Σg → S2 which are obtained by applying Lemma 4.1 induc-
tively to f0,g,i in Proposition 3.2(c) and f1,g,g+1 in Proposition 3.3 are i-minimal. The cases
(0-ii), (1-iii), (2-v) and (g-v) of Theorem 1.2 are proved.

We prove the remaining cases of Theorem 1.2.
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4.1. The case of g = 0. Let us consider the case (0-i) of Theorem 1.2. For a fixed d ≥ 0 and
each i ≤ d + 1, the formula (4.1) shows that the contour of a degree d stable map between S2

whose contour consists of i components has at least 2(d − i + 1) cusps. This shows that the
contour of a degree d + 1 stable map between S2 which obtained by applying Lemma 4.1 to
a degree d stable map between S2 whose contour is 1-minimal is 2-minimal. By applying this
inductively, the case (0-i) of Theorem 1.2 is proved.

4.2. The case of g = 1. Note that the case (1-ii) is contained in Thorem 1.1. Let us consider
the case (1-i) of Theorem 1.2. The formula (2.1) for a degree d stable map Σg → S2 whose
contour consists of i components induces the following equality:

m(f) + g + 2i− = (N+ − N−) +
c

2
+ (1 + i)

Thus, by i− ≥ 1 and m(f) ≥ d, we obtain the following inequality for the stable map

(4.2) d + g + 1 ≤ (N+ − N−) +
c

2
+ i.

Note that the formula (2.1) for a degree d + 1 stable map Σg → S2 whose contour consists of
i + 1 components induces the inequality (4.2).

Let us consider the case that d = i = 1. Then, the formula (4.2) shows

(4.3) 2 ≤ (N+ − N−) +
c

2
.

If the contour has a node, by Lemma 2.5, then c + n ≥ 4. Otherwise, then c ≥ 4. On the other
hand, in the case that d = i = 2, the formula (4.2) also induces inequality (4.3). Then, by the
similarly argument as the above, the number c + n of the contour of a degree two stable map
T 2 → S2 whose contour consists of two components is greater than or equal to four. Thus, the
contour of the degree two stable map T 2 → S2 which is obtained by applying Lemma 4.1 to by
the degree one stable map T 2 → S2 whose contour is 1-minimal is 2-minimal.

In general, we obtain the following proposition.

Proposition 4.4. Let f be a degree d stable map Σg → S2 whose contour consists of i compo-
nents and f ′ be a degree d + 1 stable map obtained by applying Lemma 4.1 to f . If the contour
γ(f) is i-minimal and the number c + n for γ(f) is the smallest with respect to the inequality
induced by (4.2), then γ(f ′) is (i + 1)-minimal.

Remark 4.5. The degree one stable map f ′ : T 2 → S2 obtained by applying Lemma 4.1 to a
degree zero f : T 2 → S2 whose contour is 1-minimal is not 2-minimal. The number c+n of γ(f)
is equal to four. The number c + n of a 2-minimal contour of a degree one C∞ map Σg → S2 is
two, see Proposition 4.3(2).

Note that for each d ≥ 1, the number c + n of a degree d stable map T 2 → S2 whose
contour is 1-minimal is the minimal with respect to the inequality induced by (4.2), see [2] for
details. Hence, the case (1-i) of Theorem 1.2 can be proven inductively by using Theorem 1.1
and Proposition 4.4.

4.3. The case of g ≥ 2. Let us consider the cases (2-iv) and (g-iv). Let f : Σg → S2 be a
degree zero stable map whose contour consists of g components. Note that Lemma 4.2 shows
the contour γ(f) has at least two cusps. We divide this case into the following cases (i) and (ii).

(i) n2(f) = 0: Assume (i+, i−) for γ(f) is equal to (g − 1, 1). Then, by the formula (2.1), we
have 1 + m(f) − c/2 = (N+ − N−). Thus, we have

(4.4) n1(f) = 1 + m(f) + 2N− −
c

2
.
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If γ(f) has a node, then by the inequality (4.4) and Corollary 2.7,

(4.5) c + n = c + n1(f) ≥ c +
(
1 + m(f) + 2N− −

c

2

)
≥ 1 + 2 + 1 = 4.

Note that there is no degree zero stable map f : Σg → S2 with m(f) = 0 whose pair (c, n) is
equal to (2, 0) by the geometrical meaning of cusps. Thus, if γ(f) has no node, then m(f) ≥ 2.
Then, by (4.4), we have

(4.6) c + n ≥ 2(1 + m(f)) ≥ 6.

Assume (i+, i−) for γ(f) is equal to (g − λ, λ), where λ = 2, . . . , g + d. Then, by the for-
mula (2.1), we have 3 − c/2 ≤ (N+ − N−). Thus, we have

n1(f) ≥ 3 + 2N− −
c

2
≥ 3 −

c

2
.

Therefore, we have

(4.7) c + n = c + n1(f) ≥ c +
(
3 −

c

2

)
≥ 3 + 1 = 4.

(ii) n2(f) 6= 0: Put (i+, i−) for γ(f) is equal to (g − λ, λ), where λ = 1, . . . , g. Then, by the
formula (2.1), we have 1 − c/2 ≤ (N+ − N−). Thus,

n1(f) ≥ 1 −
c

2
.

Therefore, we have

(4.8) c + n = c + n1(f) + n2(f) ≥ c +
(
1 −

c

2

)
+ 2 ≥ 1 + 1 + 2 = 4.

The inequalities (4.5), (4.6), (4.7) and (4.8) shows that the pair (c, n) of a g-minimal contour
of a degree zero stable map Σg → S2 is equal to (2, 2).

Thus, the contour γ(f0,g,g), f0,g,g is in Proposition 3.2(a) with i = g, is g-minimal for each
number g ≥ 2.

By the similar argument as the cases (2-iv) and (g-iv), we can prove the contour γ(f0,g,i),
f0,g,i is in Proposition 3.2(a) and (b), is i-minimal. The contours of the stable maps Σg → S2

which are obtained by applying Lemma 4.1 inductively to the stable maps in Proposition 3.2(a),
(b) and Theorem 1.1 with (d, g) = (1, 2) are also i-minimal. We omit the proof here. The cases
(2-ii), (2-iii), (g-ii) and (g-iii) are proved.

Note that for each d ≥ 0, the number c + n of a degree d stable map Σg → S2 whose contour
is 1-minimal is the minimal with respect to the inequality induced by (4.2), see [2] for details.
Hence, the cases (2-i) and (g-i) of Theorem 1.2 can be proven inductively by using Theorem 1.1
and Proposition 4.4.

This completes the proof of Theorem 1.2. �

5. fold map case

Let M be a connected and closed surface, and N be a connected surface. A stable map
f : M → N which has no cusp is called a fold map.

Let ϕ0 : M → S2 be a C∞ map and ϕ : M → S2 be a fold map which is homotopic to ϕ0

and whose contour consists of i components. Then, call the contour γ(ϕ) a regular i-minimal

contour of ϕ0 if the number c+n for γ(ϕ) is the smallest among the contours of fold maps which
are homotopic to ϕ0 and whose contours consist of i components.

Note that by Lemma 4.2 if d + g + i is even, then there is no degree d fold map Σg → S2

whose contour consists of i components.
Then, as a corollary of Theorem 1.2, we obtain the following.
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Theorem 5.1. Assume d + g + i be an odd number. Let f : Σg → S2 be a degree d fold map
whose contour consists of i components. Then, γ(f) is a regular i-minimal contour if and only
if the number of nodes n for γ(f) is one of the items below:

g = 0:

n = 0 if i ≥ |d| + 1 and i 6≡ d (mod 2)

g ≥ 1:

n =





2 + 2g if i = |d| − g + 1,

|d| + g − i + 3 if |d| − g + 2 ≤ i ≤ |d| + g − 1 and i 6≡ d + g (mod 2),

0 if i ≥ |d| + g, i 6≡ |d| + g (mod 2).

6. Problems

In this section, we pose some problems with respect to the apparent contour of a stable map
M → N between surfaces.

Kamenosono and the second author studied a 1-minimal contour of a C∞ map F → S2 of a
non-orientable surface. Then, there are the following problems.

Problem 6.1. Study an i-minimal contour and a regular i-minimal contour of a C∞ map
F → S2 of a non-orientable closed surface into the sphere for each i ≥ 2.

Let ϕ0 : M → N be a C∞ map between surfaces and ϕ : M → N a stable map which is
homotopic to ϕ0 and whose contour consists of i components. Then, the contour γ(f) is an i-
essential contour if the pair (c, n) is the smallest with respect to the lexicographic order, among
the stable maps M → N which are homotopic to ϕ0 and whose contour consists of i components.
Then, Theorem 1.2 yields the following Theorem.

Theorem 6.2. Let f : Σg → S2 be a degree d stable map whose contour consists of i components.
Then, γ(f) is i-essential if and only if the pair (c, n) for γ(f) is one of the items below:

(c, n) =

{
(2|d| − i, 4) if g = 1 and 1 ≤ i ≤ |d|,

(2, 4) if g = 2 and i = |d|.

In the other case, the pair (c, n) is of an i-minimal contour.

Corollary 6.3. Let f0 : Σg → S2 be a C∞ map whose contour consists of i components. An
i-essential contour of f0 is an i-minimal contour of f0.

Note that for a C∞ map h0 : RP 2 → S2 of modulo two degree one, a 1-minimal (or 1-essential)
contour of h0 is not 1-essential (resp. 1-minimal), see [2] for details. Thus, we pose the following
problem.

Problem 6.4. Study the i-essential contours of C∞ maps from non-orientable surfaces into S2.
Then, compare an i-minimal contour of h0 and an i-essential contour of h0.
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