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FOLIATIONS ON P2 ADMITTING A PRIMITIVE MODEL

GILBERTO D. CUZZUOL & ROGÉRIO S. MOL

Abstract. Given a foliation F on P2
C, by fixing a line L ⊂ P2

C, the polar pencil of F with
axis L is the set of all polar curves of F with respect to points l ∈ L. In this work we study

foliations F which admit a polar pencil whose generic element is reducible. To such an F
is associated a primitive model, which is a foliation F̃ whose polar pencil, besides having

irreducible generic element, is such that its fibers are contained in those of the polar pencil
of F . This work focuses on relating geometric properties of a foliation F with those of its

primitive model F̃ .

1. Introduction

This work deals with reducibility properties of the pencil of algebraic curves

P : {αP (x, y) + βQ(x, y) = 0; (α : β) ∈ P1},

where (x, y) ∈ C2 and P (x, y) and Q(x, y) are polynomials in C[x, y]. More specifically, we
want to give conditions that identify when the generic element of this pencil is reducible. One
situation is obvious: if the generators P and Q have a common irreducible factor, then this will
be a factor for all elements in this pencil. Thus we can suppose P and Q relatively prime. In this
case, Stein’s factorization Theorem (see [3]) asserts that the generic element of P is reducible

if and only if there are polynomials P̃ (x, y) and Q̃(x, y) and a rational function r : P1 → P1 of
degree greater than one such that

P (x, y)

Q(x, y)
= r

(
P̃ (x, y)

Q̃(x, y)

)
.

To this situation we associate two foliations on the projective plane P2: a foliation F induced in
affine coordinates (x, y) ∈ C2 by the polynomial vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

and a second foliation F̃ induced in the same affine coordinates by the vector field

ṽ = P̃ (x, y)
∂

∂x
+ Q̃(x, y)

∂

∂y
.

We call F a non-primitive foliation and, if the generic element of the pencil

P̃ : {αP̃ (x, y) + βQ̃(x, y) = 0; (α : β) ∈ P1}

is irreducible, we say that F̃ is a primitive foliation, which is a primitive model for F . Our idea

is to study this configuration by relating geometric properties of F and F̃ . As a byproduct, we
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will obtain information about problem of the reducibility of the generic element of the pencil P
itself.

After presenting basic facts about foliations on P2 in section 2, we develop in section 3 the
concept of primitive and non-primitive foliations. We prove that a non-primitive foliation and
its primitive model have the same singularities in the affine plane C2 and, in Proposition 2, we
establish a relation between their Milnor numbers. A consequence of this fact is that a foliation
having only non-degenerate singularities is primitive. This, in its turn, implies that the generic
foliation in the space of foliations of degree d on P2 is non-primitive.

We finally dedicate section 4 to the study of the singularities of F and F̃ that lie over the line
at infinity L∞. Proposition 3 asserts that a non-primitive foliation always has singularities in
L∞. We also consider the case where L∞ is invariant by F and the sum of its Milnor numbers
over L∞ is minimal, equal to the degree of the foliation plus one. By Proposition 5, this occurs
if and only if all singularities of F in L∞ are either non-degenerate or saddle nodes having L∞
as a weak separatrix. Proposition 7 says that, when both a non-primitive foliation F and its

primitive model F̃ leave L∞ invariant, then the sum of the Milnor numbers at L∞ is minimal

for F if and only if it is minimal for F̃ . This apparently contrasts to what happens to Milnor

numbers of singularities on the affine plane C2: the passage from the primitive model F̃ to
the non-primitive F “degenerates” these singularities, in the sense that their Milnor numbers
increase, as shown in Proposition 2.

2. Preliminaries

A foliation F of degree d ≥ 0 in P2 = P2
C is induced in homogeneous coordinates (X : Y :

Z) ∈ P2 by a 1-form

ω = A(X,Y, Z)dX +B(X,Y, Z)dY + C(X,Y, Z)dZ, (1)

where A,B and C are homogeneous polynomials of degree d+ 1 satisfying the Euler condition

XA(X,Y, Z) + Y B(X,Y, Z) + ZC(X,Y, Z) = 0. (2)

This means that we have a foliation of dimension two on C3 which contains in its leaves the lines
through the origin, so that the foliation goes down to a foliation of dimension one on P2. The
singular set of F , denoted by Sing(F), is the set of common zeroes of A,B and C. We suppose,
throughout this text, that Sing(F) has codimension two, which amounts to requiring that A,B
and C have no common factor. In the affine plane Z = 1 with affine coordinates x = X/Z and
y = Y/Z the foliation F is induced by the 1-form

ω = A(x, y, 1)dx+B(x, y, 1)dy.

The foliation F is also given by the integral curves of the dual vector field of ω:

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

Here P (x, y) = −B(x, y, 1) and Q(x, y) = A(x, y, 1). We have two situations: if the line at
infinity L∞ : {Z = 0} is invariant by F then Z divides A and B. Furthermore, for k > 1, Zk is
not a common factor for A and B, since otherwise Z would be a common factor of A,B and C by
the Euler condition. This implies that max{degP,degQ} = d. On the other hand, if the line at
infinity is not invariant by F , then Z is not a factor of both A and B, thus P (x, y) = −B(x, y, 1)
as well as Q(x, y) = A(x, y, 1) have degree d+1. The Euler condition written in affine coordinates
reads

xA(x, y, 1) + yB(x, y, 1) + C(x, y, 1) = xQ(x, y)− yP (x, y) + C(x, y, 1) = 0.
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The terms of degree d+ 2 in the above relation give the equation

xQd+1(x, y)− yPd+1(x, y) = 0,

where Pd+1 and Qd+1 stand for the homogeneous part of degree d+ 1 of P and Q, respectively.
Thus, there is a homogenous polynomial G(x, y) of degree d such that Pd+1(x, y) = xG(x, y) and
Qd+1(x, y) = yG(x, y). We conclude that, when L∞ is not invariant, F is induced by a vector
field of the type

v = (xG(x, y) + P̂ (x, y))
∂

∂x
+ (yG(x, y) + Q̂(x, y))

∂

∂y
, (3)

where P̂ and Q̂ comprise the terms of degree d and lower of P and Q.
Reciprocally, let F be a foliation induced in affine coordinates (x, y) by a polynomial vector

field of the form

v = (xG(x, y) + P̂ (x, y))
∂

∂x
+ (yG(x, y) + Q̂(x, y))

∂

∂y
,

where G, when non-zero, is a homogeneous polynomial of degree d, while P̂ and Q̂ are either
polynomials of degree d, when G = 0, or of degree d or lower, when G 6= 0. Then F is a foliation
of degree d and L∞ is F-invariant if and only if G = 0.

Let now F be a germ of foliation at p = (0, 0) ∈ C2, which is induced in local coordinates
(x, y) by a vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

where P,Q ∈ Op are relatively prime germs of analytic functions. The Milnor number of F at p
is defined as

µp(F) = dimC
Op

(P,Q)
,

where (P,Q) ⊂ Op refers to the ideal generated by P and Q. Evidently, µp(F) is a non-negative
integer, which is non-zero if and only p is a singularity for F (see [1] for more details).

Suppose now that the germ of foliation F has a smooth separatrix S, that is, a germ of
holomorphic invariant curve passing through p = (0, 0). If we take local coordinates such that
S = {y = 0} then F will be induced by a vector field of the form

v = P (x, y)
∂

∂x
+ yQ(x, y)

∂

∂y
,

which, restricted to S, is the vector field v|S = P (x, 0)∂/∂x. We define the relative Milnor
number of F with respect to S as the order of v|S at x = 0, that is

µp(F , S) = dimC
Op

(P, y)
= orderx=0v|S = orderx=0P (x, 0).

It comes straight from the definition that µp(F , S) ≤ µp(F). We also remark that, when p is a
regular point for F , both numbers are zero.

Now, if S is a germ of a smooth analytic curve at p, non-invariant by F , we take local
coordinates (x, y) such that p = (0, 0) and S : {y = 0}, so that Q(x, 0) 6= 0. The order of
tangency between F and S at p is the following number:

τp(F , S) = orderx=0Q(x, 0).

The invariants µp(F), µp(F , S) and τp(F , S) are independent of the local coordinates and of
the local expression of a vector field representing F .
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Next we state some global results about these invariants which will be used in the sequel. Let
F be a foliation of degree d on P2. First of all, given a line L ⊂ P2 non-invariant by F , then∑

p∈P2

τp(F , L) = d.

In fact, we can take a system of affine coordinates (x, y) ∈ C2 for which that L has equation
y = 0 and such that F and L are not tangent at q = L ∩ L∞, that is τq(F , L) = 0. Here L∞
denotes the line at infinity. We can also suppose that L∞ is not F-invariant, so that F is induced
by a polynomial vector field as in (3). Simple calculations show that the fact that τq(F , L) = 0

is equivalent to the degree of Q̂ in (3) being d. Furthermore, since L is not invariant by F ,

the variable y does not divide Q̂, so that Q̂(x, 0) actually has degree d. The result follows by
noticing that at each point p = (x0, 0) ∈ L, the order of tangency τp(F , L) is the multiplicity of

x0 as a root of Q̂(x, 0).
Now, if L ⊂ P2 is an F-invariant line it holds∑

p∈L
µp(F , L) = d+ 1. (4)

To see this, it suffices to take an affine coordinate system (x, y) ∈ C2 such that L∞ is not invariant
by F , L has equation y = 0 and q = L∩L∞ is a regular point for F , so that µq(F , L) = 0. Thus,
supposing that F is induced by a vector field as in (3), for a point p = (x0, 0) ∈ L, we have that

µp(F , L) is the order of x0 as a root of P (x, 0) = xG(x, 0) + P̂ (x, 0). The result follows from the
fact that, since q 6∈ Sing(F), this polynomial has degree d+ 1.

Finally, the sum of Milnor numbers of F on P2 gives a Bézout type theorem for F , which
reads ∑

p∈P2

µp(F) = d2 + d+ 1, (5)

where d is the degree of F . To see this we suppose that F is induced in affine coordinates
(x, y) ∈ C2 by the polynomial vector field v = P (x, y)∂/∂x+Q(x, y)∂/∂y. By an appropriate
choice of the line at infinity L∞ we may suppose that it does not contain any of the singularities of
F . This also implies that L∞ is not invariant by F , so that P and Q have degree d+1. Bézout’s
Theorem for the projective curves defined by P and Q give that the sum of their intersection
numbers is (d + 1)2 = d2 + 2d + 1. The sum corresponding to points contained in the affine
plane C2 equals the sum of the Milnor numbers of singularities of F . The result is achieved by
noticing that the two curves have d points of intersection over L∞, with multiplicities counted.

3. Primitive models of foliations

Let F be a foliation on P2. Given a point l ∈ P2, the polar curve of F with center at l ∈ P2

is the closure of the set of points p ∈ P2 \ Sing(F) such that T P
pF passes through l:

PFl = {p ∈ P2 \ Sing(F); l ∈ T P
pF}.

Here T P
pF is the line through p with direction TpF . When F is induced in affine coordinates

(X : Y : Z) ∈ P2 by a polynomial 1-form

ω = A(X,Y, Z)dX +B(X,Y, Z)dY + C(X,Y, Z)dZ

as in (1), the polar curve with center l = (α : β : γ) has equation

αA(X,Y, Z) + βB(X,Y, Z) + γC(X,Y, Z) = 0.

It follows that if F has degree d ≥ 1 then PFl is a curve of degree d + 1. Furthermore PFl
contains all singularities of F as well as the point l. This object was studied in [2] and [4].
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As the point l ∈ P2 moves, the curves PFl form a linear system of dimension two, the polar
net of F . If we fix a line L ⊂ P2 and take all polar curves of F whose centers lie in L we have
the polar pencil of F with axis L. It is the set of curves

αA(X,Y, Z) + βB(X,Y, Z) + γC(X,Y, Z) = 0 , (α : β : γ) ∈ L ,

and will be denoted by P(F , L).

Proposition 1. Let L ⊂ P2 be an F-invariant line. Then L is a fixed component of P(F , L)
with multiplicity one. Reciprocally, the only fixed component admitted in P(F , L) is the line L,
in which case it is F-invariant and of multiplicity one. In particular, if L is not invariant by F
then P(F , L) has no fixed components.

Proof. Suppose first that L is F-invariant and fix l ∈ L. Then, the F-invariance of L gives
that l ∈ T P

pF for every p ∈ L \ Sing(F). Thus, L ⊂ PFl . Since l ∈ L is arbitrary, we have
L ⊂ P(F , L). In what concerns its multiplicity, putting L : {Z = 0} in the above system of
homogeneous coordinates, we have

P(F , L) = {αA(X,Y, Z) + βB(X,Y, Z) = 0; (α : β) ∈ P1}.

Thus, if L were a fixed element of the pencil with multiplicity k > 1, then Zk would be a divisor
of both A and B, and the Euler condition (2) would imply that Zk−1 would be a divisor of
C and we would find a component of codimension one in Sing(F), which is not allowed. For
the converse, we first remark that if P(F , L) has a line L′ in its base, then L′ = L. Actually,
if p ∈ L′ \ Sing(F) then l ∈ T P

pF for every l ∈ L. But, if L′ 6= L and if p 6∈ L, then T P
pF

intersects L in only one point. Thus, the only possibility left is that L′ = L. Then for a fixed
l ∈ L and for every p ∈ L \ Sing(F) we have l ∈ T P

pF . This means that T P
pF = L for every

p ∈ L \ Sing(F), which gives the F-invariance of L. By the first part of the proof, L has
multiplicity one. Finally, an irreducible fixed component of P(F , L) of degree greater than one
with equation F (X,Y, Z) = 0 would mean that F is a factor of both A and B and thus, by
the Euler condition, it would be a factor of C, giving rise to a codimension one component in
Sing(F), which is impossible. �

Let F be a foliation in P2 as before. Its modified polar pencil with axis at the line L ⊂ P2,
denoted by P∗(F , L), is the pencil obtained from P(F , L) in the following way:

P∗(F , L) =

{
P(F , L)− L if L is F-invariant

P(F , L) if L is not F-invariant

Evidently P∗(F , L) is free of fixed components.
We now choose an affine system of coordinates (x, y) ∈ C2 such that L is the line at infinity

by making L : {Z = 0}, x = X/Z and y = Y/Z, where F is induced by the vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

In the coordinates (x, y), both P(F , L) and P∗(F , L) are given by

{αP (x, y) + βQ(x, y) = 0; (α : β) ∈ P1}.

By means of Bertini’s Theorem concerning linear systems whose generic element is reducible,
it is proved in [4] that the generic element of the polar net of a foliation on P2 is irreducible.
However, it comes out that the polar net of a foliation might contain a pencil whose generic
element is reducible. Evidently, if L is a line invariant by F , then L belongs to all elements of
the polar pencil having L as an axis, that is L is a fixed element of the polar pencil. By removing
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L from the pencil, we can again ask if its generic element is reducible. Taking affine coordinates
(x, y) ∈ C2 such that L = L∞ is the line at infinity then the polar pencil becomes

{αP (x, y) + βQ(x, y) = 0; (α : β) ∈ P1}.

We remark that now there are no elements of codimension one in the pencil, since the fact that
Sing(F) has codimension 2 implies that P and Q have no common factor. We can then apply
Stein’s factorization Theorem (see [3]): the generic element of the pencil {αP (x, y) +βQ(x, y) =

0 , (α : β) ∈ P1} is reducible if and only if there are polynomials P̃ (x, y) and Q̃(x, y) and a
rational function r : P1 → P1 of degree greater than one such that

P (x, y)

Q(x, y)
= r

(
P̃ (x, y)

Q̃(x, y)

)
.

This means that the pencil induced by P and Q “factors” through the one induced by P̃ and Q̃.

We can ask once again if the generic element of the pencil {αP̃ (x, y) + βQ̃(x, y) = 0; (α : β) ∈ P1}
is reducible. If true, we can repeat the process above, until we reach a situation where d̃ is min-

imal and the generic element of {αP̃ (x, y) + βQ̃(x, y) = 0; (α : β) ∈ P1} is irreducible.
We say that a foliation F on P2 is primitive if for every line L ⊂ P2 the modified polar pencil

of F with axis L has irreducible generic element. If for some line L ⊂ P2 the modified polar
pencil of F with respect to L has reducible generic element, we say that F is non-primitive (with
respect to L). In this case, taking affine coordinates (x, y) ∈ C2 with respect to which L is the
line at infinity, and a polynomial vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
(6)

that induces F , we find polynomials P̃ (x, y) and Q̃(x, y) and a rational function r : P1 → P1 of

degree m = deg(r) ≥ 2 such that P/Q = r(P̃ /Q̃) and so that the pencil P(P̃ , Q̃) has irreducible
generic element. Notice that, putting t = z/w, we write r(t) = r(z/w) = S(z, w)/T (z, w), where
S and T are homogeneous polynomials of degree m, so that{

P (x, y) = S(P̃ (x, y), Q̃(x, y))

Q(x, y) = T (P̃ (x, y), Q̃(x, y)).
(7)

We now define a foliation F̃ on P2 induced, in the same system of affine coordinates (x, y), by
the vector field

ṽ = P̃ (x, y)
∂

∂x
+ Q̃(x, y)

∂

∂y
.

Since P(P̃ , Q̃) has irreducible generic element, P̃ and Q̃ are relatively prime, so Sing(F̃) has

codimension two. F̃ is said to be a primitive model for F . The number m = deg(r) will
be called degree of ramification of F . We remark that the property of being a non-primitive
foliation and that of being the primitive model of a foliation involves fixing an affine plane with
coordinates (x, y) ∈ C2 and a line at infinity L∞ ⊂ P2. The degree of the vector field (6) inducing
F is called the affine degree of F , and is denoted by dega(F). If F is a non-primitive foliation

admitting a primitive model F̃ , we evidently have

dega(F) = m dega(F̃),

where m is the degree of ramification.
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Fix an affine plane in P2 with coordinates (x, y) ∈ C2. Let F1 and F2 be foliations on P2

induced, respectively, by polynomial vector fields

v1 = P1(x, y)
∂

∂x
+Q1(x, y)

∂

∂y
and v2 = P2(x, y)

∂

∂x
+Q2(x, y)

∂

∂y
.

Definition 1. The foliations F1 and F2 are said to be linearly equivalent if there exist a, b, c, d ∈
C such that ad− bc 6= 0 and{

P1(x, y) = aP2(x, y) + bQ2(x, y)

Q1(x, y) = cP2(x, y) + dQ2(x, y).

The notion of linear equivalence defines equivalence classes in the space of foliations on P2.
From the expression (3) it is easy to see that, in such an equivalence class, all foliations have the
same degree d and leave L∞ invariant, with the possible exception of one, which has degree d−1
and for which L∞ is not invariant. Nevertheless, the affine degree is the same for all foliation
in a class of linear equivalence. Therefore, a foliation of degree d for which L∞ is not invariant
is always linear equivalent to a foliation of degree d + 1 which leaves L∞ invariant. Evidently,
two primitive models for the same foliation are linearly equivalent. On the other hand, two
non-primitive foliations which are linearly equivalent have the same class of primitive models.

In the next two examples we introduce two classes of foliation which will appear in Theorem
1 below.

Example 1. We say that a foliation F on P2 is homogeneous with center at l ∈ P2 if F is
induced in affine coordinates (x, y) ∈ C2 for which l = (0, 0) by a polynomial vector field

v = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

such that P (x, y) and Q(x, y) are homogeneous polynomials of the same degree. One outstanding
property of a foliation F which is homogeneous with center at l ∈ P2 is that its polar curve with
center at l is F-invariant and consists of d+1 lines passing through l, with multiplicities counted.
If F is a homogeneous foliation centered at l = (0, 0) as above, then the line at infinity is invariant
by F and d = deg(F) = dega(F). The only singularity in C2 is l = (0, 0), which has Milnor
number µl(F) = d2. Observe that this, along with expression (5), implies that∑

p∈L∞

µp(F) = d+ 1.

All the singularities of F on the line at infinity L∞ are at the intersection of L∞ and one of
the invariant lines L which form the polar curve with center l. If L has multiplicity one as a
component of PFl , then p = L∩L∞ is a non-degenerate singularity, meaning that the linear part
of any vector field which induces F near p has two non-zero eigenvalues. On the other hand, if
this multiplicity is k > 1, then p = L ∩ L∞ is a saddle-node whose weak separatrix is contained
in L∞. We finally observe that any curve in the polar pencil of F with axis at L∞ consists of
d+ 1 lines passing through (0, 0) ∈ C2.

Example 2. Let F be a foliation on P2. We say that F is a foliation in one variable if in some
affine coordinate system (x, y) ∈ C2 it is induced by a polynomial vector field of the kind

P (x)
∂

∂x
+Q(x)

∂

∂y
,

where P and Q are polynomials depending only on the variable x. Since Sing(F) has codimension
two, P and Q are without common factors, which results that F has no singularities in the affine
plane C2. It is easy to see that the line at infinity is F-invariant, for its non-invariance would
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imply, from expression (3), that the higher order terms of P and Q would depend on both x
and y. Thus, d = deg(F) = dega(F). We also remark that, if x0 is a root of Q(x), then the line
x = x0 is F-invariant. These invariant lines all meet L∞ at a singularity p. If deg(P ) < deg(Q),
then this is the only singularity of F . If deg(P ) ≥ deg(Q) there is still another singularity on
L∞. For a foliation in one variable as above, any element of the polar pencil with axis at L∞
consists of d+ 1 vertical lines, with multiplicities counted.

Theorem 1. Let F be a non-primitive foliation on P2 which admits a primitive model of affine
degree one. Then either F is a homogeneous foliation or it is a foliation in one variable.

Proof. Let F̃ be a primitive model for F , induced in affine coordinates (x, y) ∈ C2 by the

polynomial vector field P̃ (x, y)∂/∂x+ Q̃(x, y)∂/∂y.

1st case: Either P̃ or Q̃ is a constant. Then, by means of a linear equivalence, we may

suppose that F̃ is induced by a vector field of the form (ax + by)∂/∂x + ∂/∂y, where a 6= 0 or

b 6= 0. If a = 0, evidently F̃ is a foliation in one variable. If a 6= 0, by applying the affine change
of coordinates (u, v) = (ax+ by, y), we arrive to the same conclusion.

2nd case: Both P̃ and Q̃ have degree one. Let us put P̃ = ax+ by + e and Q̃ = cx+ dy + f .

We first consider the situation where P̃ and Q̃ have no common root in the affine plane C2. This
means that ax+ by is a multiple of cx+ dy by a non-zero constant. Thus, by linear equivalence,

we can suppose that P̃ = ax + by and Q̃ = 1 and we come to the first case, where F is a

foliation in one variable. We then suppose that P̃ and Q̃ have a common root in C2. By an

affine change of coordinates, we can suppose that this root is (0, 0), which makes P̃ = ax + by

and Q̃ = cx+dy. If r(t) is the rational map such that P/Q = r(P̃ /Q̃), writing t = z/w, we have
r(z/w) = F (z, w)/G(z, w), where F and G are homogeneous polynomials of degree equal to the
degree of r. We finally conclude that

P (x, y) = F (ax+ by, cx+ dy) and Q(x, y) = G(ax+ by, cx+ dy)

which says that F is a homogeneous foliation. �

If F is a non-primitive foliation with primitive model F̃ then, in the affine plane C2, the

singular points for F and for F̃ are the same. In fact, with the notation of (7), we know that

P (x, y) = S(P̃ (x, y), Q̃(x, y)) and Q(x, y) = T (P̃ (x, y), Q̃(x, y)). Evidently, the common zeroes

of P̃ and Q̃ are zeroes of both P and Q, which gives Sing(F̃)|C2 ⊂ Sing(F)|C2 . Reciprocally, the

existence of a point (x0, y0) in C2 which is singular for F but not for F̃ would imply the existence

of a common factor for S(z, w) and T (z, w). Thus we actually have Sing(F̃)|C2 = Sing(F)|C2 .

Proposition 2. Let F be a non-primitive foliation having F̃ as primitive model and m as the
degree of ramification. If p ∈ C2 then

µp(F) = m2µp(F̃).

Proof. We keep the notation of (7). We consider the following maps from C2 to C2:
Φ(x, y) = (P (x, y), Q(x, y)),

Φ̃(x, y) = (P̃ (x, y), Q̃(x, y)),

H(z, w) = (S(u, v), T (u, v)).

We have Φ = H ◦ Φ̃. We first remark that the Milnor number of the vector field P∂/∂x+Q∂/∂y
at a singularity p is the number of pre-images of Φ = (P,Q) lying near p of any point q sufficiently
near (0, 0) ∈ C2. The result follows by noticing that, since S and T are homogeneous of degree
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m and without common factors, the Milnor number of S∂/∂u + T∂/∂v at (0, 0) is m2 (see [1],
section 2). �

Corollary 1. If F is a foliation having three non-aligned singularities each of them having the
property that its Milnor number is not divisible by some m2, where m ∈ Z and m ≥ 2. Then F
is a primitive foliation. In particular, if F has three non-aligned non-degenerate singularities,
then F is primitive.

Corollary 2. Let F be a foliation having only non-degenerate singularities. Then F is primitive.

Proof. Since all singularities of F have Milnor number 1, the above corollary implies that all
singularities of F would lie in L∞ if F were non-primitive. Summing up their Milnor numbers we
have

∑
p∈L∞

µp(F) = d2 + d+ 1, where d is the degree of F . If L∞ were F-invariant, we would

have
∑

p∈L∞
µp(F , L∞) = d+1, which leads to a contradiction since µp(F) = µp(F , L∞) = 1 for

a non-degenerate singularity. If L∞ were non-invariant, then
∑

p∈L∞
τp(F , L∞) = d, which is a

contradiction since, when p ∈ Sing(F) is non-degenerate, it holds τp(F , L∞) = µp(F) = 1. �

Corollary 3. Let Fol(d) be the space of foliations of degree d in P2. Then the set of primitive
foliations contain a non-empty Zariski open set.

4. The study of the singularities on L∞

We have seen in the previous section that a non-primitive foliation F and its primitive model

F̃ have the same singularities in the affine plane C2, and its Milnor numbers are related by
Proposition 2. The objective of this section is to explore the consequences of this fact to the

singularities of F and F̃ that lie over L∞.

Let us consider a non-primitive foliation F of degree d0 having a primitive model F̃ of degree

d̃0. We denote the affine degrees of F and F̃ respectively by d and d̃. By summing up Milnor
numbers we get ∑

P2

µp(F) =
∑
C2

µp(F) +
∑
L∞

µp(F)

= m2
∑
C2

µp(F̃) +
∑
L∞

µp(F)

= m2

(∑
P2

µp(F̃)−
∑
L∞

µp(F̃)

)
+
∑
L∞

µp(F)

thus, using (5), we obtain∑
L∞

µp(F)−m2
∑
L∞

µp(F̃) =
∑
P2

µp(F)−m2
∑
P2

µp(F̃)

= (d2
0 + d0 + 1)−m2(d̃0

2
+ d̃0 + 1). (8)

The values of d0 and d̃0 in terms of the affine degrees d and d̃ depend only on the fact of L∞
being F-invariant or not. We consider three cases:

1st case: L∞ is F̃-invariant but not F-invariant.
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We have d0 = d− 1 and d̃0 = d̃ and, putting this in equation (8),∑
L∞

µp(F)−m2
∑
L∞

µp(F̃) = (d2 − d+ 1)−m2(d̃2 + d̃+ 1)

= ((md̃)2 −md̃+ 1)−m2(d̃2 + d̃+ 1)

= −m2d̃−md̃−m2 + 1. (9)

This allows us to conclude the following:

Proposition 3. Let F be a non-primitive foliation. Then F has some singularity in L∞.

Proof. If L∞ is F invariant then formula (4) implies that it must contain some singularity.

Suppose now that L∞ is not invariant by F . By linear equivalence, we can suppose that F̃
leaves L∞ invariant. If Sing(F) ∩ L∞ = ∅ then

∑
L∞

µp(F) = 0. The above formula gives

−m2
∑
L∞

µp(F̃) = −m2d̃−md̃−m2 + 1.

Thus, m would be a divisor of the right side of the equation, which is absurd. �

Suppose now that L∞ is F̃-invariant and that
∑

L∞
µp(F̃) = d̃0 + 1 = d̃ + 1. In this case,

expression (9) reads ∑
L∞

µp(F)−m2(d̃+ 1) = −m2d̃−md̃−m2 + 1,

which implies ∑
L∞

µp(F) = −md̃+ 1.

This is a contradiction, since the right side is negative. We get the following conclusion:

Proposition 4. Let F be a non-primitive foliation having a primitive model F̃ leaving L∞
invariant. Suppose that

∑
L∞

µp(F̃) = d̃ + 1, where d̃ = deg(F̃). Then L∞ is F-invariant. In

particular, if all singularities of F̃ in L∞ are non-degenerate, then L∞ is F-invariant.

In the situation of the Proposition 4, relation (4) reads
∑

L∞
µp(F̃ , L∞) = d̃ + 1. Thus, the

hypothesis
∑

L∞
µp(F̃) = d̃ + 1 is a condition of minimality on the Milnor numbers of F̃ over

L∞, as explained in the next result:

Proposition 5. Let F be a germ of foliation having a singularity at p ∈ C2 and let L be a germ
of smooth separatrix at p. Then µp(F , L) ≤ µp(F). Furthermore, equality occurs if and only if
one of the two alternatives holds:

(i) p is a non-degenerate singularity of F ;

(ii) p is a saddle-node having L as its weak separatrix.

Proof. Suppose that F is induced at p by a local vector field P∂/∂x+Q∂/∂y, where P,Q ∈ Op.
Let us denote µp(P,Q) := µp(F). For a vector field P∂/∂x + Q1Q2∂/∂y, where Q1, Q2 ∈ Op,
we have µp(P,Q1Q2) = µp(P,Q1) + µp(P,Q2) (see [1]). Let us suppose that the separatrix L
has equation y = 0, so that F is induced by a vector field of the form P∂/∂x + yQ1∂/∂y for
some Q1 ∈ Op . Thus

µp(F) = µp(P, yQ1) = µp(P, y) + µp(P,Q1) = µp(F , L) + µp(P,Q1),

where we used that µp(F , L) = µp(P, y). The result follows by noticing that µp(P,Q1) ≥ 0. Now,
equality holds if and only if µp(P,Q1) = 0. This means that the vector field P∂/∂x + Q1∂/∂y



18 GILBERTO D. CUZZUOL & ROGÉRIO S. MOL

is non-singular at p. Since P (p) = 0 we must have Q1(p) 6= 0. This gives at least one non-zero
eigenvalue for P∂/∂x + Q∂/∂y, which implies (i) or (ii). Reciprocally, if p is a non-degenerate
singularity, then µp(F) = µp(F , L) = 1. In the case of a saddle-node having y = 0 as weak
separatrix, after an analytic change of coordinates, we may suppose that we have the normal
form of the saddle node: xk+1∂/∂x + y(1 + λxk)∂/∂y, where λ ∈ C and k ≥ 0. Its easy to see
that µp(F) = µp(F , L) = k + 1. �

2nd case: L∞ is F-invariant but not F̃-invariant. We have d0 = d and d̃0 = d̃− 1. Equation
(8) gives ∑

L∞

µp(F)−m2
∑
L∞

µp(F̃) = (d2 + d+ 1)−m2((d̃− 1)2 + d̃)

= ((md̃)2 +md̃+ 1)−m2(d̃2 − d̃+ 1)

= m2(d̃− 1) +md̃+ 1.

Let us suppose that the sum of Milnor numbers of F at L∞ is minimal, that is
∑

L∞
µp(F) =

d0 + 1 = d+ 1. This gives

−m2
∑
L∞

µp(F̃) = m2(d̃− 1).

This implies that d̃ = 1 and
∑

L∞
µp(F̃) = 0, that is, F̃ is the radial foliation. Thus, F is a

homogeneous foliation. As commented on Example 1, for a homogeneous foliation F of degree
d0, it holds

∑
L∞

µp(F) = d0 + 1. We can thus state the following result:

Proposition 6. Let F be a non-primitive foliation of degree d0 which leaves L∞ invariant,

having a primitive model F̃ for which L∞ is non-invariant. It holds
∑

L∞
µp(F) = d0 + 1 if and

only if F is a homogeneous foliation and, in this case, F̃ is the radial foliation.

3rd case: L∞ is both F-invariant and F̃-invariant. We have d0 = d and d̃0 = d̃, thus∑
L∞

µp(F)−m2
∑
L∞

µp(F̃) = (d2 + d+ 1)−m2(d̃2 + d̃+ 1)

= ((md̃)2 +md̃+ 1)−m2(d̃2 + d̃+ 1)

= −m2d̃+md̃−m2 + 1.

Suppose now that
∑

L∞
µp(F̃) = d̃0 + 1 = d̃+ 1. This is equivalent to∑

L∞

µp(F)−m2(d̃+ 1) = −m2d̃+md̃−m2 + 1,

which in its turn is equivalent to∑
L∞

µp(F) = md̃+ 1 = d+ 1 = d0 + 1.

We reach the following conclusion:

Proposition 7. Let F be a non-primitive foliation of degree d0 having a primitive model F̃ of

degree d̃0. Suppose that both foliations leave L∞ invariant. Then
∑

L∞
µp(F̃) = d̃0 + 1 if and

only if
∑

L∞
µp(F) = d0 + 1.

This results shows an interesting behavior concerning non-primitive foliations and their prim-

itive models. If F is a non-primitive foliation having F̃ as primitive model, both of them having

the line at infinity invariant, then the passage from F̃ to F degenerates all singularities in the



FOLIATIONS ON P2 ADMITTING A PRIMITIVE MODEL 19

affine plane C2, in the sense that µp(F) = m2µp(F̃) for every p ∈ Sing(F)|C2 = Sing(F̃)|C2 ,
where m is the degree of ramification. On the other hand, this process does not degenerate the

singularities of F̃ lying in L∞, in the sense that, considering Proposition 5, if all singularities

of F̃ in L∞ are either non-degenerate or saddle-nodes with weak separatrix over L∞, then the
same property holds for the singularities of F in L∞.
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