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THE JUMP OF THE MILNOR NUMBER OF QUASIHOMOGENEOUS
SINGULARITIES FOR LINEAR DEFORMATIONS

ALEKSANDRA ZAKRZEWSKA

Abstract. The jump of the Milnor number of an isolated singularity f0 is the minimal
non-zero difference between the Milnor numbers of f0 and one of its deformations fs. We
determinate the jump of quasihomogeneous singularities in the class of linear deformations.

1. Introduction

One of the important problems in singularity theory is the adjacency problem: when a sin-
gularity (or a class of singularities) can be deformed to another one. In other words whether a
"type" of a singularity may be changed to another "type" by an arbitrarily small deformation.
A simpler problem is to find how some invariants of singularities may change by an arbitrarily
small deformation. In the article we study such a change of the Milnor number for isolated plane
curve singularities. We are interested in finding the smallest positive change under some class
of deformations – we will call it the jump of the Milnor number of a given singularity.

We start from basic definitions. They are given in n-dimensional case, but further we will focus
on only the plane curve singularities. Let f0 : (Cn, 0) → (C, 0) be an isolated singularity
or in short singularity. We define a deformation of the singularity f0 as a germ of a
holomorphic function f : (C× Cn, 0) → (C, 0) such that

(1) f(0, z) = f0(z),
(2) f(s, 0) = 0.

The deformation f(s, z) of the singularity f0 will be treated as a family (fs) of function germs,
taking fs(z) := f(s, z). For the sufficiently small s we can define the Milnor number of fs at
0 by

µs := µ(fs) = dimC On/(∇fs),

where On is the ring of holomorphic function germs at 0, and (∇fs) is the ideal in On generated
by ∂fs

∂z1
, . . . , ∂fs

∂zn
.

The Milnor number is upper semi-continuous in the Zariski topology in families of singularities
([GLS06], Theorem 2.6 I and Proposition 2.57 II), so there exists an open neighbourhood 0 ∈ S
such that

(1) µs = const. for s ∈ S \ {0},
(2) µ0 ≥ µs for s ∈ S.

The constant difference µ0 − µs (for s ∈ S) will be called the jump of the deformation
(fs) and denoted by λ((fs)). The jump of the Milnor number of the singularity f0 is
the smallest non-zero value among all the jumps of deformations of the singularity f0. It will be
denoted by λ(f0).

Many authors have considered what values the jump of the Milnor number can take. One of
the first general result was obtained by Sabir Gusein-Zade ([GZ93]). In his work he proved that
there exist singularities f0 for which λ(f0) > 1 and that for any irreducible plane curve singularity
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f0 we have λ(f0) = 1. Later, S. Brzostowski, T. Krasiński and J. Walewska in [BKW21] proved
that for the particular reducible singularities fn

0 (x, y) = xn + yn, n ≥ 2, we have λ(f0) =
[
n
2

]
.

Determining the jump of a singularity is difficult because it is not a topological invariant ([BK14],
[dPW95] Section 7.3).

A simpler problem is to determinate the jump when we limit ourselves to specific classes of
deformations. For non-degenerate deformations (it means each element of the family (fs) is a
non-degenerate singularity in the Kouchnirenko sense [Kou76]) the jump (denoted by λnd(f0))
was considered in [Bod07], [Wal13], [BKW21], [KW19].

In this paper we consider the jump of the Milnor number for linear deformations of f0 i.e.
deformations of the form fs = f0 + sg, where g is a holomorphic function in the neighbourhood
of 0 such that g(0) = 0. We will denote the jump of f0 for this class of deformations by λlin(f0).
The main result is a formula for the jump of the Milnor number λlin(f0) for quasihomogeneous
plane curve singularities. The simpler problem of homogeneous singularities was treated in
[Zak17].

In generic case (the general precise result is given in Theorem 5.1) the formula is as follows

Theorem. If f0(x, y) = ap,0x
p + . . . + a0,qy

q is a quasihomogeneous isolated singularity and
3 ≤ p ≤ q then

(1) λlin(f0) =

 p− 2, if p = q
p− 1, if p ̸= q and p|q
GCD(p, q), if p ̸= q and p̸|q

.

The first case concerns the homogeneous singularity. We illustrate the result with two exam-
ples.

Example 1.1. For the homogeneous singularities f0(x, y) = xn + yn, where n ≥ 3, the various
types of jumps are different:

λ(f0) =
[n
2

]
, λlin(f0) = n− 2, λnd(f0) = n− 1.

If we put for example n = 5 then:

λ(f0) = 2, λlin(f0) = 3, λnd(f0) = 4.

Example 1.2. For the quasihomogeneous singularity f0(x, y), that is not homogeneous, we have
λnd(f0) = λlin(f0) because formulas (1) and in Theorem 10 in [Wal13] are the same. However,
constructions given in [Wal13] for non-degenerate case, and in Theorem 4.1 for linear case
may give different deformations realizing this jump. For example, for the quasihomogeneous
singularity f0(x, y) = x6 + y9 we have λnd(f0) = λlin(f0) = 3 and

(1) fs(x, y) = x6 + y9 + sx5y – the non-degenerate deformation,
(2) fs(x, y) = x6 + y9 + sxy(y3 + x2)2 – the linear deformation.

To get the main result the Enriques diagrams will be used. To any singularity we assign
a weighted Enriques diagram (D, ν) which represents the whole resolution process of this sin-
gularity ([CA00] Chapter 3.9). It is a tree with two types of edges. M. Alberich-Carramiñana
and J. Roé ([ACR05] Theorem 1.3, Remark 1.4) gave a necessary and sufficient condition for
two Enriques diagrams of singularities to be linear adjacent. It means that one singularity is a
linear deformation of another. They used a wider class of Enriques diagrams, so-called abstract
Enriques diagrams, which are described in Section 2.

2. Abstract Enriques diagrams

Information about abstract Enriques diagrams can be found in [ACR05] and [KP99]. More-
over in my previous paper [Zak17], in which I gave the estimation of λlin(f0) for homogeneous
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singularities, abstract Enriques diagrams are described in more details with examples. The
formula for λlin for homogeneous singularities is in my PhD thesis [Zak19] (in Polish).

Definition 2.1 ([ACR05]). An abstract Enriques diagram (in short an Enriques diagram)
is a rooted tree D with binary relation between vertices, called proximity, which satisfies:

(1) The root is proximate to no vertex.
(2) Every vertex that is not the root is proximate to its immediate predecessor.
(3) No vertex is proximate to more than two vertices.
(4) If a vertex Q is proximate to two vertices, then one of them is the immediate predecessor

of Q and it is proximate to the other.
(5) Given two vertices P,Q with Q proximate to P , there is at most one vertex proximate

to both of them.

The fact that Q is proximate to P in D we will denote by Q
D−→ P or in short Q → P . The

vertices which are proximate to two points are called satellite, the other vertices are called free.
The vertex is a leaf if it has no successor. To show graphically the proximity relation, Enriques
diagrams are drawn according to the following rules:

(1) If Q is a free successor of P , then the edge going from P to Q is curved (not necessarily
tangent).

(2) The sequence of edges connecting a maximal succession of vertices proximate to the same
vertex P are shaped into a line segment, orthogonal to the edge joining P to the first
vertex of the sequence (if it is also straight).

The example of an abstract Enriques diagram is shown in Figure 1.

• •
• •
• • •

◦
• •

• • •

Figure 1. The abstract Enriques diagram. Satellite vertices are marked in
gray. The root is white.

We will now introduce few basic notations that are needed in later chapters. First, we define
weights on vertices of an abstract Enriques diagrams which correspond, in particular case of
plane curve singularities, to the orders of the proper transforms of the function describing the
singularity.

A weight function is any function ν : D → Z. A pair (D, ν), where D is an abstract Enriques
diagram and ν a weight function, is called a weighted Enriques diagram. A consistent
Enriques diagram is a weighted Enriques diagram such that for all P ∈ D

(2) ν(P ) ≥
∑
Q→P

ν(Q).

A complete Enriques diagram is a weighted Enriques diagram such that for all not-leaf P ∈ D
the equality in (2) holds and for all leaves P ∈ D it is a free vertex with weight 1 not proximate
to another free vertex with weight 1. To the weight function ν of a weighted diagram D we
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associate a system of values on D, which is another map ordν : D → Z, defined recursively as

ordν(P ) :=

{
ν(P ), if P is the root,
ν(P ) +

∑
P→Q

ordν(Q), otherwise.

For any consistent (D, ν) we define the Milnor number of (D, ν) by

µ((D, ν)) :=
∑
P∈D

ν(P )(ν(P )− 1) + 1− rD,

where rD :=
∑

P∈D rD(P ), rD(P ) :=
(
ν(P )−

∑
Q→P ν(Q)

)
for every P ∈ D.

A subdiagram of an abstract Enriques diagram D is a subtree D0 ⊂ D with the same
proximity relation such that if Q ∈ D0 then its predecessor belongs to D0.

In the class of consistent weighted Enriques diagrams, we introduce equivalence relation. We
say that consistent weighted diagrams (D, ν) and (D′, ν′) are equivalent if they differ at most
in free vertices of weight 1. The equivalence class of (D, ν) is denoted by [(D, ν)] and called the
type of (D, ν). Of course, the Milnor number is invariant in the class [(D, ν)].

A minimal Enriques diagram is a consistent Enriques diagram (D, ν) with:
(1) no free vertices of weight 0,
(2) no free vertices of weight 1 except for these such P ∈ D for which there exists a satellite

vertex Q ∈ D satisfying Q → P .
It is easy to see ([Zak17], Theorem 2.12) that

Theorem 2.2. Let (D, ν) be a consistent weighted diagram. There exists exactly one minimal
diagram which belongs to [(D, ν)].

The theory of Enriques diagrams has its roots in the theory of plane curve singularities. The
embedded resolution of a plane curve singularity using blow-ups can be explicitly presented as
a complete Enriques diagram. A precise description can be found in [CA00] Chapter 3.8 and
Chapter 3.9. Two plane curve singularities are embedded topologically equivalent if and only
if their Enriques diagrams are isomorphic (as graphs). For the Enriques diagram of a plane
curve singularity, the weight function represents the orders of the consecutive proper transforms
while the system of values – the orders of the total transforms of the function defining the
singularity. Also the Milnor number of the Enriques diagram coincides with the Milnor number
of the corresponding singularity. We need only the next fact which easily follows from these
results.

Theorem 2.3 ([CA00] Theorem 3.8.6). There exists a bijection between minimal Enriques di-
agrams and topological types of singularities.

In the paper [ACR05], M. Alberich-Carramiñana and J. Roé gave a necessary and sufficient
condition for two Enriques diagrams of singularities to be linear adjacent. This is the key result
we will use in the sequel. First we give definitions.

Definition 2.4. Let (D, ν) and (D′, ν′) be weighted Enriques diagrams, with (D′, ν′) consistent.
We will write (D′, ν′) ≥ (D, ν) when there exist isomorphic subdiagrams D0 ⊂ D, D′

0 ⊂ D′ with
an isomorphism (that preserves proximity relations)

i : D0 → D′
0

such that the new weight function κν′ : D → Z for D, defined by

κν′(P ) :=

{
ν′(i(P )), P ∈ D0

0, P /∈ D0

satisfies
ordν(P ) ≤ ordκν′ (P )
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for any P ∈ D.

Definition 2.5. Let [(D, ν)] and [(D̃, ν̃)] be types of Enriques diagrams. [(D̃, ν̃)] is linear
adjacent to [(D, ν)] if there exists a consistent Enriques diagram (D′, ν′) ∈ [(D̃, ν̃)] such that
(D′, ν′) ≥ (Dmin, νmin), where (Dmin, νmin) is the minimal diagram of type [(D, ν)].

Theorem 2.6 ([ACR05] Theorem 1.3 and Remark 1.4). Let [(D, ν)] and [(D̃, ν̃)] be types of
consistent Enriques diagrams. The following conditions are equivalent:

(1) [(D̃, ν̃)] is linear adjacent to [(D, ν)].
(2) For every singularity f0 whose Enriques diagram belongs to [(D̃, ν̃)], there exists a linear

deformation (fs) of f0 such that the Enriques diagram of a generic element fs belongs
to [(D, ν)].

(3) There exists a singularity f0 whose Enriques diagram belongs to [(D̃, ν̃)] and a linear
deformation (fs) of f0 such that the Enriques diagram of a generic element fs belongs
to [(D, ν)].

This theorem was also formulated using prime divisors by J. Fernández de Bobadilla, M. Pe
Pereira and P. Popescu-Pampu in Theorem 3.25 ([dBPPP17]).

Theorems 2.3 and 2.6 imply the following corollary:

Corollary 2.7. λlin(f0) is a topological invariant.

3. Enriques diagrams of quasihomogeneous singularities

Let f0(x, y) =
∑

i,j∈N ai,jx
iyj be an isolated singularity. It is known that f0 is reduced in the

ring C{x, y} of convergent series. The singularity f0 is called quasihomogeneous, if there exist
wx, wy ∈ N and a number W ∈ N such that, for every (i, j) ∈ supp(f0), it holds iwx+ jwy = W ,
where supp(f0) := {(i, j) ∈ N : ai,j ̸= 0}. Without loss of generality, f0 can be expressed as

(3) f0(x, y) = xkyl(xp + . . .+ γi,jx
iyj + . . .+ γ0,qy

q), k, l ∈ {0, 1}, p ≤ q, k + l + p ≥ 2,

and for every term γi,jx
iyj , γi,j ̸= 0, the equality (i+ k)wx + (j + l)wy = W holds.

Then after simple rescaling the variables x 7→ x′, y 7→ y′

q+l
√
γ0,q

, that does not change the
Milnor number of f0, we may assume f0 has the form:

(4) f0(x, y) = xkyl(xp + . . .+ γi,jx
iyj + . . .+ yq), k, l ∈ {0, 1}, p ≤ q, k + l + p ≥ 2,

In the case p = q we get a homogeneous singularity.
Since f0 is reduced and quasihomogeneous in two variables, we can represent f0 as a product

of irreducible factors

(5) f0(x, y) = xkyl
d̃∏

i=1

(xr + αiy
s) , αi ̸= 0, αi ̸= αj for i ̸= j,

where d̃ = GCD(p, q), r = p

d̃
, s = q

d̃
, GCD(r, s) = 1. By this form of quasihomogeneous

singularity and by the resolution process of singularities (more details in [CA00] Chapter 3.7)
the Enriques diagram of any quasihomogeneous singularity can be easily described.

In fact, let assume first that k = l = 0. If r = s then singularity (5) is homogeneous and
hence r = s = 1 and p = q = d̃. So f0(x, y) =

∏d̃
i=1 (x+ αiy) for some αi ̸= 0, αi ̸= αj for i ̸= j.

Then one blowing up resolves the singularity and the Enriques diagram of f0 is shown in Figure
2. Now assume r < s (the case s < r is analogous). So f0(x, y) =

∏d̃
i=1 (x

r + αiy
s), r < s,

GCD(r, s) = 1. Hence the singularity f0 has the unique tangent line {x = 0}. Then after one
blowing up the proper transform of this singularity is described in the coordinates (x′, y′) = (xy , y)

by the polynomial
∏d̃

i=1 (x
′r + αiy

′s−r). This singularity has also the unique tangent line (either
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{x = 0} if r < s − r or {y = 0} if r > s − r) except the case r = 1 and s = 2. In the
exceptional case we get a homogeneous singularity. In the first case (only one tangent line) after
finite number of blowing ups we also get a homogenous singularity. In both cases we always
get a homogenous singularity for which the next blowing up gives its resolution. According to
the above description we may describe the Enriques diagram (D, ν) of f0 (see Figure 3). The
first edges (from R1 to some Rm) are curved and next ones (from Rm to Rt) are straight. The
diagram (D, ν) has d̃ leaves. Moreover this is a complete Enriques diagram. If p|q then t = q

p .
In particular if f0 is homogeneous then t = 1.

•1W1

•d̃R1

•1Wd̃

d̃-times

Figure 2. The Enriques diagram of a homogeneous singularity of order d̃.

•1W1

•ν(R1)
R1

•ν(Rm)
Rm

•d̃Rt

•ν(R2)
R2

• •1Wd̃

d̃-times

Figure 3. The Enriques diagram of a quasihomogeneous singularity f0 for
k = l = 0.

If k = 1 or l = 1 then we proceed analogously as above with small modification. We have to
add one or two leaves to the Enriques diagram in Figure 3 to appropriate vertices. If l = 1 i.e.
there is the factor y in the factorization (5) of f0, we add a leaf T1 with weight 1 to the root R1

(Figure 4(a)). If k = 1 i.e. there is the factor x in the factorization (5) of f0, we add such a leaf
T2 to the last free vertex among R1, . . . , Rt i.e. to Rm in Figure 3. Two possible cases Rm ̸= Rt

and Rm = Rt are presented in Figure 4(b) and 4(c), respectively.
For t, d ∈ N we define the set Ht

d as the set of the abstract Enriques diagrams (D, ν) satisfying
conditions:

(1) (D, ν) is a minimal diagram,
(2) the elements of D is a sequence {R1, . . . , Rt} such that Ri is a successor of Ri−1 for

i ∈ {2, . . . , t} (a bamboo from R1 to Rt),
(3) ν(Rt) = d.

From the above construction of the Enriques diagrams of a quasihomogeneous singularity (5)
we see that its minimal diagram belongs to some Ht

d. We denote the subset of Ht
d correspond-

ing to quasihomogeneous singularities by Qt
d. This means for every diagram (D, ν) from Qt

d,
t > 1 there exists a singularity (4) with the same Enriques diagram as (D, ν) such that either
d = GCD(p, q) = d̃ (if p does not divide q) or d = GCD(p, q) + k = d̃ + k (if p divides q). For
t = 1 the set Qt

d represents homogeneous singularities with d = GCD(p, q) + k + l = d̃+ k + l.
For d = 1 and p > 1, Qt

d represents irreducible curves with one characteristic exponent ⟨p, q⟩,
along with the additional factor of the transversal line y (if l = 1) or the maximal contact line x
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(a)

•1T1

•R1

•R2

.

(b)

•R1
•1T2

•Rm

.

.

. •W1

•Rt

...

•Wd̃

(c)

•R1

•Rt

•W1 . . . •Wd̃
•1T2

Figure 4. The Enriques diagrams of quasihomogeneous singularities. In the
figure (a) l = 1, while in (b) and (c) k = 1. Case (c) holds if p|q.

(if k = 1); for d = 1 and p = 1, Qt
d represents smooth branches along with the additional factor

of the transversal line y (if l = 1).
It is easy to show the abstract Enriques diagrams which belong to Qt

d have the following
properties.

Theorem 3.1. If a weighted Enriques diagram (D, ν) belongs to Qt
d (t ̸= 1) then

(1) ν(R1) ≤
∑

Ri→R1

ν(Ri) + 1,

(2) if Rk is the first satellite vertex for some k ∈ 3, . . . , t then ν(Rk−1) ≤
∑

Ri→Rk−1

ν(Ri)+1,

(3) for any k = 3, . . . , t such that Rk is not the first satellite vertex, we have

ν(Rk−1) =
∑

Ri→Rk−1

ν(Ri).

The subset Qt
d is a proper subset of Ht

d, for example the minimal Enriques diagram of the
singularity f0(x, y) = (x2 − y2)(x6 − y9) belongs to Ht

d \Qt
d.

For any (D, ν) ∈ Ht
d we define wD as the number of vertices which Rt is proximate to. If

(D, ν) is the Enriques diagram of singularity (5), then obviously

(6) wD =

 0, if p = q
1, if p ̸= q and p|q
2, if p ̸= q and p̸|q

.

In fact, when p = q then Rt = R1 and hence wD = 0. If q = mp, m > 1, then after m − 1
blowing ups we get Rt and the all vertices in this process are free and hence wD = 1. If p̸|q we
get the first vertices in blowing ups are free (up to [ qp ] + 1) and next are satellite, so wD = 2.
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4. Estimation of the Milnor number for abstract Enriques diagrams

In this section we will estimate the Milnor number of these diagrams to which diagrams from
Qt

d are linear adjacent. Precisely, for any (D, ν) ∈ Qt
d we will find the maximum in the set

(7) {µ((E, λ)) : [(D, ν)] is linear adjacent to [(E, λ)], (E, λ) /∈ [(D, ν)]},

where d, t ∈ N and dt > 1. If dt = 1 then H1
1 = Q1

1 represents a smooth curve (by our definition
it is not a singularity). We will show that this maximum equals

µ((D, ν))− 1, if d = 1
µ((D, ν))− 1, if d = 2, wD = 0
µ((D, ν))− wD, if d = 2, wD ̸= 0
µ((D, ν))− (d− 2 + wD), if d ≥ 3

.

We will start from the easier part i.e. we will find the Enriques diagrams which realize these
values. This theorem will be proved even for any (D, ν) ∈ Ht

d (not only for (D, ν) ∈ Qt
d).

Theorem 4.1. Let d, t ∈ N, dt > 1 and (D, ν) be an Enriques diagram from Ht
d. There exists a

minimal Enriques diagram (ED, λD) /∈ [(D, ν)] such that [(D, ν)] is linear adjacent to [(ED, λD)]
and

(8) µ ((ED, λD)) =


µ((D, ν))− 1, if d = 1
µ((D, ν))− 1, if d = 2, wD = 0
µ((D, ν))− wD, if d = 2, wD ̸= 0
µ((D, ν))− (d− 2 + wD), if d ≥ 3

.

Proof. The minimal diagram (D, ν) is shown in Figure 5. We will define the diagram (ED, λD)

•ν(R1)
R1

•ν(R2)
R2

•ν(Rt−1)
Rt−1

•dRt

Figure 5. The minimal Enriques diagram (D, ν).

by a modification of (D, ν). If d = 1 we remove only the last vertex from (D, ν) (Figure 6(a))
and this will be (ED, λD). If d = 2 and Rt is the root, then ED consists of only one vertex
with weight 1. If d = 2 and Rt is not the root we change the weight of the last vertex to 1
and add one additional vertex W with weight 1, so that W → Rt, Rt−1 (Figure 6(b)) and this
is (ED, λD). If d ≥ 3 we change the weight of the last vertex to d − 1 and add new vertices
U,W1, . . . ,Wd−3 (if d = 3 there are no Wi vertices), all proximate to Rt. The weights of new
vertices are: λD(U) = 2, λD(Wi) = 1 (for i = 1, . . . , d − 3). The proximity relation of the new
vertices is (Figure 6(c))

Wd−3 → Wd−4, Rt

. . .

W2 → W1, Rt

W1 → U,Rt

U → Rt.

It is easy to check that each (ED, λD) is a minimal (and hence consistent) diagram and that
(ED, λD) /∈ [(D, ν)]. Moreover, there exists a consistent Enriques diagram (D′, ν′) /∈ [(D, ν)]
such that (D′, ν′) ≥ (ED, λD).
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(a)
•ν(R1)
R1

•ν(R2)
R2

•ν(Rt−1)
Rt−1

(b)

•ν(R1)
R1

•ν(R2)
R2

•ν(Rt−1)
Rt−1

•1Rt

•1W

(c)

•ν(R1)
R1

•ν(R2)
R2

•d−1
Rt

•2U •1W1
•1Wd−3

Figure 6. The Enriques diagram (ED, λD).

Indeed, as above we should consider three cases: d = 1, d = 2, d ≥ 3. We give details in the
case d ≥ 3 as the remaining cases are similar.

Let (D′, ν′) ∈ [(D, ν)] be a consistent Enriques diagram, such that D′ has one additional free
vertex U (Figure 7), then D′ ⊂ ED. Now, we have to show that for every P ∈ D′, we have
ordλD

(P ) ≤ ordκν′ (P ), where κν′(P ) = 0 for P ̸∈ D′.
• If P ∈ D \ {Rt} then ordλD

(P ) = ordκν′ (P ).
• For P = Rt, we have

ordλD
(Rt) =

∑
Rt→P

ordλD
(P ) + λD(Rt) = ordκν′ (P ) + ν(P )− 1 =

ordκν′ (P ) + κν′(P )− 1 = ordκν′ (Rt)− 1 ≤ ordκν′ (Rt).

• For P = U ,

ordλD
(U) = ordλD

(Rt) + λD(U) = ordκν′ (Rt)− 1 + 2 =

ordκν′ (Rt) + 1 = ordκν′ (Rt) + κν′(U) = ordκν′ (U).

• For any P = Wi → V,Rt (i = 1, . . . , d− 3), where V = Wi−1 or V = U ,

ordλD
(Wi) = ordλD

(Rt) + ordλD
(V ) + λD(Wi) = ordκν′ (Rt)− 1 + ordκν′ (V ) + 1 =

ordκν′ (Rt) + ordκν′ (V ) + 0 = ordκν′ (Rt) + ordκν′ (V ) + κν′(Wi) = ordκν′ (Wi).

Thus [(D, ν)] is linear adjacent to [(ED, λD)]. Now we may compute the Milnor number of
(ED, λD). It is easy to notice that

rED
=


rD + 1, if d = 1
rD − 1, if d = 2, wD = 0
rD − 2 + wD, if d = 2, wD ̸= 0
rD − d+ 2 + wD, if d ≥ 3

and then after simply calculation we get (8). □
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•ν(R1)
R1

•ν(R2)
R2

•ν(Rt−1)
Rt−1

•dRt

•1U

Figure 7. The Enriques diagram (D′, ν′).

To show that the diagram from Theorem 4.1 realizes the maximum in (7), it is enough to
prove that for every (D, ν) ∈ Qt

d all diagrams (D̃, ν̃) such that [(D, ν)] is linear adjacent to
[(D̃, ν̃)] have not greater Milnor numbers than the diagram (ED, λD) constructed for (D, ν) in
Theorem 4.1. Of course, we may consider only (D̃, ν̃) which have the type different from (D, ν).
We do this in a series of lemmas in which we consecutively assume:

(1) Case - there is no subdiagram of D̃ isomorphic (as rooted tree with preserving shapes of
edges but not weights) to D (Lemma 4.2);

(2) Case - there is a subdiagram of D̃ isomorphic to D,
(a) Subcase - d > 2,

(i) The inequality∑
P successor of i−1(Rt)

min(2, ν̃(P )) + z ≤ ν(Rt)− 1,

where z is the number of vertices proximate to i−1(Rt) that are not its suc-
cessors, holds (Lemma 4.3);

(ii) The opposite inequality∑
P successor of i−1(Rt)

min(2, ν̃(P )) + z > ν(Rt)− 1,

where z is the number of vertices proximate to i−1(Rt) that are not its suc-
cessors, holds (Lemma 4.4);

(b) Subcase - d = 2 (Lemma 4.5);
(c) Subcase - d = 1 (Lemma 4.6).

From the construction of ED, we have that ED = D \ {Rt} for d = 1 and D ⊂ ED for d ≥ 2.
Then, we can consider both weights ν and λD on ED (for d = 1) and on D (for d ≥ 2).

We start with the case (1) that there is no subdiagram of D̃ isomorphic to D.

Lemma 4.2. Let d, t ∈ N, (D, ν) ∈ Qt
d and let (D̃, ν̃) be an arbitrary Enriques diagram such

[(D, ν)] is linear adjacent to [(D̃, ν̃)]. If there is no subdiagram of D̃ isomorphic to D, then

µ(D̃, ν̃)) ≤


µ((D, ν))− 1, if d = 1
µ((D, ν))− 1, if d = 2, wD = 0
µ((D, ν))− wD, if d = 2, wD ̸= 0
µ((D, ν))− (d− 2 + wD), if d ≥ 3

.

Proof. Firstly, without loss of generality we may assume that (D̃, ν̃) is a minimal Enriques
diagram. Now, we will construct another diagram (E, λ) such that [(E, λ)] is linear adjacent to
[(D̃, ν̃)] and µ ((E, λ)) = µ ((ED, λD)). Since [(D, ν)] is linear adjacent to [(D̃, ν̃)] there exist
a consistent Enriques diagram (D′, ν′) ∈ [(D, ν)] such that (D′, ν′) ≥ (D̃, ν̃), two subdiagrams
D̃0 ⊂ D̃, D′

0 ⊂ D′ and an isomorphism i : D′
0 → D̃0. Since there is no subdiagram of D̃

isomorphic to D, we have Rt /∈ D′
0. Let (ED, λD) be the diagram from Theorem 4.1 constructed

for (D, ν). We get a diagram (E, λ) ∈ [(ED, λD)] as a modification of ED (analogous to the
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construction of D′ from D). Then D′
0 is also a subdiagram of E, because E and D′ ”differ”

after Rt−1. For every P ∈ D′
0 we have ν′(P ) = λ(P ). Therefore, consequently for every P ∈ D̃0

it holds κλ(P ) = κν′(P ). This implies that [(E, λ)] is linear adjacent to [(D̃, ν̃)], so for every
singularity f0 whose Enriques diagram belong to [(E, λ)], there exists a linear deformation (fs)

of f0 such that the Enriques diagram of a generic element fs belongs to [(D̃, ν̃)] (Theorem 2.6).
Because the Milnor number is upper semi-continuous ([GLS06] Theorem 2.6) then for sufficiently
small s, we have µ(fs) ≤ µ(f0). Therefore

µ((D̃, ν̃)) = µ(fs) ≤ µ(f0) = µ ((E, λ)) = µ ((ED, λD)) . □

In the next lemmas we will consider the case (2) that there exists subdiagram of D̃ isomorphic
to D. First, the two lemmas for the subcase (2a) i.e. d > 2.

Lemma 4.3. Let d, t ∈ N, d ≥ 3, (D, ν) ∈ Qd
t and let (D̃, ν̃) /∈ [(D, ν)] be an arbitrary minimal

Enriques diagram such [(D, ν)] is linear adjacent to [(D̃, ν̃)]. If

(1) there exist a subdiagram D̃0 ⊂ D̃ and an isomorphism i : D̃0 → D (not necessarily
preserving the weights),

(2) ∑
P successor of i−1(Rt)

min(2, ν̃(P )) + z ≤ ν(Rt)− 1,

where z is the number of vertices proximate to i−1(Rt) that are not its successors,
then

µ((D̃, ν̃)) ≤ µ((D, ν))− (d− 2 + wD).

Proof. We may assume that (D̃, ν̃) is a minimal diagram. Notice that

(9) ordν̃(i
−1(Rt)) < ordν(Rt).

Indeed, let us assume that ordν̃(i
−1(Rt)) = ordν(Rt). We prove by induction (using Theorem

3.1) with respect to the number of satellite vertices in D that then ν̃(i−1(Rj)) = ν(Rj) for
j = 1, . . . , t. From this we get that (D̃, ν̃) ∈ [(D, ν)], which is impossible.

Let us pass to the construction of (E, λ) such that [(E, λ)] is linear adjacent to [(D̃, ν̃)] and
µ ((E, λ)) ≤ µ((D, ν)) − (d − 2 + wD). We do this in two steps, first we construct (E′, λ′) and
then after some simple modification of (E′, λ′) we get (E, λ).

Let {S1, . . . , Sm} be the set of vertices proximate to i−1(Rt) in D̃. We will construct (E′, λ′).
• E′ = {Q1, . . . , Qt, U1, . . . , Um},
• λ′(Qi) = ν(Ri) for i = 1, . . . , t− 1,
• λ′(Qt) = ν(Rt)− 1,
• λ′(Ui) = min(2, ν̃(Si)) for Si that are free (i ∈ {1, . . . ,m}),
• λ′(Ui) = 1 for Si that are not free (i ∈ {1, . . . ,m}),
• Qi

E′

−→ Qj ⇔ Ri
D−→ Rj for i, j ∈ {1, . . . , t},

• Ui
E′

−→ Uj ⇔ Si
D̃−→ Sj for i, j ∈ {1, . . . ,m},

• Si
D̃−→ i−1(Rt) ⇔ Ui

E′

−→ Qt for i ∈ {1, . . . ,m},
• Ui

E′

−→ Qt for i = 1, . . . ,m.
The diagram (E′, λ′) is consistent due to the second condition in the assumption. Since d ≥ 3,
its Milnor number can be easily estimated by

µ((E′, λ′)) = µ((D, ν))− (d− 2 + wD)− d2 + 3d− 2− x =

= µ((D, ν))− (d− 2 + wD)− (d− 1)(d− 2)− x ≤ µ((D, ν))− (d− 2 + wD),
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where x is the number of successors of i−1(Rt) in D̃ with weight 1. Because [(D, ν)] is linear
adjacent to [(D̃, ν̃)], there there exists (D′, ν′) ∈ [(D, ν)] such that (D′, ν′) ≥ (D̃, ν̃). We can
modify (E′, λ′) to get (E, λ) ∈ [(E′, λ′)] (analogous to the construction of D′ from D). Since
(D′, ν′) ≥ (D̃, ν̃) then exist subsets D0 ⊂ D̃, D′

0 ⊂ D′ and a function κν′ on D̃ such that for
P ∈ D̃ we have ordν̃(P ) ≤ ordκν′ (P ). Because D′

0 ⊂ D′ ⊂ E′ we can define function κλ′ using
the same isomorphic subsets D0, D

′
0. Then for every P ∈ D̃ \ {i−1(Rt)} we have

ordκλ′ (P ) = ordκν′ (P ) ≥ ordν̃(P ).

If Rt ̸∈ D′
0 we also have

ordκλ′ (i
−1(Rt)) = ordκν′ (i

−1(Rt)) ≥ ordν̃(i
−1(Rt)).

If Rt ∈ D′
0 then from (9)

ordκλ′ (i
−1(Rt)) = ordκν′ (i

−1(Rt))− 1 = ordν(Rt)− 1 ≥ ordν̃(i
−1(Rt)).

From these facts we get that (E′, λ′) ≥ (D̃, ν̃). This gives that [(E, λ)] is linear adjacent to
[(D̃, ν̃)], so for every singularity f0 whose Enriques diagram belong to [(E, λ)], there exists a
linear deformation (fs) of f0 such that the Enriques diagram of a generic element fs belongs to
[(D̃, ν̃)] (Theorem 2.6). Because the Milnor number is upper semi-continuous ([GLS06] Theorem
2.6) then for sufficiently small s, we have µ(fs) ≤ µ(f0). Therefore

µ((D̃, ν̃)) ≤ µ ((E, λ)) = µ ((E′, λ′)) ≤ µ((D, ν))− (d− 2 + wD). □

Now, we will consider the opposite situation to the second condition in Lemma 4.3.

Lemma 4.4. Let d, t ∈ N, d ≥ 2, (D, ν) ∈ Qt
d and let (D̃, ν̃) /∈ [(D, ν)] be an arbitrary minimal

Enriques diagram such that [(D, ν)] is linear adjacent to [(D̃, ν̃)]. Let us assume there exist a
subdiagram D̃0 ⊂ D̃ and an isomorphism i : D̃0 → D such that∑

P successor of i−1(Rt)

min(2, ν̃(P )) + z > ν(Rt)− 1,

where z is number of vertices proximate to i−1(Rt) that are not its successors. Then

µ((D̃, ν̃)) ≤ µ((D, ν))− (d− 2 + wD).

Proof. Since ν̃(i−1(Rt)) ≤ ν(Rt) (because (D̃, ν̃) /∈ [(D, ν)]) and from the consistency of
[(D̃, ν̃)] ∑

P successor of i−1(Rt)

min(2, ν̃(P )) + z ≤ ν̃(i−1(Rt)),

we get

ν(Rt) ≤
∑

P successor of i−1(Rt)

min(2, ν̃(P )) + z ≤ ν̃(i−1(Rt)) ≤ ν(Rt).

Then we get the equality ν(Rt) = ν̃(i−1(Rt)). This follows that ν(Rj) = ν̃(i−1(Rj)) for
j = t0 + 1, . . . , t, where Rt0 is the last free vertex in (D, ν) and for the rest we have
ν(Rj) − ν̃(i−1(Rj)) ∈ {0, 1, 2}. Because (D̃, ν̃) /∈ [(D, ν)], in (D̃, ν̃) there are no vertices af-
ter Rj (j = 1, . . . , t − 1) and all the successors of i−1(Rt) have weight 2 at most. If after them
there is a vertex of weight 2, it has to be free. Then, after the i−1(Rt) in D̃ we can have
a "new branch" with vertices of weight 2 and the length of such "new branch" is limited by
l := ordν(Rt) − ordν̃(i

−1(Rt)). The number of such branches b is less that d
2 , since (D̃, ν̃) is

consistent. Moreover r(D)− r(D̃) < ν(R1)− d.
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The Milnor number of (D̃, ν̃) can be estimated by:

µ((D̃, ν̃)) ≤ µ((D, ν))+

k0∑
j=1

(
ν̃(i−1(Rj))

(
ν̃(i−1(Rj))− 1

)
− ν(Rj) (ν(Rj)− 1)

)
+ lb2 + r(D)− r(D̃) ≤

µ((D, ν)) +

k0∑
j=1

(
ν̃(i−1(Rj))

(
ν̃(i−1(Rj))− 1

)
− ν(Rj) (ν(Rj)− 1)

)
+

d
(
ordν(Rt)− ordν̃(i

−1(Rt))
)
+ (ν(R1)− d− 1) ≤ µ((D, ν))− (d− 2 + wD).

For the last inequality, we have to consider two possible cases:
• there exists j0 ∈ {1, . . . , k0}, such that ν̃(i−1(Rj)) = ν(Rj) − 1 for j = 1, . . . , j0,
ν̃(i−1(Rj)) = ν(Rj) for j = j0 + 1, . . . , k0,

• ν̃(i−1(R1)) = ν(R1)− 2, ν̃(i−1(Rj)) = ν(Rj)− 1 for j = 2, . . . , k0.
In each case, regarding the definition of wD, we easily get the required estimationa. □

In the next lemma we consider the subcase (2b) i.e.d = 2.

Lemma 4.5. Let k ∈ N, (D, ν) ∈ Qt
2 and let (D̃, ν̃) /∈ [(D, ν)] be an arbitrary minimal Enriques

diagram such that [(D, ν)] is linear adjacent to [(D̃, ν̃)]. Then

µ((D̃, ν̃)) ≤
{

µ((D, ν))− 1, if wD = 0
µ((D, ν))− wD, if wD ̸= 0

Proof. If wD = 0 then the only diagram (D̃, ν̃) /∈ [(D, ν)] such that [(D, ν)] is linear adjacent
to [(D̃, ν̃)] is (ED, λD). Then µ((D̃, ν̃)) = µ((ED, λD)) = µ((D, ν))− 1.

Let assume that wD ̸= 0. If there is no subdiagram of D̃ isomorphic to D we can apply
Lemma 4.2. If there exist subdiagrams D̃0 ⊂ D̃, D0 ⊂ D and an isomorphism i : D̃0 → D, then∑

P successor of i−1(Rt)

min(2, ν̃(P )) + z = ν(Rt),

where z is the number of vertices proximate to i−1(Rt) that are not its successors. Then from
Lemma 4.4 we get µ((D̃, ν̃)) ≤ µ((D, ν))− wD. □

The last lemma is for the last subcase (2c) d = 1 and it is easy to prove.

Lemma 4.6. Let k ∈ N, (D, ν) ∈ Qt
1 and let (D̃, ν̃) /∈ [(D, ν)] be an arbitrary minimal Enriques

diagram such that [(D, ν)] is linear adjacent to [(D̃, ν̃)]. If there exist subdiagrams D̃0 ⊂ D̃,
D0 ⊂ D and an isomorphism i : D̃0 → D, then µ((D̃, ν̃)) ≤ µ((D, ν))− 1.

Now, we can formulate the main result (that indeed the diagram (ED, λD) from Theorem 4.1
realizes the maximum in (7)). This theorem is a consequence of previous lemmas.

Theorem 4.7. Let d, t ∈ N, dt > 1, (D, ν) ∈ Qt
d and let (D̃, ν̃) /∈ [(D, ν)] be an arbitrary

Enriques diagram such that [(D, ν)] is linear adjacent to [(D̃, ν̃)]. Then

µ((D̃, ν̃)) ≤


µ((D, ν))− 1, if d = 1
µ((D, ν))− 1, if d = 2, wD = 0
µ((D, ν))− wD, if d = 2, wD ̸= 0
µ((D, ν))− (d− 2 + wD), if d ≥ 3

.
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5. Formula for jump of the Milnor number of quasihomogeneous singularity
for linear deformations

In this section we apply Theorems 4.1 and 4.7 to the Enriques diagrams of a quasihomogeneous
singularity.

As a consequence of these theorems and the construction of the Enriques diagrams of quasi-
homogeneous singularities we can formulate the following facts.

Theorem 5.1. For any quasihomogeneous singularity f0 of form (4) the jump of Milnor number
of f0 for linear deformations is

(10) λlin(f0) =


1, if d = 1
1, if d = 2, wf0 = 0
wf0 , if d = 2, wf0 ̸= 0
d− 2 + wf0 , if d ≥ 3

,

where:
• if p = q then d = k + l + p and wf0 = 0,
• if p ̸= q and p|q then d = k + p and wf0 = 1,
• if p ̸= q and p̸|q then d = GCD(p, q) and wf0 = 2.

Proof. Let f0 be a quasihomogeneous singularity and (D, ν) its Enriques diagram. From
Theorem 4.1 there exists diagram (ED, λD) /∈ [(D, ν)] such that [(D, ν)] is linear adjacent to
[(ED, λD)] and

µ ((ED, λD)) =


µ((D, ν))− 1, if d = 1
µ((D, ν))− 1, if d = 2, wD = 0
µ((D, ν))− wD, if d = 2, wD ̸= 0
µ((D, ν))− (d− 2 + wD), if d ≥ 3

.

Since (ED, λD) is minimal Theorem 2.3 and Theorem 2.6 give

(11) λlin(f0) ≤


1, if d = 1
1, if d = 2, wD = 0
wD, if d = 2, wD ̸= 0
d− 2 + wD, if d ≥ 3

.

From Theorem 4.7 for any Enriques diagram (D̃, ν̃) /∈ [(D, ν)] such that [(D, ν)] is linear
adjacent to [(D̃, ν̃)] we have µ((D̃, ν̃)) ≤ µ ((ED, λD)). It gives the opposite inequality in (11)
and as a consequence we get (10), because wD = wf0 . □

Taking into account the simple characterization (6) of wD, we get a more effective formula.

Corollary 5.2. Let f0 be a quasihomogeneous singularity of form (4). Then
(1) If p = q i.e. f0 is a homogeneous singularity then

λlin(f0) =

{
1, if k + l + p = 2
k + l + p− 2, if k + l + p ≥ 3

.

(2) If p ̸= q and p|q then

λlin(f0) =

{
1, if p+ k ≤ 2
p+ k − 1, if p+ k ≥ 3

.

(3) If p ̸= q and p̸|q then
λlin(f0) = GCD(p, q).

If we consider only the "standard" quasihomogeneous singularities i.e. k = l = 0 in (4), we
get a very simple formula for the jump.
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Corollary 5.3. Let f0 be a quasihomogeneous singularity defined in (4) and k = l = 0. Then
(1) If p = q i.e. f0 is a homogeneous singularity then

λlin(f0) =

{
1, if p = 2
p− 2, if p ≥ 3

.

(2) If p ̸= q then

λlin(f0) =

{
p− 1, if p|q
GCD(p, q), if p̸|q .

Example 5.4. Let’s consider the singularity from Example 1.2 i.e. f0(x, y) = x6 + y9. Its
minimal Enriques diagram is shown in Figure 8(a). The minimal Enriques diagram realizing
the λlin(f0) (constructed in Theorem 4.1) is shown in Figure 8(b). A linear deformation having
this diagram is fs(x, y) = f0(x, y) + sxy(y3 + x2)2.

(a)
•3

•6 •3
(b)

•3

•6 •2

•2

Figure 8. The minimal Enriques diagrams of f0 and fs

Remark 5.5. It is not an easy task to write down an explicit formula of the deformation from
the constructed Enriques diagram. Obviously, in specific case it can be done (as in Example 5.4).

As a corollary we give a formula for the jump of Milnor number for semi-quasihomogeneous
singularities i.e. singularities of the form f0 = f ′

0 + g, where f ′
0 is a quasihomogeneous singu-

larity with respect to some weights (wx, wy) and ord(wx,wy)g > ord(wx,wy)f
′
0.

Corollary 5.6. For any semi-quasihomogeneous singularity f0

λlin(f0) = λlin(f ′
0).

Proof. It suffices to notice that Enriques diagrams of f0 and f ′
0 have the same type. □
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