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THE GAUSS MAP ON THETA DIVISORS WITH TRANSVERSAL A1

SINGULARITIES

CONSTANTIN PODELSKI

Abstract. We use Lagrangian specialization to compute the degree of the Gauss map on

Theta divisors with transversal A1 singularities. This computes the Gauss degree for a gen-

eral abelian variety in the loci Aδ
t,g−t that form some of the irreducible components of the

Andreotti-Mayer loci. We also prove that the first coefficient of the Lagrangian specialization

is the Samuel multiplicity of the singular locus.

1. Introduction

The Gauss map relies on the linear nature of abelian varieties by attaching to a smooth point
of a divisor, its tangent space translated at the origin. This map was already used by Andreotti
[1] in his beautiful proof of the Torelli theorem, and its geometry is intimately connected with
the singularities of the theta divisor. The degree of the Gauss map is also equal to the 0-th
Chern-Mather class of the theta divisor. We will work over the complex numbers. Let Ag be the
moduli space of principally polarized abelian varieties (ppav’s) of dimension g, over the complex
numbers. For a ppav (A,Θ) ∈ Ag, the Gauss map

GΘ : Θ 99K P(T∨
0 A) ≃ Pg−1

is the rational map defined by the complete linear system |L| where L = OA(Θ)|Θ denotes the

normal bundle to the hypersurface Θ ⊂ A. The Gauss map is generically finite if and only if
(A,Θ) is indecomposable as a ppav (see [5, Sec. 4.4] for generalities about GΘ). The degree of
GΘ is unknown beyond a few cases:

• For smooth Theta divisors, the degree is [Θ]g = g! (Ex. 2.4).
• For non-hyperelliptic (resp. hyperelliptic) Jacobians, the degree is

(
2g−2
g−1

)
(resp. 2g−1)

[3, 247].
• For a general Prym variety the degree is D(g + 1) + 2g−2, where D(g) is the degree of
the variety of all quadrics of rank ≤ 3 in Pg−1 [20].

• For the intermediate Jacobian of a cubic threefold the degree is 72 [7].

Another case where the degree of the Gauss map is straightforward to compute is when Θ has
isolated singularities. In this case we have by [8, Rem. 2.8]

deg GΘ = g!−
∑

z∈Sing(Θ)

multzΘ ,

where multzΘ is the Samuel multiplicity as defined for example in [13, Sec 4.3]. For a complex
variety X of dimension n, we denote by

χ(X) =

2n∑
i=0

(−1)i dimQH
i(X,Q)

the topological Euler characteristic. We say that X has transversal A1 singularities if for all
points x ∈ Sing(X), there is a local analytic isomorphism

(X,x) ≃ (V (x21 + · · ·+ x2k), 0) ⊂ (Cn+1, 0) ,
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for some k ≥ 2, where x1, . . . , xn+1 are coordinates on Cn+1. In a sense, this is the simplest
kind of singularities to handle after isolated singularities. We have the following:

Theorem 1 (3.5). Let (A,Θ) ∈ Ag such that Θ has transversal A1 singularities, then

deg GΘ = g!− 2(−1)dimZχ(Z)− (−1)dimDχ(D) ,

where Z = Sing(Θ) and D ∈ |L|Z | is a general divisor in the linear system.

Recently, Codogni, Grushevsky and Sernesi [8] introduced the stratification of Ag by the
Gauss loci

G(g)
d := {(A,Θ) ∈ Ag | deg GΘ ≤ d} .

These loci are closed by [9] and the Jacobian locus Jg is an irreducible component of G(g)
d for

d =

(
2g − 2

g − 1

)
.

It is interesting to study how the Gauss loci interact with the stratification introduced by An-
dreotti and Mayer in [2], which consists of the loci

N (g)
k = {(A,Θ) ∈ Ag | dimSing(Θ) ≥ k} .

Andreotti and Mayer prove that the Jacobian locus Jg is an irreducible component of N (g)
g−4. For

g ≥ 5, the known irreducible components of N (g)
g−4 away from the locus of decomposable ppav’s

are by [12] and [10]:

• the locus of Jacobians Jg,
• two loci Eg,0 and Eg,1 arising from Prym varieties of certain étale double covers of biel-

liptic curves (for a definition see [10]),
• for 2 ≤ t ≤ g/2, the loci A2

t,g−t of ppav’s containing two complementary abelian varieties
of dimension t and g − t respectively, such that the induced polarization is of type (2)
(defined by Proposition 4.1).

It turns out that by Debarre, a general member of A2
t,g−t for 2 ≤ t ≤ g/2 satisfies the conditions

of Theorem 1. As a consequence we have:

Theorem 2 (4.7). Let 2 ≤ t ≤ g/2, then for a general (A,Θ) ∈ A2
t,g−t, we have

deg GΘ = t!(g − t)!g .

In particular, the degree of the Gauss map separates the components A2
t,g−t from Jg. The

construction of A2
t,g−t can be generalized for any polarization type δ = (a1, . . . , ak). One has

Aδ
t,g−t ⊂ N (g)

g−2d , for deg δ ≤ t ≤ g/2,

where deg δ := a1 · · · ak. Suppose δ ∈ {(2), (3), (2, 2)}, let deg δ = d ≤ t ≤ g/2, then Aδ
t,g−t is

an irreducible component of N (g)
g−2d [10]. We compute the degree of the Gauss map for a general

member of these loci as well, see Theorem 4.7. Using different techniques, it is also possible to
compute the degree of the Gauss map on the loci Eg,0 and Eg,1, see the forthcoming paper [19].
This (with the analysis of Section 4.3) gives first partial results towards answering the following
question, raised by Codogni, Grushevsky and Sernesi [8, Question 1.7]

Question 1.1. For g ≥ 5, what are the possible values of deg GΘ for (A,Θ) ∈ Ag?

The main tool in the proof of Theorem 1 is the notion of Lagrangian specialization, which
was already employed by Codogni and Krämer to prove that the Gauss loci are closed [9]. Let
us quickly recall the setup: Let W be a smooth variety. One defines the conormal variety to a
closed subvariety X ⊂W as the Zariski closure

ΛX := {(x, ξ) ∈ T∨(W ) |x ∈ Sm(X) , ξ⊥Tx(X)} ⊂ T∨W .
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This can be done in a relative setting as well: Let S be a smooth curve, q : W → S a smooth
morphism and X ⊂ W a subvariety that is flat over S. By replacing the tangent spaces in the
above definition by the relative tangent spaces over S, one obtains the relative conormal variety

ΛX/S ⊂ T∨(W/S) .

Let 0 ∈ S be a point and W := W|0 and X := X|0 be the fibers above 0. By [14], the

specialization of ΛX/S at 0 is a formal sum of conormal varieties to subvarieties Z ⊂W , i.e.

sp0(ΛX/S) := ΛX/S |0 =
∑
Z⊂W

mZΛZ ,

for some positive integers mZ .

Remark. Although we will not use it in what follows, let us recall the sheaf-theoretic interpre-
tation of Lagrangian specialization: Let ψq and ϕq be the nearby and vanishing cycle functors
associated to q : W → S. Suppose that X is smooth away from X0 and dimX = n+ 1. In that
case the Lagrangian specialization computes the characteristic cycle of the nearby cycle functor
(see [17, Th. 3.55])

CC(ψq(CX [n])) = sp0(ΛX/S) .

Our next result is in a sense the leading term of the Lagrangian specialization in the codi-
mension 1 case (2.6):

Proposition 1 (Leading term of the Lagrangian specialization). In the above setting assume
that X ⊂ W is of codimension 1. Then

sp0(ΛX/S) =
∑
i

(multXi
X) · ΛXi,red

+
∑

Z⊊Xi,red

mZΛZ ,

where Xi are the reduced irreducible components of X and multXi
X = len(OX,Xi

) is the geo-
metric multiplicity.

When X is reduced, we can go one step further (2.8):

Theorem 3 (Second term of the Lagrangian specialization). In the above setting assume more-
over that X is reduced and X|s is smooth for s ̸= 0. Let Sing(X) = ∪iZi be the decomposition

of the singular locus into its scheme-theoretic irreducible components. Then

sp0ΛX/S = ΛX +
∑
i

(multZi
X) · ΛZi,red

+
∑

Y⊊Zi,red

mY ΛY

where multZX is the Samuel multiplicity of Z in X as defined in [13, Sec. 4.3].

Let us consider the setting of plane curve singularities to illustrate the above theorem.

Example 1. Let f : A2 → A be a map with an isolated critical point at 0. Let Ct := {f = t} ⊂ A2.
Let µ, κ,m be the Milnor number, Samuel multiplicity (of Sing(C0) in C0), and the order of van-
ishing of f at 0 respectively. We then have

CC(ϕf (QA2 [1])) = µΛx ,

CC(Q
C0

[1]) = ΛC0 + (m− 1)Λx .

CC(ψf (QA2 [1]) = ΛC0
+ κΛx ,

where the two first equalities can be deduced for example from [17, Ex. 3.58] and the last equality
is a consequence of the above theorem. We thus obtain the well-known relation (see for instance
[18])

κ = µ+m− 1 .
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As a corollary to Theorem 3 we obtain an upper bound on the degree of the Gauss map in
terms of the degree of the conormal variety to the singular locus (2.9):

Corollary 1. Let (A,Θ) ∈ Ag and let Sing(Θ) = ∪iZi be the decomposition of the singular locus
of Θ into its scheme-theoretic irreducible components. We have

deg GΘ ≤ g!−
∑
i

(multZiΘ)deg(ΛZi,red
) ,

where
deg ΛZ := [ΛZ ] · [W ] ∈ H0(T

∨W,Z)
is the degree of the intersection with the zero section W ↪→ T∨W .

It is interesting to compare this with the formula obtained by Codogni, Grushevski and Sernesi
in [8, Cor. 2.6]:

deg GΘ ≤ g!−
∑
i

(multZiΘ)deg(L|Zi,red
) ,

where deg(L|Z) = c1(L)
dimZ ∩ [Z] is the degree of the polarization L = OA(Θ) restricted to Z.

Although the similarity is striking, there is no obvious relation between both bounds: Indeed,
let 2 ≤ t ≤ g/2 and let (A,Θ) ∈ A2

t,g−t be general. Then Sing(Θ) is smooth and by 4.6 we have

deg ΛSing(Θ) = t!(g − t)!(t− 1)(g − t− 1) .

A direct computation using 4.4 shows

degL|Sing(Θ)
= t!(g − t)!

(
g − 4

t− 2

)
,

which is less than deg ΛSing(Θ) for small values of t and greater than deg ΛSing(Θ) for big values
of t. The proof of Codogni, Grushevski and Sernesi relies on Vogel cycles and it is not clear
how both techniques relate. It would also be interesting to know how the next coefficients in the
Lagrangian specialization relate to known invariants of the singularity.

The text is organized as follows: In Section 2, we recall some well-known facts about the
Lagrangian specialization, and prove Theorem 3. In Section 3 we then prove Theorem 1. Finally,
in Section 4 we prove Theorem 2, and analyse the result numerically.

2. Lagrangian Specialization

2.1. Generalities on Lagrangian Specialization. We recall some facts about Lagrangian
specialization, see [9] for an introduction. Let W be a smooth variety of dimension n. To a
closed subvariety X ⊂W we define its conormal variety by

ΛX := {(x, ξ) ∈ T∨W |x ∈ Sm(X) , ξ⊥Tx(X)} ⊂ T∨W .

The degree of a conormal variety is defined by

deg(ΛX) := deg([ΛX/S ] · [W ]) ,

where W ↪→ T∨(W ) is embedded as the zero section and the product is in the Chow ring of
T∨W . Let PΛX ⊂ PT∨W denote the projectivization of the conormal variety. Let

h := c1(OPT∨W (1)) ∈ CH1(PT∨W )

be the hyperplane class of the projective bundle. The Chern-Mather class of X (or ΛX) is defined
as

cM (X) = cM (ΛX) := c(T∨W ) ∩ p∗
(
(1− h)−1 ∩ [PΛX ]

)
∈ CH∗(W ) ,

where p : PT∨W → W is the projection and c(−) is the usual Chern class. We thus have
deg(ΛX) = deg(cM (X)).
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Example 2.1. Let X ⊂W be a subvariety. MacPherson [16] introduced a constructible function
called the local Euler obstruction EuX :W → Z, such that

EuX(x) =

{
0 if x ∈W \X,

1 if x ∈ Xsm.

By Kashiwara’s index formula (see [11, 123]) we then have

deg ΛX = (−1)dimXχ(X,EuX) := (−1)dimX
∑
n∈Z

n · χ(Eu−1
X (n)) .

In particular, if X ⊂W is a smooth subvariety, then deg ΛX = (−1)dimXχ(X), where

χ(X) =
∑
n∈Z

(−1)nhn(X,Q)

denotes the usual topological Euler characteristic.

Conormal varieties can be defined in families: Let S be a smooth (quasi-projective) curve,
and

q : W → S

is a smooth dominant morphism of varieties. Let X ⊂ W be a closed subvariety, flat over S.
One defines the relative conormal variety to X as the closure

ΛX/S := {(x, ξ) ∈ T∨(W/S) |x ∈ Sm(X/S), ξ⊥TxXf(x)} ⊂ T∨(W/S) ,

where
T∨(W/S) := T∨W/f−1T∨(S)

is the relative cotangent bundle. Let

L (W/S) =
⊕
X⊂W

Z · ΛX/S

denote the free abelian group generated by relative conormal varieties to closed subvarieties
X ⊂ W that are flat over S. The Lagrangian specialization of ΛX/W ∈ L (W/S) is the inter-
section with the fiber above s ∈ S. This is again a Lagrangian cycle on Ws [14] [15]

sps(ΛX/S) := ΛX/S ∩ T∨Ws = mXsΛXs +
∑

Z⊂Sing(Xs)

mZΛZ ,

where mXs
,mZ > 0 and the sum runs over finitely many subvarieties Z ⊂ Sing(Xs). Moreover,

for a general s ∈ S,
sps(ΛX/S) = ΛXs .

Remark. Note that the definition of the conormal variety and of the Lagrangian specialization
are local. Thus, we can compute the coefficients mZ above locally.

We define the projectivised conormal variety PΛZ/S by taking the image in the projectivised
cotangent space PT∨(W/S). From now on we will assume X ⊂ W to be of codimension 1.
Recall that the relative singular locus is the scheme defined locally by

Sing(X/S) = V (F, ∂1F, . . . , ∂nF ) ⊂ W ,

where F is a holomorphic function defining X and ∂i generate the relative tangent space T (W/S)
(recall that W is smooth, thus X is a Cartier divisor). We have the following:

Proposition 2.2. Let S be a curve or a point, and suppose X ⊂ W is of codimension 1. There
is a canonical identification

PΛX/S = BlSing(X/S) X .
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Proof. In this setting we define the (relative) Gauss map by

γ : X 99K PT∨(W/S)

x 7→ (TxXf(x))
∗ .

The statement of the proposition is local, thus after restricting to an open set of W we can
assume that there are coordinates x1, . . . , xn (and s in the relative case) on W, and a function
F defining X ⊂ W. Then PT∨(W/S) = W × Pn−1 and

γ(x) =

(
x,
∂F

∂x1
(x) : · · · : ∂F

∂xn
(x)

)
.

Thus Z := Sing(X/S) is exactly the base locus of γ. We claim that there exist an embedding
γ̃ : BlZ X ↪→ PT∨(W/S) such that the following diagram commutes

BlZ X

X PT∨(W/S)

p
γ̃

γ

.

This completes the proof as

PΛX/S = γ(X ) = γ̃(BlZ X ) ≃ BlZ X .

We prove the claim following [13, Sec. 4.4]. Let I be the ideal sheaf of Z ⊂ X , and
L := γ∗OPT∨(W/S)(1). Let V := ⟨∂x1

F, . . . , ∂xn
F ⟩ ⊂ H0(X , L) and VX = V ⊗C OX . There

is a canonical surjection VX → I ⊗ L, inducing an embedding

BlZ X = Proj (⊕nIn) ↪→ Proj
(
Sym(VX ⊗ L−1)

)
= Proj (SymVX )

= PT∨(W/S)|X
⊂ PT∨(W/S) .

Denoting by γ̃ the above composition, we are done. □

In the case of ppav’s we have the following:

Proposition 2.3. Let (A,Θ) be a polarized abelian variety, with Θ reduced and let

G : Θ 99K PT∨
0 A

be the Gauss map. Then

PΛΘ = ΓG ⊂ A× PT∨
0 A ≃ PT∨A ,

where ΓG is the closure of the graph of G. In particular:

deg ΛΘ = deg G .

Proof. The first part of the proposition follows immediately from the proof of Proposition 2.2.
Let v ∈ T∨

0 A be a general point and v ∈ PT∨
0 A the projectivization. Then in CH∗(T∨W ) (resp.

CH∗(PT∨W )) we have

deg ΛΘ := [ΛΘ] · [A× {0}]
= [ΛΘ] · [A× {v}]
= [PΛΘ] · [A× {v}]
=: deg G .

□
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Example 2.4. Let (A,Θ) ∈ Ag and suppose that Θ is smooth, then

deg ΛΘ = deg G = g! .

Recall that the Gauss map corresponds to the complete linear system |L|Θ| with L = OA(Θ). If

Θ is smooth, the Gauss map is defined everywhere thus

deg G = [Θ]·g = g!

by Riemann Roch.

We end the section with the following computation of Lagrangian specialization:

Example 2.5. Let n ≥ 3, x1, . . . , xn be coordinates on An and s be a coordinate on A. Consider
the following deformation

X = {x21 + · · ·+ x2n−1 + xns = 0} An × A

A

⊂
q ,

where q is the projection onto the second factor. Then

sp0ΛX/S = ΛX + 2ΛB + ΛC ,

where

B = {s = x1 = · · · = xn−1 = 0} is the singular locus of X = X0,

C = {s = x1 = · · · = xn = 0} is the singular locus of X .

As this example is central in our proof, we will do the computation: By 2.2 we have

ΛX = BlowBX
= V (u1x1 + · · ·+ unxn, xiuj − xjui, xiun − sui)1≤i,j≤n−1

⊂ X × Pn−1 ,

where ui are homogeneous coordinates on Pn−1. Specializing to s = 0 and restricting to the
open set U = {u1 ̸= 0} we have (with ai = ui/u1 for 2 ≤ i ≤ n)

sp0ΛX |U = V
(
x21(1 + a22 + · · ·+ a2n−1),

x1(1 + a22 + · · ·+ a2n−1) + anxn, x1an

)
⊂ A2 × An−1 .

Thus sp0ΛX has 3 irreducible components:

ΛX = V (1 + a22 + · · ·+ a2n−1, an) ⊂ A2 × An−1 with multiplicity 1,

ΛB = V (x1, an) with multiplicity 2,

ΛC = V (x1, xn) with multiplicity 1.

2.2. First Coefficients in the Lagrangian Specialization. Let q : W → S be a smooth
morphism to a quasi-projective curve S. Let X ⊂ W be a variety of codimension 1, flat over S.
Let 0 ∈ S be a point and X = X0, W = W0 be the special fibers

X ⊂ W q−→ S .

We have the following:
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Proposition 2.6 (Zeroth-Order Approximation of the Lagrangian Specialization). Let
X = ∪iXi be the scheme-theoretic irreducible components of X. We have

sp0(ΛX/S) =
∑
i

(multXi
X) · ΛXi,red

+
∑

Z⊊Xi,red

mZΛZ ,

where multXi
X = len(OX,Xi

) is the geometric multiplicity and the last sum runs over subvari-
eties Z ⊂ Sing(Xred) ∪ (Sing(X ) ∩X).

Proof. By the principle of Lagrangian specialization [9, Lem 2.3], we have

(2.7) sp0(ΛX/S) =
∑
i

mXi
ΛXi,red

+
∑

Z⊂Sing(X)

mZΛZ ,

for some coefficients mXi , mZ . The definition of the coefficients mXi is local, thus we can
assume that we are working on an affine neighborhood where Xred is smooth and irreducible.
Let x1, . . . , xn, s be coordinates on W such that q is the projection onto s. X is defined locally by
a function F (x1, . . . , xn, s). We will show that the ideal of the relative singular locus Sing(X/S)

I :=

〈
F,
∂F

∂xi

〉
1≤i≤n

is locally principal in the affine coordinate ring of X away from a strict subset Z ⊆ X ∩Sing(X ).
If X is reduced, then it is smooth and I = ⟨1⟩ so there is nothing to prove. We assume now that
X is non-reduced. X is a Cartier divisor in W , thus defined by the vanishing of fk for some
k ≥ 2, where Xred is defined by the vanishing of f(x1, . . . , xn). We have

F = fk + sl · g ,

for some function g defined on W not divisible by s, and l ≥ 1. g does not vanish iden-
tically on Xred, else g would be divisible by f and X would not be integral. Notice that
V (g|X) ⊂ Sing(X ) ∩X thus we can restrict to {g ̸= 0} and assume g is a unit. We have

I =

〈
fk + sl · g, ∂f

∂xi
fk−1 + sl

∂g

∂xi

〉
1≤i≤n

.

As Xred is smooth, we have ⟨f, ∂if⟩ = ⟨1⟩, thus (fk−1 + sl · h) ∈ I for some function h. Thus
sl(g− fh) ∈ I. As g− fh is a unit near X after restricting to a smaller open set we can assume

sl ∈ I , thus I = ⟨fk−1, F ⟩ .

In particular, Sing(X/S) is principal in X (defined by fk−1), thus by Proposition 2.2 we have

sp0(ΛX/S) = (BlSingX/S X )|0
≃ X|0
= X

= len(OX,Xred
) ·Xred

≃ len(OX,Xred
) · ΛXred

.

This proves the claim on the coefficients of the ΛXi,red
. As we only needed to restrict to com-

plements of closed sets in Sing(Xred)∪Sing(X ) during the proof, we have that every other cycle
ΛZ in the specialization must verify Z ⊂ Sing(Xred) ∪ (Sing(X ) ∩X). □

When the special fiber is reduced, we can go one step further:
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Theorem 2.8 (First-Order Approximation of the Lagrangian Specialization). Assume that X
is reduced and X|s is smooth for s ̸= 0. Let Sing(X) = ∪iZi be the decomposition of the singular

locus into its scheme-theoretic irreducible components. Then

sp0ΛX/S = ΛX +
∑
i

(multZiX) · ΛZi,red
+

∑
Y⊂Zi,red

mY ΛY

where multZX is the Samuel multiplicity of Z in X as defined for example in [13, Sec. 4.3], and
the last sum runs over proper subvarieties Y ⊊ Zi,red.

Remark. If the singular locus is 0-dimensional, this computes the full Lagrangian specialization.

Proof. By Proposition 2.6, we have

sp0ΛX/S = ΛX +
∑
i

mZi
ΛZi,red

+
∑

Y⊂Zi,red

mY ΛY


for some coefficients mZi

, mY . The coefficients mZi
are defined locally, thus after restricting to

an open set we can assume that Z = Sing(X) is irreducible and

sp0ΛX/S = ΛX +mZΛZred
.

Let Z := Sing(X/S). Note that by assumption Supp(Z) = Supp(Z) and Z = Z ∩ X. By
Proposition 2.2 we have PΛX/S = BlZ X . We have the following two fiber squares,

sp0(PΛX/S) PΛX/S E

X X Z

f

j

g

i

where the right square is the diagram associated to the blowup f and E is the exceptional
divisor. By definition, we have

f∗[X] = [PΛX/S |0] =: sp0(PΛX/S) = [PΛX ] +mZ [PΛZred
] ∈ CH1(PΛX/S) .

Let O(1) = OPΛX/S
(−E)|E denote the canonical bundle on E associated to the blowup. By 2.2

and [13, B.6.9] there is a canonical embedding

PΛX = BlZX ↪→ BlZX = PΛX/S

and the restriction of the exceptional divisor E′ := E∩BlZX is the exceptional divisor of BlZX.
Thus

g∗

(
j∗[PΛX ] ∩ c1(O(1))d−2

)
= g∗

(
j∗[BlZ′ X] ∩ c1(O(1))d−2

)
= g∗

(
[E′] ∩ c1(O(1))d−2

)
= multZX · [Zred] ∈ CH0(Z) ,

by [13, Sec. 4.3]. Notice that PΛZred
⊂ E. We make the abuse of notation to write [PΛZred

] for
the cycle in CH•(PΛX/S) as well as CH

•(E), when it is clear from the context which Chow ring
we mean. Recall OPΛX/S

(E)|E = O(−1), thus

g∗

(
j∗[PΛZred

] ∩ c1(O(1))d−2
)
= g∗

(
−[PΛZred

] ∩ c1(O(1))d−1
)

= −[Zred] ∈ CH0(Z) ,

as a generic fiber of PΛZred
→ Zred is a (d−1)-plane. By definition [X] = q∗[0] ∈ CH1(X ). Since

Z is supported on a fiber of q we have

0 = i∗q∗[0] = i∗[X] .
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Putting all of this together we have

0 = g∗

(
g∗i∗[X] ∩ c1(O(1))d−2

)
= g∗

(
j∗f∗[X] ∩ c1(O(1))d−2

)
= g∗

(
j∗(ΛX +mZΛZred

) ∩ c1(O(1))d−2
)

= (multZX −mZ)[Zred] ∈ CH0(Z) .

Thus mZ = multZX, as CH0(Z) = [Zred] · Z. □

2.3. Application to Theta Divisors. We have the following corollary to Theorem 2.8:

Corollary 2.9. Let (A,Θ) ∈ Ag and ∪iZi = Sing(Θ) the decomposition of the singular locus of
Θ into its scheme-theoretic irreducible components. Then

deg G ≤ g!−
∑
i

(multZi
Θ)deg(ΛZi,red

) ,

where G : Θ 99K Pg−1 is the Gauss map.

Proof. Let (AS ,ΘS) be a 1-dimensional deformation of (A,Θ), i.e. an abelian scheme over a
smooth curve S with special fiber (A,Θ), such that Θs is smooth for general s. The degree is
invariant in flat families [9, Prop. 2.4], thus

g! = deg ΛΘs (Ex. 2.4)

= deg(sp0ΛΘS/S)

= deg(ΛΘ) +
∑
i

(multZi
Θ)deg(ΛZi,red

) +
∑
Z⊂Zi

mZ deg(ΛZ) (Thm. 2.8)

≥ deg(G) +
∑
i

(multZi
Θ)deg(ΛZi,red

) .

The last assertion follows from the fact that deg ΛZ ≥ 0 for a subvariety Z of an abelian variety
[9, Lem. 5.1]. □

Remark. If the singular locus of Θ is 0-dimensional, there are no other terms in the Lagrangian
specialization and one recovers a result of [8, Rem 2.8]

deg G = g!−
∑

z∈Sing(Θ)

multzΘ .

3. Theta Divisors with Transversal A1 Singularities

The idea of the proof of Theorem 3.5 is to deform a given ppav to a ppav with a smooth
theta divisor. Using the heat equation verified by theta functions, it is then possible to compute
the Lagrangian specialization explicitly. Finally, we use the fact that the degree of Lagrangian
cycles is invariant in flat families.

3.1. Deformation of PPAV’s. Let (A,Θ) ∈ Ag and denote by TA the tangent bundle on A. It
is well-known that there is a canonical identification between H0(A,Sym2(TA)) and infinitesimal
deformations of (A,Θ) [21] and [6, Sec. 3]. Specifically, let

D =
∑
i,j

λij
∂2

∂zi∂zj
∈ H0(A,Sym2(TA)) ,
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where λij ∈ C and ∂z1 , . . . , ∂zg is a basis of H0(A, TA). Then there exists a deformation of (A,Θ),
i.e. an abelian scheme over a smooth quasi-projective curve S

ΘS ⊂ AS → S ,

such that the fiber above 0 ∈ S is (A,Θ). Moreover, locally there are coordinates (z1, . . . , zg, s)
on AS such that the map to S is given by the projection onto the last coordinate, and if θ is the
theta-function defining ΘS we have

(3.1) D(θ) =
∑
i,j

λij
∂2θ

∂zi∂zj
=
∂θ

∂s
.

We call this a deformation in the D direction.

3.2. Computation of the Gauss Degree. We will need the following technical lemma [22,
Lem. 2.26]:

Lemma 3.2 (Morse Lemma with parameters). Let f(x; s) : (Cd × Ck, 0) → (C, 0) be a holo-
morphic function such that the hessian matrix in the first d coordinates

H(f)0 =

(
∂2f

∂xi∂xj
(0)

)
1≤i,j≤d

is non-degenerate. Then there is a local holomorphic change of coordinates hs : (Cd, 0) → (Cd, 0)
such that

f(hs(y); s) =

d∑
i=1

y2i + f(0; s) .

Let (X, 0) = V (f) ⊂ (Cn, 0) be a hypersurface singularity germ. The scheme-theoretic singu-
lar locus of X is defined as

(3.3) Sing(X) := V

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
⊂ (Cn, 0) ,

where x1, . . . , xn are some coordinates on Cn. We have the following:

Proposition 3.4. Let (X, 0) = V (f) ⊂ (Cn, 0) be a hypersurface singularity germ, and
d = codimCnSing(X). The Hessian of f

H(f) :=

(
∂2f

∂xi∂xj

)
1≤i,j≤n

is of rank at most d. The following conditions are equivalent:

i) Sing(X) is smooth at 0.
ii) H(f) is of rank d at 0.
iii) There is a holomorphic change of coordinates x = h(y) such that

f(h(y)) = y21 + · · ·+ y2d .

In this case, we say that X has a transversal A1 singularity at 0.

Proof. (i ⇐⇒ ii) and (iii =⇒ i) are trivial. Let us show (i and ii) =⇒ iii.
After a first change of coordinates we can assume Sing(X) = V (x1, . . . , xd). We have

T0Sing(X) = KerH(f)0, thus

H(f)0 =

(
H̃(f)0 0

0 0

)
,
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where H̃(f) is the Hessian in the first d coordinates. Thus H̃(f) is non-degenerate at 0. By the
Morse Lemma with parameter x′ = (xd+1, . . . , xn), there is a change of coordinates

(x1, . . . , xd) = hx′(y1, . . . , yd)

such that
f(hx′(y);x′) = y21 + · · ·+ y2d + f(0;x′) = y21 + · · ·+ y2d ,

as (0, x′) ∈ Sing(X). □

We say that a variety X has transversal A1 singularities if the equivalent conditions of Propo-
sition 3.4 hold at every singular point of X. We now compute the degree of the Gauss map using
the results of the previous section:

Theorem 3.5. Let (A,Θ) ∈ Ag such that Θ has transversal A1 singularities. Let Z := Sing(Θ)
and

D ∈ |OA(Θ)|Z |
be any smooth divisor of the linear system. Then the degree of the Gauss map G : Θ 99K Pg−1 is

deg G = g!− 2(−1)dimZχ(Z)− (−1)dimDχ(D) ,

where χ denotes the usual topological Euler characteristic.

Proof. Let d = dim(Z). Let θ ∈ H0(A,OA(Θ)) be a non-zero section. Let ∂z1, . . . , ∂zg be a
basis of H0(A, TA). Consider the linear subspace

V :=

〈
∂2θ

∂zi∂zj
|Z

〉
1≤i,j≤g

⊂ H0(Z,OA(Θ)|Z) ,

and let V = PV ⊂ |OA(Θ)|Z | be the associated linear series. Notice that by Proposition 3.4,

the Hessian of θ is of rank d. In particular, at every point x ∈ Z there is a section in V that is
non-zero at x. Thus V is base-point free and by Bertini’s theorem, a general divisor D ∈ V is
smooth. Fix such a smooth divisor D ∈ V . We have

D = div

∑
i,j

λij
∂2θ

∂zi∂zj
|Z


for some λij ∈ C. By the previous section, there is a deformation q : (AS ,ΘS) → S in the
D =

∑
i,j λij∂i∂jθ direction. By 3.1, there are locally coordinates z1, . . . , zg, s on AS such that

q is the projection onto the last coordinate and

D = V

(
∂θ

∂s |Z

)
.

Let ΛΘS/S be the relative conormal variety. By Lemma 3.6 below and Example 2.5 we have

sp0ΛΘS/S = ΛΘ0
+ 2ΛZ + ΛD .

By the local normal form in the lemma below (3.7), Θs is smooth for s ̸= 0. Thus

g! = deg ΛΘs
(Ex. 2.4)

= deg(spsΛΘS/S)

= deg(sp0ΛΘS/S) ([9, Prop. 2.4])

= deg (ΛΘ0 + 2ΛZ + ΛD)

= deg(G) + 2(−1)dimZχ(Z) + (−1)dimDχ(D) (Prop. 2.3 and Ex. 2.1) .

□

We have the following lemma:



140 CONSTANTIN PODELSKI

Lemma 3.6. Let f(z; s) : (Cn×C, 0) → (C, 0) be a holomorphic function such that the singular
locus and the critical locus of f |s=0

Z := V (f, ∂1f, . . . , ∂nf, s) , D := V (∂sf |Z) ⊂ Z ,

are smooth. Then there is a local holomorphic change of coordinates z = hs(z̃) such that

(3.7) f(hs(z̃); s) = z̃21 + · · ·+ z̃2d + z̃d+1s .

Proof. After a change of coordinates in Cn we can assume Z = {z1 = · · · = zd = 0}. We have
f |Z = 0 thus

∂2f

∂zi∂zj
|0 = 0 for 1 ≤ i ≤ n and d+ 1 ≤ j ≤ n.

Thus the Hessian of F in the first n coordinates is

H(F )0 =

(
H(F |Cd

)0 0

0 0

)
.

By Proposition 3.4, H(F ) and thus H(F |Cd
) is of rank d at 0. By the Morse Lemma with

parameters (zd+1, . . . , zn, s), there is a holomorphic change of coordinates

(z1, . . . , zd) = h(z′,s)(z̃1, . . . , z̃d)

where z′ = (zd+1, . . . , zn), such that

f(h(z′,s)(z̃), z
′, s) =

d∑
i=1

z̃2i + f(0, z′, s) .

We have

f(0, z′, 0) = 0 ,

and ∂f
∂s |Z has a simple 0 in zero, thus after a change of coordinates (in z′), we can assume

∂f

∂s |Z
= zd+1 .

Thus

f(0, z′, s) = s(zd+1 + sg(z′, s)) ,

for some holomorphic g. Making the coordinate change

z̃d+1 = zd+1 + sg(z′, s) ,

the lemma follows. □

4. The Family Aδ
t,g−t

We apply Theorem 3.5 to the families Aδ
t,g−t studied by Debarre in [10]. First we recall the

definition and known results about Aδ
t,g−t. Then we compute the Gauss degree for a general

member of these families. Finally we analyse the degree numerically and show that it separates
the corresponding components of the Andreotti-Mayer locus.
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4.1. Definition of the Family. Let A be an abelian variety and L an ample line bundle on A.
Recall that the type δ = (a1, . . . , ak) of L is defined by

Ker(ΦL) ≃
k⊕

i=1

(Z/aiZ)2 , and ai|ai+1 for 1 ≤ i < k ,

where ΦL : A→ Â is the polarization induced by L. We have the following [10], [5, Th. 5.3.5]:

Proposition 4.1 (Complementary Abelian Varieties). Let (A,Θ) ∈ Ag and δ be a polarization
type. Suppose there is an abelian subvariety X ⊂ A of dimension t and the induced polarization
LX = L|X is of type δ. Then there is a unique abelian subvariety Y ⊂ A (of dimension g − t)

such that:

a) The morphism π : X × Y
iX+iY−→ A is an isogeny.

b) We have

π⋆L = LX ⊠ LY , where LY = L|Y .

Moreover LY is also of type δ. We define Aδ
t,g−t ⊂ Ag to be the set of ppav’s verifying the above

conditions.

Reciprocally, if (X,LX), (Y,LY ) are two abelian varieties of the same type δ, of dimension t
and g − t respectively, and ψ : Ker(ΦLX

) → Ker(ΦLY
) is an antisymplectic isomorphism, then

A := X × Y/K ∈ Aδ
t,g−t where K := {(x, ψx) |x ∈ K(LX)} .

ThusAδ
t,g−t is irreducible loci of codimension t(g−t) inAg [10, Sec. 9.3]. ClearlyAδ

t,g−t = Aδ
g−t,t,

so from now on we will assume t ≤ g/2. The loci Aδ
t,g−t are all distinct. Let BX (resp. BY ) be

the base locus of LX (resp. LY ). Recall that by the Riemann-Roch theorem,

h0(X,LX) = h0(Y,LY ) = deg δ =: d .

Thus, for t ≥ d, the base loci BX and BY are non-empty of codimension at most d in X
and Y respectively. Let sX1 , . . . , s

X
d and sY1 , . . . , s

Y
d denote a basis of H0(X,LX) and H0(Y,LY )

respectively. Let s be a generator of H0(A,L). Then

π∗s =
∑
i,j

λijs
X
i ⊠ sYj

for some λij . Taking derivatives, we have

d(π∗s) =
∑
i,j

λij((ds
X
i )⊠ sYj + sXi ⊠ (dsYj )) ,

which vanishes on BX ×BY . Thus

π(BX ×BY ) ⊂ Sing(Θ) ,(4.2)

and Aδ
t,g−t ⊂ N g

g−2d .(4.3)

The main result of Debarre concerning the families Aδ
t,g−t is the following:

Theorem 4.4 ([10, Thm. 10.4 and 12.1]). Let δ ∈ {(2), (3), (2, 2)}, and d = deg δ.

i) If t ≥ d, then Aδ
t,g−t is an irreducible component of N (g)

g−2d. Moreover, for a general

(A,Θ) ∈ Aδ
t,g−t, there is equality in 4.2 and Θ has transversal A1 singularities, and

dimSing(Θ) = g − 2d.
ii) If t = ⌊d/2⌋, a general (A,Θ) ∈ Aδ

t,g−t has smooth theta divisor. In this case,

deg G
(
Aδ

t,g−t

)
= g!.
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We end this section with a result on the dimension of the fibers of the Gauss map. This is a
slight slight improvement on [4, Thm. 1.1] (the bound on the dimension is stronger):

Proposition 4.5. Let (A,Θ) ∈ Aδ
t,g−t, d := deg δ, and suppose 2 ≤ d ≤ t ≤ g/2. Suppose there

is a divisor D ∈ |LX | such that D is smooth at some point x ∈ BX . Then some fibers of the
Gauss map G : Θ 99K Pg−1 are of dimension at least g − t− d+ 1.

Proof. Let π : X × Y → A denote the isogeny of 4.1. Let Θ̃ := π∗Θ ⊂ X × Y . By [10, Prop.
9.1], there is a basis sX1 , . . . , s

X
d (resp. sY1 , . . . , s

Y
d ) of H

0(X,LX) (resp. H0(Y,LY )), such that

Θ̃ = div s , where s =

d∑
i=1

sXi ⊗ sYi .

By assumption, there is a divisor D ∈ |LX | that is smooth at some point x ∈ BX . Thus, after
relabeling the sXi , we can assume div(sXd ) is smooth at x ∈ BX . Let

F = V (sY1 , . . . , s
Y
d−1) \ V (sYd ) ⊂ Y.

For a line bundle L on A we denote by d : L→ L⊗ T∨A the usual differential on A. For y ∈ F ,
we have

dx,ys =
∑
i

dx

(
sXi

)
⊗ sYi (y) + sXi (x)⊗ dy

(
sYi

)
= dx

(
sXd

)
⊗ sYd (y) ̸= 0 .

Moreover for a fixed x ∈ BX , varying y ∈ F only multiplies the conormal vector dxs
X
d by a

constant. Thus the image v = [dxs
X
d ] ∈ PT∨

0 (X × Y ) is the same. Thus the preimage of v by
the Gauss map contains {x} × F which is of dimension at least

dimY − (d− 1) = g − t− d+ 1 .

□

4.2. Gauss Degree on Aδ
t,g−t. Knowing 3.5 and 4.4, the computation of the Gauss Degree on

a general (A,Θ) ∈ Aδ
t,g−t boils down to a relatively simple Euler characteristic computation:

Lemma 4.6. Let (A,Θ) ∈ Aδ
t,g−t, let d := deg δ, assume that Sing(Θ) is smooth, that

codimASing(Θ) = 2d and equality holds in 4.2. Then

χ(Sing(Θ)) = (−1)g−2dt!(g − t)!

(
t− 1

d− 1

)(
g − t− 1

d− 1

)
.

If C ∈ |OA(Θ)|Sing(Θ)
| is smooth, then

χ(C) = (−1)g−2d−1t!(g − t)!ct−d,g−t−d ,

where cm,n is defined by the generating series

x+ y

(1− x)d(1− y)d(1− x− y)
=
∑
m,n

cm,nx
myn .

Proof. We keep the notation of the previous section. By assumption π : BX ×BY → Sing(Θ) is
an isogeny of degree d2, thus

χ(Sing(Θ)) = χ(BX ×BY )/d
2 .

By Riemann-Roch we have h0(X,LX) = h0(Y,LY ) = d. Thus, the base locus BX (resp. BY ) is
the intersection of d divisors in |LX | (resp. |LY |). By assumption, we have

codimX×YBX ×BY = codimASing(Θ) = 2d.
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Thus BX (resp. BY ) is of codimension d in X (resp. Y ), and is a complete intersection of d

divisors in |LX | (resp. |LY |). We thus have NBX/X = L⊕d
X |BX

and by [13, Ex. 3.2.12] and

Riemann-Roch we have

χ(BX) = deg(c(TBX
))

= deg
(
c(TX)|BX

· (c(LX |BX
))−d

)
= deg

(
1 · (1 + c1(LX))−d ∩ [BX ]

)
= deg

∑
k≥0

(
d+ k − 1

d− 1

)
(−1)kc1(LX)k+d ∩ [X]

= (−1)t−dd

(
t− 1

d− 1

)
t! .

The same computation applies to BY , thus

χ(BX ×BY ) = (−1)g−2dd2
(
t− 1

d− 1

)(
g − t− 1

d− 1

)
t!(g − t)! .

We now compute χ(C). Let C ′ = π∗C ⊂ X × Y . Let x = c1(p
∗
XLX) ∈ CH1(X × Y ) and

y = c1(p
∗
Y LY ) ∈ CH1(X × Y ). We have C ′ ∈ |(LX ⊠ LY )|BX×BY

|,[
C ′] = xdyd(x+ y) ∈ CH2d+1(X × Y ) ,

and NC′/X×Y =
(
(p∗XLX)⊕d ⊕ (p∗Y LY )

⊕d ⊕ (LX ⊠ LY )
)
|C′ . By [13, Ex. 3.2.12] we have

c(TC′) = c(TX×Y |C′) · c(NC′/X×Y )
−1

= (1 + x)−d(1 + y)−d(1 + x+ y)−1 ∩ [C ′]

=
xdyd(x+ y)

(1 + x)d(1 + y)d(1 + x+ y)
∩ [X × Y ]

= xdyd
∑
m,n

(−1)m+n+1cm,nx
myn .

The only term of degree g in the above series which does not vanish is xtyg−t and

deg(xtyg−t) = d2t!(g − t)!

by Riemann-Roch. Thus

χ(C) = χ(C ′)/d2 = (−1)g−2d−1t!(g − t)!ct−d,g−t−d .

□

We have the following:

Theorem 4.7. Let δ ∈ {(2), (3), (2, 2)}, let t ≥ d := deg δ, let (A,Θ) ∈ Aδ
t,g−t be general and

G : Θ 99K Pg−1 be the Gauss map. Then

deg G = g!− t!(g − t)!at−d,g−t−d .

where am,n is defined by the generating series

1

(1− x)d(1− y)d
+

1

(1− x)d(1− y)d(1− x− y)
=
∑
m,n

am,nx
myn .
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More explicitly,

deg G = t!(g − t)!

(t− 1

d− 1

)(
g − t− 1

d− 2

)
+

d∑
k=2

(
t− k

d− k

)(
g − t− 1 + k

d− 1

) .

Remark. The theorem above holds more generally when (A,Θ) ∈ Aδ
t,g−t, Sing(Θ) is smooth of

dimension g − 2d and equality holds in 4.2, but we do not know for which values of δ, t and g
this happens in general.

Proof. Let (A,Θ) ∈ Aδ
t,g−t be general. By Theorem 4.4 and Theorem 3.5, there is a smooth

divisor C ∈ |LA|Θsing
| such that

deg G = g!− 2(−1)g−2dχ(Sing(Θ))− (−1)g−2d−1χ(C)) .

Moreover, by Theorem 4.4 we have Sing(Θ) smooth, codimASing(Θ) = 2d and equality holds in
4.2. Thus, by Lemma 4.6 we have

(−1)g−2dχ(Sing(Θ)) = t!(g − t)!

(
t− 1

d− 1

)(
g − t− 1

d− 1

)
= t!(g − t)!

{
1

(1− x)d(1− y)d

}
xt−dyg−t−d

,

Thus

2χ(Sing(Θ)) + χ(C) = t!(g − t)!am,n ,

where ∑
m,n≥0

am,nx
myn =

2

(1− x)d(1− y)d
+

x+ y

(1− x)d(1− y)d(1− x− y)

=
1

(1− x)d(1− y)d
+

1

(1− x)d(1− y)d(1− x− y)
.

We use the combinatorial Lemma 4.8 below to conclude

deg G = g!− t!(g − t)!at−d,g−t−d

= g!− t!(g − t)!

((
t− 1

d− 1

)(
g − t− 1

d− 1

)
+

(
t+ g − t

t

)

−
d∑

k=1

(
t− k

t− d

)(
g − t− 1 + k

d− 1

)
= t!(g − t)!

(t− 1

d− 1

)(
g − t− 1

d− 2

)
+

d∑
k=2

(
t− k

d− k

)(
g − t− 1 + k

d− 1

) .

□

The generating series of the theorem has the following combinatorial interpretation:

Lemma 4.8. Consider the generating series

1

(1− x)d(1− y)d(1− x− y)
=
∑

m,n≥0

Am,nx
myn .

then the coefficient Am,n is equal to the number of (weak) m+ d+ 1 compositions of n+ d

0 ≤ a1 ≤ · · · ≤ am+d ≤ am+d+1 = n+ d ,
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such that am+1 ≥ d. This number is equal to

Am,n =

(
m+ n+ 2d

m+ d

)
−

d∑
k=1

(
m+ d− k

m

)(
n+ d− 1 + k

d− 1

)
.

Proof. Recall that by a (here we mean weak)m composition of n we mean anm-tuple (a1, . . . , am)
such that

0 ≤ a1 ≤ · · · ≤ am−1 ≤ am = n .

The number of m compositions of n is equal to(
n+m− 1

m− 1

)
.

We know that
1

(1− y)d
=
∑
n≥0

(
n+ d− 1

d− 1

)
yn

is the generating series for the d-compositions of n. Moreover,

1

1− x− y
=
∑
n≥0

(x+ y)n =
∑

m,n≥0

(
m+ n

m

)
xmyn

is the generating series for the m+ 1-compositions of n. Thus,

1

(1− y)d(1− x− y)

is the generating series for the (m+d+1)-compositions of n. We can interpret 1/(1−x)d as the
generating series of the m + 1 compositions of d − 1. Thus the coefficient Am,n is in bijection
with the set

m⊔
k=0

{k + 1 composition of d− 1} × {m− k + 1 + d composition of n} .

Now to a k + 1-composition of d − 1 (a1, . . . , ak+1) and a m − k + 1 + d-composition of n
(b1, . . . , bm−k+1+d), we associate a m+ d+ 1-composition of n+ d in the following way:

ãi = ai for 1 ≤ i ≤ k

ãi = bi−k + ak+1 + 1 for k + 1 ≤ i ≤ m+ d+ 1 .

Clearly this gives a bijection to all the m+d+1-compositions of n+d such that am+1 ≥ d. The
inverse map is given by choosing k + 1 to be the first coefficient of the composition above d.
Thus

Am,n = #{m+ d+ 1 compositions of n+ d}

−
d−1∑
k=0

#{m+ d+ 1 compositions of n+ d such that am+1 = k}

= #{m+ d+ 1 compositions of n+ d}

−
d−1∑
k=0

#{m+ 1 compositions of k} × {d compositions of n+ d− k}

=

(
m+ n+ 2d

m+ d

)
−

d−1∑
k=0

(
m+ k

m

)(
n+ 2d− 1− k

d− 1

)
□
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4.3. Numerical Analysis of the Degree. By [9, Th. 1.1] the degree of the Gauss map
deg(G) : Ag → N is a lower-semicontinuous function. For an irreducible locus Z ⊂ Ag, the
degree of the Gauss map thus has to be constant on a dense open subset, and we denote this

degree by deg G(Z). We close this section with a numerical analysis of the degree deg G
(
Aδ

t,g−t

)
for t ∈ {d, d+ 1, . . . , ⌊g/2⌋}. We have the following:

Proposition 4.9. For δ ∈ {(2), (3), (2, 2)} and g ≥ 2d := 2 deg δ, the degree of the Gauss map
on the loci Aδ

t,g−t,

{d, d+ 1, . . . , ⌊g/2⌋} → N

t 7→ deg G
(
Aδ

t,g−t

)
is a strictly decreasing function of t. In particular, the degree of the Gauss map separates these
loci.

Remark. The proposition states that the degree separates the loci Aδ
t,g−t for fixed δ, fixed g,

and varying t. One could ask if this still hold when δ varies, i.e. that the degree of the Gauss
map is different on all loci Aδ

t,g−t for a fixed dimension g. We verified this with a computer up
to g = 1000. This is not true anymore when g varies, as one can check that the lowest pair of
genera where we have an equality of degrees is g1 = 28 and g2 = 30, with

deg G
(
A3

5,28−5

)
= deg G

(
A2

7,30−7

)
= 3908824930919408467968000000 .

Proof. We will prove this by looking at the explicit description of the degree. Recall that by 4.7
the degree is given by

Fg(t) = t!(g − t)!

(t− 1

d− 1

)(
g − t− 1

d− 2

)
+

d∑
k=2

(
t− k

t− d

)(
g − t− 1 + k

d− 1

) .

We will now prove the proposition by doing each possible value of δ separately.
Case δ = (2). In this case the formula becomes

Fg(t) = t!(g − t)!g ,

and this is obviously a decreasing function of t in the range 2 ≤ t ≤ ⌊g/2⌋.
Case δ = (3). In this case,

Fg(t) = t!(g − t)!(−t2 + gt+ 3− g) .

Let f(x) = −x2 + gx+ 3− g. We have

∆Fg(t) := Fg(t+ 1)− Fg(t) = t!(g − t− 1)!(g − 2t− 1)hg(t) ,

with hg(t) = t2 − (g − 1)t+ g − 2. Evaluating we have

hg(3) = 10− 2g < 0 for g ≥ 6

hg

(
g − 1

2

)
= (−g2 + 6g − 9)/4 < 0 for g ≥ 6 .

hg is convex, thus strictly negative on [3, (g − 1)/2], and so Fg is strictly decreasing.
Case δ = (2, 2). Now

Fg(t) = t!(g − t)!
g

12
(2t+ 1− g)hg(t) ,

where

hg(x) = x4 + x3(−2g + 2) + x2(g2 + g − 7) + x(−3g2 + 11g − 8) + 2g2 − 10g + 12 .
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We compute
∂hg
∂x

= (2x+ 1− g)(2x2 + 2x(1− g) + 3g − 8) ,

which is positive for 4 ≤ x ≤ (g − 1)/2. Evaluating at x = 4 we have

hg(4) = 6(g2 − 13g + 42) > 0 for g ≥ 8 .

Thus

∆Fg(t) < 0 for 4 ≤ t ≤ ⌊g/2⌋ − 1 and g ≥ 8 ,

and thus the degree of the Gauss map is strictly decreasing on this range. □

Finally, we study how this degree compares with the degree of the Gauss map on Jacobians.

Proposition 4.10. The degree of the Gauss map on Jacobians is always different than on a
general member of the loci Aδ

t,g−t. Namely, for g ≥ 7, δ ∈ {(2), (3), (2, 2)} and d ≤ t ≤ g/2, we
have

deg G
(
Aδ

t,g−t

)
> detG

(
Jg

)
.

For g = 5 or g = 6 the above inequality fails, but the degrees are still different.

Proof. By Proposition 4.9, the lowest term on the left hand side of the inequality is achieved
when δ = (2) and t = ⌊g/2⌋. Thus we have to study

deg G
(
A2

⌊g/2⌋,g−⌊g/2⌋

)
− deg G(Jg) ≥ g(g/2)!2 −

(
2g − 2

g − 1

)
.

Using Stirlings lower bound for the factorial we have, for g ≥ 22 > 8e

g(g/2)!2 > (g/2)!2 >

(
2g − 2

g − 1

)
.

The remaining values can be checked by hand. For instance for g = 7 we obtain

deg G
(
A2

3,4

)
= 1008 > detG (J7) = 924 .

For g = 6

deg G
(
A2

3,3

)
= 216 , deg G

(
A2

2,4

)
= 288 , deg G (J6) = 252 .

For g = 5

deg G
(
A2

2,3

)
= 60 , deg G (J5) = 70 .

□
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