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A HOMOTOPY INVARIANT OF IMAGE SIMPLE FOLD MAPS TO

ORIENTED SURFACES

LIAM KAHMEYER AND RUSTAM SADYKOV

Abstract. The singular set of a generic map from a closed manifold of dimension at least

2 to the plane is a smooth closed curve. We study the parity of the number of components

of the singular set under the assumption that the map is an image simple fold map, i.e., the
map’s restriction to its singular set is a smooth embedding.

The image of the singular set of a map to a plane inherits canonical local orientations via

so-called chessboard functions. Such a local orientation gives rise to a cumulative winding
number, which is an integer or a half integer. When the dimension of the source manifold is

even, we also define an invariant I which is the residue class modulo 4 of the sum of twice

the number of components of the singular set, the number of cusps, and twice the number of
self-intersection points of the image of the singular set. Using the cumulative winding number

and the invariant I, we show that the parity of the number of connected components of the
singular set does not change under homotopy between image simple fold maps provided that

one of the following conditions is satisfied: (i) the dimension of the source manifold is even,

(ii) the image of the singular set of the homotopy does not have triple self-intersection points,
or (iii) the singular set of the homotopy is an orientable manifold with boundary.

1. Introduction

Singular sets of smooth maps f :M Ñ F of smooth n-manifolds into surfaces played a strong
role in recent various discoveries. Studying singular sets of maps, Gay and Kirby [5] proved
that any smooth closed oriented connected 4-manifold admits a trisecting map to R2, in analogy
to the existence of Heegaard splittings for oriented connected closed 3-manifolds, see also the
paper [3] by Baykur and Saeki for the existence of a simplified trisection. Kalmar and Stipsicz [9]
obtained upper bounds on the complexity of the singular set of maps from 3-manifolds to the
plane. These upper bounds are expressed in terms of certain properties of the link L Ă S3, where
the 3-manifold is obtained via integral surgery along L. Ryabichev [16] gave precise conditions
for the existence of maps of surfaces with prescribed loci of singularities. Kitazawa [10] studied
simple stable maps (of non-negative dimension) of smooth manifolds to Euclidean target spaces,
(R2, in particular) whose singular sets are concentric spheres. Saeki [18] and [19] showed that
every closed connected oriented 3-manifold admits a stable map to a sphere without definite
fold points. Many Z2-invariants of stable maps of 3-manifolds into the plane were found by
M. Yamamoto in [22]. In [20] Saeki constructed an integral invariant of stable maps of oriented
closed 3-manifolds into R2.

A generic smooth map is image simple if its restriction to the singular set is a topological
embedding. In the present paper we study under what conditions the numbers #|Σpfq| and
#|Σpgq| of components of singular sets of two homotopic image simple fold maps f and g of
manifolds of dimension m ě 2 to a surface are congruent modulo two.

This question has been solved in the case m “ 2, and it is partially answered in the case
m “ 3. Namely, M. Yamamoto [23] showed that if f is a map of degree d between oriented
closed surfaces of genera g and h respectively, then the parity of #|Σpfq| is the same as that of
dph ´ 1q ´ pg ´ 1q. On the other hand, in [20] Saeki studied maps of 3-manifolds into surfaces,
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and, in particular, gave an example of two image simple fold maps f, g : S3 Ñ R2 such that the
parities of the number of components of the singular sets of f and g are different.

Our main result is split into three cases; the first being the case when the source manifold is
of even dimension.

Theorem 1.1. Let f and g be two homotopic image simple fold maps from a closed manifold
M of even dimension m ě 2 to an oriented surface F of finite genus. Then, the number of
components of Σpfq is congruent modulo two to the number of components of Σpgq.

To prove Theorem 1.1 we define the cumulative winding number ωpfq P 1
2Z for generic maps

to parallelized surfaces. In general, ω is not a homotopy invariant. However, for image simple
fold maps f, g : M Ñ F to parallelized surfaces, the invariant ω is integral, and the parities of
ωpfq and ωpgq agree. Thus, for image simple fold maps, ω P Z is a Z2-homotopy invariant. We
note that the cumulative winding number we introduce in the present paper is different from the
rotation numbers considered by Levine [12], Chess [4], and Yonebayashi [24].

We now state theorems for the remaining two cases; the first theorem requires that Σpfq does
not undergo any R3 moves (see Fig. 2) during homotopy, while the second requires that the
singular set of the homotopy is orientable.

Theorem 1.2. Let f and g be two homotopic image simple fold maps M Ñ F , where

‚ M is a closed manifold of odd dimension m ą 2 and F is R2 or S2, or
‚ M is a closed oriented manifold of dimension 3, and F is an oriented surface.

Suppose that no R3 moves occur during a generic homotopy from f to g. Then, the number of
components of Σpfq is congruent modulo two to the number of components of Σpgq.

We note that R3-moves are closely related to triple points of the singular sets Σphq of maps
h to R3. These are studied by Saeki and T. Yamamoto [21].

The proof of Theorem 1.2 also utilizes the cumulative winding number ωpfq.

Theorem 1.3. Let f and g be two homotopic image simple fold maps from a closed manifold
M of dimension m ě 2 to a surface F of finite genus. Suppose the surface ΣpHq of singular
points of the homotopy H between f and g is orientable. Then, the number of components of
Σpfq is congruent modulo two to the number of components of Σpgq.

Let #|A2pfq| be the number of cusps of the map f , ∆pfq the number of self-intersection points
of fpΣq, and #|Σpfq| the number of connected components of fpΣq. To prove Theorem 1.3, we
introduce a modulo 4 function

Ipfq ” #|A2pfq| ` 2∆pfq ` 2#|Σpfq| pmod 4q,

and show that it is invariant under generic homotopy whose singular set is orientable. In par-
ticular, the function Ipfq is a homotopy invariant provided that the dimension of the manifold
M is even and the surface F is orientable by Theorem 3.4. In [7], Gromov introduced and more
deeply studied Ipfq as an integer-valued function.

The paper is structured as follows. In section 2 we review the notions of generic maps, stable
maps, and generic families of maps. We note that there are several conflicting definitions of a
generic family of maps in the literature and chose one which is the most convenient for the present
paper. In section 3 we review singularities Aipfq of Morin maps and introduce the manifolds
AIpfq Ă M related to multi-singularities of smooth maps. In section 4, using the manifolds
AIpfq, we list all moves of singularities which occur under a generic homotopy of maps to R2.
For completeness, we give a proof that no other moves are possible. Section 5 serves to introduce
the notion of an abstract singular set diagram. In section 6 we define chessboard functions and
in section 7 we look at examples of chessboard functions. In sections 8 and 9 we define the
cumulative winding number and record how homotopy affects the cumulative winding number,
respectively. In section 10 we prove Theorems 1.1 and 1.2, and in section 11, we prove that Ipfq
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is indeed invariant under homotopy with orientable singular set, and use it to prove Theorem 1.3.
We finish our discussion in section 12 by listing and proving a few applications of our results.

We would like to express our thanks to Osamu Saeki and Masamichi Takase for their comments
and references.

2. Stable and generic maps

In this section we recall the definition of stable maps, generic maps, generic families of maps,
and n-functions.

Let f be a smooth map of a non-negative dimension m ´ n of a manifold M of dimension
m to a manifold N of dimension n. We say that a point x P M is regular if the kernel rank of
f at x is m ´ n. Otherwise, the point x is said to be singular. Recall that a smooth map is
a Thom-Boardman map if for each k, its k-jet extension is transverse to each Thom-Boardman
submanifold of the k-jet space. The singular set Σpfq of a Thom-Boardman map f : M Ñ N is
stratified by smooth submanifolds ΣIpfq Ă M parametrized by Thom-Boardman symbols I.

2.1. Generic maps. Let f : M Ñ N be a Thom-Boardman map. Let xj P ΣIj pfq be distinct
singular points in M with j “ 1, ..., r such that

fpx1q “ fpx2q “ ¨ ¨ ¨ “ fpxrq “ y.

We say that f satisfies the normal crossing condition if for each tuple of points x1, ..., xr as
above the vector spaces

dx1
fpTx1

ΣI1q, ...., dxr
fpTxr

ΣIr q

are in general position in the vector space TyN .

Definition 2.1. We say that a smooth map f is generic if it is a Thom-Boardman map satisfying
the normal crossing condition.

It is known that generic maps are residual in C8pM,Nq, e.g. see [6, p.157].

2.2. Stable maps. A smooth map f : M Ñ N is said to be stable if any smooth map f 1

sufficiently close to f is right-left equivalent to f , i.e., there are diffeomorphisms g of N and h
of M such that f 1 “ g ˝ f ˝ h´1. In fact, there are various equivalent definitions of stability
of smooth maps f : M Ñ N of a closed manifold M to an arbitrary manifold N , e.g., see [6,
Chapter V, Theorem 7.1]. In particular, f is stable if and only if any k-parametric deformation
of f is trivial in the sense of [6, Chapter V, Definition 2.3].

Stable maps are generic, e.g., see [6, Chapter VI, Theorem 5.2]. On the other hand, it is
known that stable maps are not dense in C8pM,Nq, e.g., see [6, p. 160]. In particular, the
sets of stable maps and generic maps are not the same in general. However, a proper map of a
manifold of dimension m to a manifold of dimension n ď 3 such that m ě n is stable if and only
if it is generic [14].

2.3. Generic families of maps. Let ft : M Ñ N be a parametric family of maps parametrized
by a smooth manifold T . It defines a map F : M ˆ T Ñ N ˆ T by F px, tq “ pftpxq, tq, and a
stratification of M ˆ T by submanifolds ΣIpF q, where I ranges over Thom-Boardman symbols.
It is common to define a generic homotopy ft by requiring that the associated map F is generic.
However, we will need a more restrictive definition. Let πT denote the projection of M ˆT onto
the second factor. We say that a parametric family tftu is a generic parametric family if the
associated map F is generic, and the restrictions πT |ΣIpF q are generic for each Thom-Boardman
symbol I. A parametric family tftu is a stable parametric family if any k-parametric deformation
of F px, tq “ pftpxq, tq is trivial.
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2.4. n-functions. In some cases it is helpful to study maps to manifolds of dimension n by means
of pn ´ 1q-parametric families of functions, or, n-functions. More precisely, given a manifold X
of dimension m, and a manifold Y of dimension n ď m, a smooth proper map f : X Ñ Y is
an n-function if for each q P Y , there is a compact neighborhood U of q with a diffeomorphism
ψ : U Ñ r0, 1sn, and a diffeomorphism φ : f´1pUq Ñ r0, 1sn´1 ˆ M for an pm ´ n ` 1q-manifold
M , such that ψ ˝ f ˝ φ´1 : r0, 1sn´1 ˆ M Ñ r0, 1sn´1 ˆ r0, 1s is of the form pt, pq ÞÑ pt, gtppqq,
for some parametric family gt of functions on M . A generic 2-function is also called a Morse
2-function, see [5, Definition 2.7].

Lemma 2.2. Let f : X Ñ Y be a generic smooth proper map of corank 1 to a manifold of
dimension n. Then f is an n-function.

Proof. Let q be a point in Y . Since f is of corank 1, there is a diffeomorphism ψ : U Ñ r0, 1sn

of a neighborhood U of q such that the composition πK
n ˝ ψ ˝ f |f´1pUq is a submersion, where

πK
n : r0, 1sn Ñ r0, 1sn´1 is the projection px1, ..., xnq ÞÑ px1, ..., xn´1q. We may choose U so that

the resulting proper submersion to a disc is a trivial fiber bundle. Then, there is a diffeomorphism
φ : f´1pUq Ñ r0, 1sn´1 ˆ M such that the map ψ ˝ f ˝ φ´1 is of the form pt, pq Ñ pt, gtppqq, for
a parametric family gt of functions on a manifold M of dimension m´ n` 1. □

3. Singularities of maps

In this section we review the definition of generic singularities of smooth maps to surfaces
and manifolds of dimension 3.

Let f be a smooth map f : M Ñ N of non-negative dimension m ´ n of a manifold M of
dimension m to a manifold N of dimension n. The set A0pfq of regular points of f is an open
submanifold of M of codimension 0. We now review the definition of singularity types Ar for
r ě 1 with Thom-Boardman symbol Ir “ pm´ n` 1, 1, ..., 1, 0q of length r ` 1.

We say that a point x P M is a fold point if there is a neighborhood U – Rn´1ˆRm´n`1 about
x, with coordinates px1, ..., xmq in M , and a coordinate neighborhood V – Rn´1 ˆR about fpxq

inN such that fpUq Ă V and f |U is given by a product of the identity map idRn´1 : Rn´1 Ñ Rn´1

and a standard Morse function Rm´n`1 Ñ R with a unique critical point, i.e.,

(1) fpx1, x2, ..., xmq “ px1, ..., xn´1,˘x
2
n ˘ x2n`1 ˘ ...˘ x2mq.

The set of fold points of f is denoted by A1pfq. The number i of terms in (1) among xn, ..., xm
with negative signs is called a relative index of f . We may always choose coordinate neighbor-
hoods so that i ď m´ n` 1 ´ i. The number i with respect to such a coordinate system is said
to be the (absolute) index of the fold point. If the index of the critical point is 0, then x is said
to be a definite fold point. Otherwise, the fold point x is indefinite.

Definition 3.1. We say that the map f is a fold map if every singular point x is a fold point.
Furthermore, a fold map f is an indefinite fold map if every fold point is indefinite.

It immediately follows that if f is a fold map, then the set of singular points Σpfq of f is a closed
submanifold of M of dimension n´ 1, and f |Σpfq is an immersion.

We say that a point x P M is an Ar-singular point for r ą 1, if there is a neighborhood
U Ă M of x, with coordinates pt1, ..., tn´r, ℓ2, ..., ℓr, x1, ..., xm´n`1q, and a neighborhood V Ă N
of fpxq, with coordinates pT1, ..., Tn´r, L2, ..., Lr, Zq, such that fpUq Ă V and the restriction f |U

is given by
Ti “ ti for i “ 1, ..., n´ r,

Li “ ℓi for i “ 2, ..., r,

Z “ ˘x21 ˘ x22 ˘ ¨ ¨ ¨ ˘ x2m´n ` ℓ2xm´n`1 ` ℓ3x
2
m´n`1 ` ¨ ¨ ¨ ` ℓrx

r´1
m´n`1 ˘ xr`1

m´n`1.

Given a map f , the sets Arpfq of its singular points of type Ar are submanifolds of M of
dimension n´ r.
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Definition 3.2. Singular points of types A2 and A3 are called cusp and swallowtail singular
points, respectively.

Definition 3.3. We say that a stable map f : M Ñ N of a smooth manifold M into a surface
N is simple if A2pfq “ H, and for every singular value y, every connected component of the
singular fiber f´1pyq contains at most one singular point. Also, a generic map f : M Ñ N is
said to be image simple if its restriction to the singular set f |Σpfq is a topological embedding.

We note that the term ’image simple map’ is introduced by Saeki in his forthcoming paper.

3.1. Morin Maps. We say that a smooth map f is a Morin map if all its singular points are
of type Ar for r ě 1. It is known that for n ď 3, all generic maps Mm Ñ Rn of non-negative
dimensionm´n are Morin. The singular set Σpfq of a Morin map is a closed smooth submanifold
of M of dimension n ´ 1. Given a Morin map f , for each i, the closure ClpAipfqq is a smooth
submanifold of M possibly with boundary. Furthermore, for each i and j such that i ă j,
the manifold ClpAjpfqq is a submanifold of ClpAipfqq. For a generic Morin map f , we denote
by Aijpfq the set of points x P Aipfq for which there is a distinct point y P Ajpfq such that
fpxq “ fpyq. Similarly, we denote by Aijkpfq the subset of points x P Ai for which there are
distinct points y P Ajpfq and z P Akpfq such that fpxq “ fpyq “ fpzq. We will denote the
restriction of f to AIpfq by f |AI

, for short, where I is either a single index i, or a multi-index
ij or ijk.

When the non-negative dimension m´ n of a map f :M Ñ N is even, we have the following
theorem.

Theorem 3.4. Let f : M Ñ N be a Morin map of non-negative even dimension m´ n into an
oriented manifold N . Then, the set Σpfq is a canonically oriented submanifold of M .

We emphasize that the manifold M in Theorem 3.4 is not necessarily orientable.

Proof. Since ClpA3pfqq is a proper submanifold of Σpfq of codimension 2, the manifold Σpfq is
orientable if and only if the manifold ΣpfqzClpA3pfqq is orientable. Thus, to prove Theorem 3.4,
it suffices to introduce an orientation of Σpfq in the complement to ClpA3pfqq, i.e., only over the
union of A1pfq and A2pfq.

We note that the index of a fold point x depends on the choice of coorientation of the immersed
submanifold fpA1q at the point fpxq. If a fold point x is of index i for one choice of coorientation,
then x is of index m ´ i ´ n ` 1 for the other choice of coorientation. Since the (non-negative)
dimension m ´ n of the map f is even, it follows that the parity of the index is changed when
the coorientation is changed. Consequently, the immersed manifold of fold points fpA1q admits
a unique coorientation at each point fpxq, such that the index of the fold point x with respect
to the coorientation is odd. We say that such a coorientation is canonical.

We orient the immersed manifold fpA1q so that the orientation of fpA1q followed by the
coorientation of fpA1q agrees with the orientation of N . In turn, the orientation of fpA1q

defines an orientation of A1pfq. We claim that the so-defined orientation of A1pfq extends to
an orientation of A1pfq YA2pfq. Indeed, in a coordinate neighborhood U about an A2-singular
point x and a coordinate neighborhood about fpxq, the map f is given by:

Ti “ ti, i “ 1, ..., n´ 2,

L2 “ ℓ2,

Z “ φℓ2pxm´n`1q ˘ x21 ˘ x22 ˘ ¨ ¨ ¨ ˘ x2m´n,

where
pt1, .., tn´2, l2, x1, ..., xm´n, xm´n`1q

are local coordinates about x in M and

pT1, T2, ..., Tn´2, L2, Zq
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are local coordinates about fpxq in N , and for each l2,

φℓ2pxm´n`1q “ ℓ2xm´n`1 ` x3m´n`1

is either a regular function, a Morse function with a cancelling pair of critical points, or a function
with a unique birth-death singularity. For each fold critical value in fpΣ XUq, the direction B

BZ
defines a coorientation of fpΣq at the corresponding critical value. It follows that for each Morse
function φpt1,...,tn´2,ℓ2q, the parities of the indices of the two cancelling Morse critical points are
different. Therefore, the canonical coorientation of one critical point of φpt1,...,tn´2,ℓ2q is given by

B
BZ , while the canonical coorientation for the other critical point is ´ B

BZ . Thus, the coorientation
of fpA1q extends to a coorientation of an immersed smoothing of fpA1 YA2q. This implies that
Σpfq is orientable. □

3.2. Singularities of generic maps to 2-manifolds. Let f : M Ñ N be a generic smooth
map of a manifold of dimension m ě 2 to a manifold N of dimension 2. The map f may only
have regular, fold, and cusp points. The set of regular points forms an open submanifold A0pfq

of M . The complement to the submanifold A0pfq in M is the submanifold of singular points
Σpfq of dimension 1. It contains a discrete set of cusp singular points A2pfq. The rest of Σpfq

is a disjoint union of arcs and circles of fold points A1pfq. The restriction of f to A0pfq is
a submersion. The restriction of f to A1pfq is a self-transverse immersion with 0-dimensional
self-crossings. The images of f |A1 and f |A2 are disjoint.

3.3. Singularities of generic maps to 3-manifolds. Let F : M Ñ N be a generic smooth
map of a manifold of dimension m ě 3 to a manifold of dimension 3. The map F may only have
regular, fold, cusp, and swallowtail map germs. Since F satisfies the normal crossing condition,
the set A11pF q is a submanifold which consists of open arcs and circles. We note that the image
of A11pF q is the self-crossing of the immersion F |A1

, while the image of A12pF q – A21pF q is
the set of intersections of folds with cusps. The image of the set A111pF q is the set of triple
self-intersections of folds. The submanifolds A12pF q Ă A1pF q, A21pF q Ă A2pF q and A111pF q

are of dimension 0, while all other manifolds AijpF q and AijkpF q (except for the aforementioned
manifold A11pF q) are empty.

4. Generic homotopies of maps to R2

In this section we study how the singular set of a map to R2 is modified under generic
homotopy, i.e., under generic one parameter family of maps.

Let F : M ˆr0, 1s Ñ R2 ˆr0, 1s be a homotopy between two generic maps of a closed manifold
M , and let π : M ˆ r0, 1s Ñ r0, 1s denote the projection onto the second factor. Then the
homotopy F is a generic homotopy if F is a generic map and π|AIpF q is a generic function for
each I P tt1u, t2u, t11uu, see §2.3.

Lemma 4.1. The set of generic homotopies is open and dense in the space of all homotopies.

Proof. Any homotopy F 1 sufficiently close to a generic homotopy F is also generic. Indeed, a
map to a manifold of dimension 3 is generic if and only if it is stable. In particular, a generic
homotopy F is a stable map, see §2.2. Hence any homotopy F 1 sufficiently close to F is right-left
equivalent to F , and in particular, generic. Consequently, the set of generic homotopies is open.

Next, let us show that the set of generic homotopies is dense. By the Mather theorem [15],
stable maps to manifolds of dimension 3 are dense. Consequently, any homotopy F can be
approximated by a stable map F 1 : pM ;M ˆ t0u,M ˆ t1uq Ñ pr0, 1s, 0, 1q. On the other hand, an
approximation of a homotopy is a homotopy. Thus, every homotopy F can be approximated by
a homotopy that is a stable map. In particular, we may assume that F is itself a generic map.

If F is a generic map, then A1pF q is a closed surface, while A2pF q and A11pF q are closed
curves. There is a diffeomorphism φ P C8pM ˆ r0, 1s,M ˆ r0, 1sq close to the identity map
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of M ˆ r0, 1s such that the restrictions of π : M ˆ r0, 1s Ñ r0, 1s to AIpF ˝ φq are generic
functions for each I P tt1u, t2u, t1, 1uu. If φ is chosen sufficiently close to the identity map of
M ˆ r0, 1s, then F ˝φ is a generic homotopy close to F . Thus, every neighborhood of F contains
a generic homotopy, i.e., the set of generic homotopies is dense. This completes the proof of
Lemma 4.1. □

We note that members ft of a generic family F “ tftu may not be generic maps. We will
next list several instances when a member ft of a generic homotopy of maps to R2 is not generic.
This list is exhaustive when F is a generic homotopy, see Theorem 4.2.

4.1. List of generic moves.

4.1.1. Reidemeister-II fold crossing. The restriction ft|A1 may not be a self-transverse immersion
for a discrete set of moments t P r0, 1s. If ft is a generic homotopy, and ft|A1 is not self-transverse
at t “ t0, then as t ranges in the interval pt0´ε, t`εq, the map ft|A1

undergoes a Reidemeister-II
fold crossing, see Fig. 1.

Figure 1. Reidemeister-II fold crossing

Figure 2. Reidemeister-III fold crossing

4.1.2. Reidemeister-III fold crossing. Similarly, the map ft|A1
may undergo a Reidemeister-III

fold crossing, see Fig. 2

Figure 3. A cusp passing through a fold curve

4.1.3. Cusp-fold crossing. The cusp-fold crossing occurs when ftpxq “ ftpyq, for a cusp point
x P A2pftq and a fold point y P A1pftq, see Fig. 3.

Figure 4. Wrinkle singularity
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In Figures 4, 5, and 6, the numbers i and i` 1 indicate the relative index of each fold curve.
The relative index for each curve is considered in the direction of the corresponding blue arrow.

4.1.4. Wrinkle singularity. Under a generic homotopy, a new path component of singular points
may appear in the form of a wrinkle, see Fig. 4.

Figure 5. Merging and unmerging 2 cusps

4.1.5. Merge singularity. Under a merge singularity move, a canceling pair of cusp points dis-
appear while the singular set changes by a surgery of index 1 along the canceling pair of cusp
points, see Fig. 5.

Figure 6. Introduction of a swallowtail

4.1.6. Swallowtail singularity. Under a swallowtail singularity move, two cusp points and a self-
intersection point of the singular set appear, see Fig. 6.

Theorem 4.2. Under a generic homotopy F “ tftu of maps to R2, the singular set ΣpF q is
modified by isotopy, as well as the above listed moves.

Proof. Let F : Mˆr0, 1s Ñ R2ˆr0, 1s be a generic homotopy, and let π : Mˆr0, 1s Ñ r0, 1s denote
the projection to the second factor. If π|AIpF q does not have critical points on the levelMˆtt0u,
then for sufficiently small ε ą 0, the singular set AIpftq, parametrized by t P rt0 ´ ε, t0 ` εs, is
modified by an ambient isotopy. Thus, it remains to study modifications of the singular set of
ft corresponding to critical points of the generic functions π|AIpF q. We claim that π|AIpF q has
no critical points when I “ t1u.

Lemma 4.3. The map π|A1pF q is a submersion.

Proof. Over the set A1pF q of critical points, there is a well-defined kernel bundle K1pF q of dF .
In fact, over A1pF q there is a splitting

T pM ˆ r0, 1sq|A1pF q – K1pF q|A1pF q ‘ TA1pF q.

Assume that there is a critical point p P A1pF q of the function π|A1pF q. Then TppA1pF qq is in
the kernel of dpπ. On the other hand, the projection dpπ coincides with the composition

TppM ˆ r0, 1sq ÝÑ TF ppqpR2 ˆ r0, 1sq ÝÑ Tπppqpr0, 1sq

of dpF and the differential of the projection R2 ˆ r0, 1s Ñ r0, 1s onto the second factor. Since
K1pF q|p is in the kernel of dpF , it follows that K1pF q|p is in the kernel of dpπ. To summarize,
we have shown that TppM ˆ r0, 1sq is in the kernel of dpπ, which contradicts the fact that π is a
submersion. □

Let us now consider critical points of the function π|A2pF q.

Lemma 4.4. Let p P A2pF q be a critical point of π|A2pF q. Then p is a critical point of π|ΣpF q.
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Proof. As above, over A2pF q, there is a well-defined kernel bundle K1pF q. Let L denote the
vector subbundle of T pM ˆ r0, 1sq|A2pF q given by K1pF q X T pΣpF qq. It follows that dimL “ 1,
and there is a splitting

T pΣpF qq|A2pF q – L‘ T pA2pF qq.

Since Lp belongs to the kernel K1pF q|p of dpπ, it belongs to the kernel of dpπ|ΣpF q. On the other
hand, if p is a critical point of π|A2pF q, then TppA2pF qq is also in the kernel of dpπ|ΣpF q. Thus,
the point p is a critical point of π|ΣpF q. □

By Lemma 4.4, if p is a critical point of π|A2pF q, then p is also a critical point of the function
π|ΣpF q. If the index of the critical point p is 0, then p corresponds to the appearance (birth) of
a wrinkle singularity in Σpftq. A critical point of index 1 corresponds to the cusp merge move
or its inverse, while a critical point of index 2 corresponds to the disappearance (death) of a
wrinkle singularity.

The critical points of π restricted to the submanifold of double points of A11pF q correspond
to Reidemeister-II fold crossings. All points of A12pF q, A111pF q, and A3pF q are critical in the
sense that the differential of π|AIpF q in these cases vanishes. It remains to observe that points of
A12pF q correspond to cusp-fold crossings, A111pF q correspond to Reidemeister-III fold crossings,
and A3pF q correspond to swallowtail singularities. □

Remark 4.5. The counterpart of Lemma 4.3 for a generic concordance

F : M ˆ r0, 1s Ñ R2 ˆ r0, 1s

of smooth maps is not valid. There are moves of generic concordances that do not occur under
a generic homotopy. Specifically, under a generic concordance, an embedded circle of fold points
may appear or disappear, and the curves of fold points may be modified by embedded surgery
of index 1.

5. Oriented abstract singular set diagrams

The proof of the main results relies on so-called abstract singular set diagrams, which we
introduce now.

Let S denote a closed (possibly not path-connected) manifold of dimension 1 together with
two disjoint families P Ă S and Q Ă S, of finitely many distinguished points. We require
that the number of points in Q is even, and that the points in Q are paired. We denote the
distinguished points in the family P by p1, p2, ..., and the points in Q by q1, q

1
1, q2, q

1
2, ..., where

the points qi and q
1
i are paired. We say that a compact subset of S is an arc if its interior contains

no distinguished points, and its boundary is either empty or consists of the distinguished points.

Definition 5.1. An oriented abstract singular set diagram consists of the manifold S, the families
P and Q, and an orientation of all arcs on S such that

‚ if two arcs α and β share a common point pi P P , then the orientations of α and β agree
‚ if qj P Q is a common point of arcs α and β, while q1

j P Q is a common point of arcs α1

and β1, then the orientations on α and β agree if and only if the orientations on α1 and
β1 agree.

In the stated requirements, we allow that some of the arcs α, β, α1 and β1 may coincide. We
note that as a point x traverses a path component of S, the orientation of S at x, that agrees
with the orientation of an arc containing x, may change only at a point in Q. Furthermore, at
a point in Q the orientation of S may or may not change. For the sake of convenience, we will
simply refer to an oriented abstract singular set diagram as a diagram.
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6. Chessboard functions

In order to properly equip a singular set diagram with a so-called canonical local orienta-
tion and coorientation, we first need to introduce the concept of a chessboard function. Let
f : M Ñ N be a generic smooth map of a closed manifold M of dimension m to an oriented
manifold N of dimension n. We say that a curve γ in N is a generic curve with respect to
fpΣq if it intersects each Thom-Boardman stratum fpΣIq of the singular set transversely. In
particular, we have γ X fpΣq “ γ X fpΣd`1,0q, where d “ m´ n is the dimension of the map f .

If necessary, we can further perturb the generic curve γ, so that it avoids self-intersection
points of the immersed fold surface fpA1q.

Definition 6.1. We say that a locally constant function c : NzfpΣq Ñ Z (respectively,
c : NzfpΣq Ñ Z2) is an integral chessboard function (respectively, a Z2-valued chessboard func-
tion) if the values cpγp´1qq and cpγp1qq differ by precisely 1 for each generic curve γ : r´1, 1s Ñ N
intersecting fpΣq at a unique point γp0q.

We say that a singular value y of a map f is a simple singular value if the fiber f´1pyq

contains a unique singular point. We note that for a generic smooth map, the submanifold of
N of simple fold values is dense in fpΣq. A local orientation of fpΣq is an orientation of the
submanifold of simple fold values. Similarly, a local coorientation of fpΣq is a coorientation in
N of the submanifold of simple fold values. We say that a local orientation of fpΣq agrees with
the local coorientation of fpΣq if the local orientation of fpΣq followed by the local coorientation
of fpΣq agrees with the standard orientation of N .

Definition 6.2. An integral (respectively, Z2-valued) chessboard function c defines a canonical
local coorientation on fpΣq in the direction of the region over which c assumes the smaller
value (respectively, the even value). The local orientation that agrees with the canonical local
coorientation is said to be a canonical local orientation.

Let f : M Ñ F be a stable map of a closed manifold of dimensionm ě 2 to an oriented surface
F , and c a chessboard function, either integral or Z2-valued. Then, the pair pf, cq gives rise to
a diagram pΣpfq;P,Qq, where Σpfq is the singular set of the map f , and the subsets P and Q
of distinguished points are the sets A2pfq and A11pfq respectively. The pairs pqi, q

1
iq of points

in Q are the fold points with the same image in N , i.e. the self-intersection points. Finally, the
orientation of the arcs of Σpfq is the one induced by the canonical local orientation of fpΣq.

Proposition 6.3. Let f : M Ñ F be a generic map of non-negative dimension of a closed
manifold M to an oriented surface F , and c an integral or Z2-valued chessboard function on
F zfpΣq. Then pΣpfq;P,Qq is an oriented singular set diagram, where Σpfq is equipped with the
canonical local orientation.

Proof. Given a generic map f : M Ñ F of a manifold M , we have defined a manifold Σpfq,
together with two families of points P and Q that break fpΣq into canonically oriented arcs. By
Lemma 6.4 below, the orientations of arcs that share a common point in P agree. By Lemma 6.6
below, if qj is a common point of arcs α and β, and q1

j is a common point of arcs α1 and β1, then

the orientations on the arcs α and β agree if and only if the same is true for the arcs α1 and
β1. Thus, indeed, each generic map f of non-negative dimension, together with a chessboard
function, defines an oriented singular set diagram. To complete the proof of Proposition 6.3, it
remains to provide proofs of Lemma 6.4 and Lemma 6.6.

Lemma 6.4. Let α and β be two arcs in Σpfq that share a common endpoint p P P . Then, the
canonical orientations of arcs α and β agree.

Notice that in the statement of Lemma 6.4, we do not require that α and β are distinct.
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Proof. Consider a neighborhoodW Ă F of the image of a cusp point p P P . We may assume that
the curve pfpαq Y fpβqq XW splits W into two regions. The coorientation of fpαq and fpβq are
in the direction of the region where the chessboard function assumes the smaller value for integer
chessboard functions, and an even value for Z2-valued chessboard functions. In particular, these
coorientations agree. Thus, the orientations of α and β agree. □

Suppose now that α, α1, β, β1 are four arcs in Σpfq, such that α and β share a common endpoint
q P Q, while α1 and β1 share a common endpoint q1 P Q, where q and q1 are paired points, i.e.
y “ fpqq “ fpq1q. Then, the curve fpΣqXU breaks a neighborhood U of y in F into four regions.
We call these regions L, T,R,B for left, top, right, and bottom, respectively.

Let pa, b, c, dq be the values of the chessboard function c at four points that are respectively
in the regions L, T,R,B, e.g., see Fig. 7. We note that the order of entries pa, b, c, dq depends
on the choice of, say, the left region L. However, up to cyclic permutations, the tuple pa, b, c, dq

is an invariant of the double point, called the type of the double point.

Lemma 6.5. Each type of double points is either of the form pa, a`1, a, a´1q or pa, a`1, a, a`1q

for some a, where a is a non-negative integer if the chessboard function is integral, and it is an
element of Z2 if the chessboard function is Z2-valued.

The proof of Lemma 6.5 is straightforward; we omit it. We note that if the chessboard function
is Z2-valued, then the two types of double points in Lemma 6.5 are the same.

Figure 7. Coorientation of arcs near double points of types pa´ 1, a, a` 1, aq

on the left, and pa` 1, a, a` 1, aq on the right.

Lemma 6.6. The canonical orientations of α and β agree if and only if the canonical orienta-
tions of α1 and β1 agree.

Proof. We will give an argument for an integral chessboard function; for a Z2-valued chessboard
function the argument is similar. Without loss of generality, we may assume that the arcs are
labeled α, β, α1, β1 as in Fig. 7. By Lemma 6.5, the type of the double point is either of the form
pa, a ` 1, a, a ´ 1q or pa, a ` 1, a, a ` 1q. If the double point is of the form pa, a ` 1, a, a ´ 1q,
then the values of c are as shown on the left schematic of Fig. 7. Therefore, the coorientations,
and hence orientations, of α and β agree. Similarly, the orientations of α1 and β1 agree. If the
double point is of the form pa, a` 1, a, a` 1q, then the values of c are as on the right schematic
of Fig. 7, and therefore, the coorientations, and hence orientations, of α and β do not agree.
Similarly, the orientations of α1 and β1 disagree, as well. □

This completes the proof of Proposition 6.3. □

7. Examples of Chessboard functions

In this section we give several examples of integral chessboard functions. We note that the
reduction modulo 2 turns any integral chessboard function into a Z2-valued chessboard function.



204 LIAM KAHMEYER AND RUSTAM SADYKOV

7.1. The chessboard function for maps of dimension 0 counting path components of
the fiber. Let f : M Ñ N be a generic map of a closed manifold of dimension n to an oriented
manifold of dimension n. We say that the map f is of odd degree if the number of points in the
inverse image of any regular value of f is odd. Otherwise, we say that f is of even degree. For
a regular value y P N of f , let #|f´1pyq| denote the number of path components in the fiber
f´1pyq. Consider the following integer-valued function:

cpyq “

#

#|f´1
pyq|

2 if f is of even degree,
#|f´1

pyq|`1
2 if f is of odd degree.

It immediately follows that c is an integral chessboard function.

7.2. The chessboard function for maps of dimension 1 counting path components of
the fiber. Let f : M Ñ N be a generic map of a closed oriented manifold of dimension n ` 1
to an oriented manifold N of dimension n. For a regular value y P N of f , let cpyq denote the
number of path components in the fiber f´1pyq, i.e.

cpyq “ #|f´1pyq|

We claim that cpyq is a chessboard function on NzfpΣq. Indeed, let z be a fold singular value
of f that is not a self-intersection point of fpΣq. Then there is a disc neighborhood U Q z such
that UzpU X fpΣqq consists of two open discs U1 and U2.

Lemma 7.1. Suppose that f : M Ñ N is a generic map of an oriented closed manifold of
dimension n ` 1 to an oriented manifold N of dimension n. Let y1 P U1 and y2 P U2 be two
points. Then, the number of path components in the fiber f´1py1q differs from the number of
path components in the fiber f´1py2q precisely by 1, i.e.

#|f´1py2q| “ #|f´1py1q| ˘ 1

Proof. Without loss of generality, we may assume that U – Dn´1 ˆ p´1, 1q, while fpΣq X U
coincides with Dn´1 ˆ t0u, where Dn´1 is a disc of dimension n´1. Let γ denote the embedded
curve t0u ˆ p´1, 1q. We may assume that y1 and y2 are points on γ. Now, let π1 : U Ñ Dn´1

denote the projection of U onto the first factor. Then the composition π1˝f |M0 : f
´1pUq Ñ Dn´1

is a proper submersion of the manifold M0 :“ f´1pUq. Indeed, since both f |M0 and π1 are
proper, we deduce that their composition is also proper. To show that f is a submersion we
need to show that the homomorphism dxpπ1 ˝f |M0

q is surjective for each point x P M0. We have

Im dpπ1 ˝ f |M0q “ dπ1pIm dpf |M0qq.

If x P M0, then both dxf and dfpxqπ1 are surjective, and therefore their composition dxpπ1˝f |M0
q

is also surjective. If x P Σpfq, then the image of dxf is TfpxqpDn´1 ˆ t0uq. The restriction of
dπ1 to this space is a surjective map. Thus, again the homomorphism dxpπ1 ˝f |M0

q is surjective.
Consequently, the map π1˝f |M0

is a trivial fiber bundle with fiber diffeomorphic to V :“ f´1pγq,
i.e. M0 – V ˆ Dn´1. In view of the inherited orientation on M0, we deduce that the manifold
V is also orientable.

Now, we examine the number of components of the preimages f´1py1q, f´1py2q which are
subsets of the surface V . Since the restriction f |V : V Ñ γ is a Morse function, the manifold
f´1py2q is obtained from f´1py1q by an elementary oriented surgery. We conclude that the
numbers of path components in f´1py1q and f´1py2q differ by exactly 1. □

Lemma 7.1 shows that the function c counting the number of path components in the regular
fibers of f is an integral chessboard function. In particular, the image of the singular set fpΣq

carries a canonical local coorientation.
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7.3. The Euler chessboard function. Let f : M Ñ N be a generic map of a closed manifold
of dimension n ` 2q for some q ě 0 to an oriented manifold N of dimension n. Let c be the
following continuous integer valued function on RnzfpΣq:

cpyq “

#

χpf´1
pyqq

2 if χpf´1pyqq is even,
χpf´1

pyqq`1
2 if χpf´1pyqq is odd.

Recall that under elementary surgery, the Euler characteristic of fibers in adjacent regions is
changed by ˘2. From this fact, it follows that c is in integral chessboard function.

7.4. The depth function. Let f : M Ñ Rn be a generic smooth map of a closed manifold,
where n ą 1. Given a point y P RnzfpΣq, we say that a path γ is a path to infinity if one
endpoint of γ is contained in the unbounded region of RnzfpΣq. We note that since n ą 1, the
unbounded region is unique. Also, we say that a path ℓy from y to infinity is a generic curve if
it intersects each stratum fpΣIq of the singular set transversely, and the intersection ℓy XfpA11q

is empty. We note that a generic curve ℓy is disjoint from the strata fpΣIq of dimension ď n´2.
Consequently, the curve ℓy only intersects the singular set fpΣq at fold critical values, i.e., the
intersection ℓy X fpΣq is a subset of fpA1q.

The depth function d : RnzfpΣq Ñ Zě0 associates with each point y the minimal number
of intersection points ℓy X fpΣq, where ℓy ranges over all generic paths from y to infinity. For
estimates of the invariant

deppΣq “ mintdpyq | y P RnzfpΣqu

we refer the reader to [7].

Lemma 7.2. Let f : M Ñ Rn be a smooth generic map of a closed manifold of dimension
m ě n. Suppose that n ą 1. Let γ : r´1, 1s Ñ Rn be a smooth embedded curve with image in
pRnzfpMqq Y fpA0q Y fpA1q. Suppose that γ intersects fpA1q transversely at a unique point
γp0q, and define y “ γp1q and z “ γp´1q. Then dpyq “ dpzq ˘ 1.

Proof. Let X denote the set of singular points x P ΣIpfq of types I “ pm ´ n ` 1, 0q and
pm´n` 1, 1, 0q. Then fpXq Ă Rn is a submanifold of codimension 1 with cusps and fpΣzXq is
a finite union of submanifolds of Rn of codimension at least 3. Indeed, the set Σpfq is the union
of sets Σipfq, which consist of points x at which the kernel rank is i, where i “ m´n` 1, ...,m.
If f is generic, then each Σipfq Ă M is a submanifold of codimension ipn´m` iq. In particular,
if i ě m´n`2, then the codimension of Σipfq is at least 4. Similarly, by the Boardman formula
[2, §2.5], the codimension of Σi1,i2,,...,ikpfq is

νi1,...,ikpm,nq “ pn´m` i1qµpi1, ..., ikq ´ pi1 ´ i2qµpi2, ..., ikq ´ ...´ pik´1 ´ ikqµpikq,

where µpi1, ..., ikq is the number of sequences j1, .., jk of non-negative integers such that
j1 ě j2 ě ... ě jk, and i1 ě j1 ą 0, i2 ě j2, ..., ik ě jk. Thus, the codimension of a
singular stratum fpΣIq Ă Rn is at most 2 if and only if I is pm´ n` 1, 0q, or pm´ n` 1, 1, 0q.

Now, let γ Ă Rn be a closed curve intersecting fpΣq transversely at a unique point. Assume,
contrary to the conclusion of Lemma 7.2, that y “ dpγp´1qq does not differ from z “ dpγp1qq by
1. Let ℓy and ℓz be respective paths from y and z to infinity that intersect fpΣq transversely
precisely dpyq and dpzq times. Without loss of generality, we may assume that the path ℓ´1

y ˚γ˚ℓz
is closed, where ˚ is path concatenation. It is important to note that this closed path is null-
homotopic. Furthermore, without loss of generality, we may assume that ℓ´1

y ˚ γ ˚ ℓz avoids
fpΣzXq for all moments of time during the homotopy to a point. Thus, under the specified
generic homotopy of ℓ´1

y ˚ γ ˚ ℓz, the number of intersection points of ℓ´1
y ˚ γ ˚ ℓz with the

stratified manifold fpXq changes by an even number as generically it changes only under finger
moves and their inverses. Therefore, the number dpyq`dpzq`1 of intersection points of ℓ´1

y ˚γ˚ℓz
with fpΣq is even. On the other hand, by definition of the depth function, it is clear that dpyq

differs from dpzq by at most 1. Thus, dpyq differs from dpzq precisely by 1. □
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The depth function can also be defined for any smooth generic map f : M Ñ N of a closed
manifold of dimension m to a pointed manifold of dimension n ď m. In this case, a path to
infinity is a path γ with an endpoint at the distinguished point of N .

We note that the proof of Lemma 7.2 remains valid for maps to simply connected manifolds
N .

8. The cumulative winding number

We first recall the definition of the Gauss map. A parallelized manifold is a manifold N
of dimension n together with a smooth map τ : TN Ñ Rn that restricts to an isomorphism
TxN Ñ Rn for each points x P N . Given an immersion γ : ra, bs Ñ F of a segment into a
parallelized surface, the Gauss map G : ra, bs Ñ S1 associates with a point t P ra, bs the unit

vector τp 9γptqq{|τp 9γptqq|. Let R Ñ S1 “ r0, 1s{„, where t0u „ t1u, be the universal covering

that takes a point x to its congruence class modulo 1. Let G̃ denote a lift of G with respect
to the universal covering. We define the winding number of γ by G̃pbq ´ G̃paq. Given two
parametrizations γ1 and γ of the same immersed curve, it follows that the winding numbers of
γ1 and γ are the same if and only if the orientations of the curve induced by γ and γ1 agree.

Let f be a generic map to a parallelized surface F . Given a chessboard function c on
F zfpΣq, let pΣpfq;P,Qq denote the diagram associated with f . Let α be an arc of the dia-
gram pΣpfq;P,Qq. It corresponds to an arc ᾱ “ fpαq contained in the set fpΣq. The curve
ᾱ is an immersed curve in F , with possible self-intersection points only on the boundary. By
definition, the winding function φ is a function on the set of arcs of fpΣq that associates with
an arc α the winding number φpαq of the curve ᾱ.

Definition 8.1. Suppose that at every self-intersection point of fpΣq the two intersecting seg-
ments are perpendicular. Then the real number

ωpfq :“
ÿ

α

φpαq

is the cumulative winding number of fpΣq, where α ranges over all arcs of Σpfq.

Proposition 8.2. For a generic smooth map f :M Ñ F of a closed manifold M of dimension
m ě 2 to a parallelized surface F , we have

ωpfq P
1

2
Z.

To prove Proposition 8.2 we introduce the notion of a regularization of the singular set. The
regularization of the singular set fpΣq is a smooth embedded closed curve ℜfpΣq Ă F obtained
from fpΣq by smoothing the curve fpΣq near the cusp points as in Fig. 8, and modifying fpΣq

near its self-intersection points. Namely, let y be a self-intersection point of fpΣq. Then near
y the curve fpΣq consists of four arcs α, α1 and β, β1. We remove the four arcs α, β, α1 and β1

from fpΣq and attach two new arcs so that the orientation on fpΣqztα Y β Y α1 Y β1u extends
over the new attached arcs, see Fig. 9, 10, and 11.

Figure 8. Regularization of a Cusp
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Figure 9. Negative Regularization of a Double Point of the form pa, a` 1, a, a` 1q

Figure 10. Positive Regularization of a Double Point of the form pa, a` 1, a, a` 1q

Figure 11. Regularization of a Double Point of the form pa, a` 1, a, a´ 1q

The proof of the following lemma is omitted as it is straightforward.

Lemma 8.3. The regularization of a cusp decreases the cumulative winding number by 1
2 if

the coorientations of α and β are as indicated in Fig. 16, and increases the cumulative winding
number by 1

2 , otherwise.

Lemma 8.4. For a self-intersection point of fpΣq of the form pa, a` 1, a, a` 1q, there are two
regularizations that preserve the orientation of the diagram: ℜ´ and ℜ`. The regularizations
ℜ´ and ℜ` decrease and increase the cumulative winding number by 1

2 respectively. For a self-
intersection point of the form pa, a` 1, a, a´ 1q, the only possible regularization does not change
the cumulative winding number.

Proof. For a self-intersection point of the form pa, a`1, a, a´1q, the only possible regularization
does not change the cumulative winding number, see Fig. 11. If a double point is of the form
pa, a ` 1, a, a ` 1q there are two possible regularizations that preserve orientation. One of the
regularizations increases the cumulative winding number by 1{2, while the other one decreases
the cumulative winding number by 1{2, see Fig. 9, and Fig. 10. The two regularizations are
denoted by ℜ` and ℜ´ respectively. □

Proof of Proposition 8.2. We note that ℜfpΣq consists of embedded curves, and therefore its
cumulative winding number is an integer. On the other hand, under the regularization, the
cumulative winding number is changed by ˘ 1

2 for each regularization of a cusp, and ˘ 1
2 or 0 for

each regularization of a self-crossing. □
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9. Changes of the cumulative winding number under homotopy

We now observe and record how the cumulative winding number is changed under generic
homotopy. We will denote an R2 move by R2pa1, a2, a3, a4q, where the quadruple pa1, a2, a3, a4q

encodes the type of the two self-intersection points that are either being created or removed as
a result of the R2 move. For the remainder of our discussion, we adopt the convention that a1
corresponds to the bounded region. In Fig. 12, this is the region bounded by α2 Y β2.

Lemma 9.1. Let f : M Ñ F be a generic map of a smooth closed manifold of dimension ě 2 to a
parallelized surface. For any integral chessboard function, there are at most five possible types of
R2 moves: R2pa, a´1, a´2, a´1q, R2pa, a`1, a`2, a`1q, R2pa, a`1, a, a´1q, R2pa, a`1, a, a`1q,
and R2pa, a ´ 1, a, a ´ 1q. The moves R2pa, a ´ 1, a ´ 2, a ´ 1q, R2pa, a ` 1, a ` 2, a ` 1q and
R2pa, a` 1, a, a´ 1q do not change ω. The moves R2pa, a` 1, a, a` 1q and R2pa, a´ 1, a, a´ 1q

change the cumulative winding number by 1 and ´1 respectively.

Proof. Consider an R2-move of type R2pa1, a2, a3, a4q. Since the numbers ai represent the values
of an integral chessboard function, we have ai`1 “ ai ˘ 1 and a4 “ a1 ˘ 1. Since up to rotation,
the type R2pa, a ´ 1, a, a ` 1q is the same as R2pa, a ` 1, a, a ´ 1q, the list of R2 moves in the
statement of Lemma 9.1 exhausts all possibilities of different types of R2 moves.

Figure 12. Labeled arcs before and after an R2 move

It remains to compute the changes of the cumulative winding number ω under each R2 type
move. Denote the two arcs undergoing an R2 move by α and β. Without loss of generality, we
assume that β is straight and fixed, so that only α moves under homotopy. After the R2 move,
the two new double points partition the diagram into six arcs: α1, α2, α3, β1, β2, and β3 (see
Fig 12). We notice that for any type of R2 move, the winding numbers of β, α1, α3, β1, β2, and
β3 are trivial. Thus, the change in the cumulative winding number ω is the same as the difference
of the winding numbers of α and α2. For example, for the move R2pa, a ´ 1, a ´ 2, a ´ 1q, the
winding numbers φpαq and φpα2q are ´1{2. Therefore, the cumulative winding number does
not change under the R2 move of type R2pa, a´ 1, a´ 2, a´ 1q. The changes in the cumulative
winding number for the other R2 moves can be calculated similarly. □

Next we turn to the case of swallowtail moves. Denote the swallowtail move that creates a
self-intersection point of type pa1, a2, a3, a4q by ST pa1, a2, a3, a4q, where a1 corresponds to the
bounded region. In Fig. 13, this is the region entrapped by α1 Y α2 Y α3.

For a Z2-valued chessboard function, we say that an R2 move or an ST move is even if the
value of the chessboard function over the bounded region is 0. Otherwise, we say that the R2

move or ST move is odd.

Lemma 9.2. For any Z2-valued chessboard function, there are at most two R2 moves: even and
odd. An even R2 move increases the cumulative winding number by 1, while an odd R2 move
decreases the cumulative winding number by 1.

We omit the proof of Lemma 9.2 since the proofs for even and odd R2 moves are the same as
those for R2pa, a` 1, a, a` 1q and R2pa, a´ 1, a, a´ 1q in Lemma 9.1.

Lemma 9.3. Let f : M Ñ F be a generic map of a smooth closed manifold of dimension
ě 2 to a parallelized surface. For any integral chessboard function there are at most four
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possible types of swallowtail moves, namely, ST pa, a ` 1, a ` 2, a ` 1q, ST pa, a ` 1, a, a ` 1q,
ST pa, a´1, a, a´1q, and ST pa, a´1, a´2, a´1q. Moreover, the moves ST pa, a`1, a`2, a`1q and
ST pa, a ´ 1, a ´ 2, a ´ 1q do not change the cumulative winding number. The moves
ST pa, a` 1, a, a` 1q and ST pa, a´ 1, a, a´ 1q respectively decrease and increase the cumulative
winding number by 1

2 .

Proof. Given a swallowtail type ST pa1, a2, a3, a4q, the numbers ai represent the values of a chess-
board function and therefore satisfy the relations ai`1 “ ai ˘ 1 and a4 “ a1 ˘ 1. Consequently,
ST pa, a`1, a`2, a`1q, ST pa, a`1, a, a`1q, ST pa, a´1, a, a´1q, and ST pa, a´1, a´2, a´1q

are the only possible types of swallowtail moves.

Figure 13. Labeled arcs before and after a swallowtail move

We now calculate how the winding number is affected by the swallowtail move of type
ST pa, a ` 1, a ` 2, a ` 1q. Under such a move, an arc α of the singular set diagram fpΣq is
replaced with five sub-arcs: α1, α2, α3, α4, and α5 (see Fig. 13). Without loss of generality, we
may assume that α1 corresponds to the arc whose endpoints are both cusps. We may assume that
α and α1 are straight, thus φpαq “ φpα1q “ 0. Then φpα2q “ φpα3q “ ´ 1

8 , φpα4q “ φpα5q “ 1
8 ,

and therefore the cumulative winding number of the singular set does not change under the
swallowtail move of type ST pa, a` 1, a` 2, a` 1q.

The change of the cumulative winding number for other types of swallowtail moves can be
calculated similarly. □

Lemma 9.4. For any Z2-valued chessboard function, there are at most two ST moves: even
and odd. An even ST move decreases the cumulative winding number by 1{2, while an odd ST
move increases the cumulative winding number by 1{2.

The proofs of Lemma 9.4 are the same as those for ST pa, a`1, a, a`1q and ST pa, a´1, a, a´1q

in Lemma 9.3.
It remains to examine how the cumulative winding number ωpfq is changed under wrinkles,

R3 moves, cusp-fold moves, and cusp merges.

Lemma 9.5. Let f : M Ñ F be a generic map of a smooth closed manifold of dimension ě 2 to a
parallelized surface. For any integral chessboard function, the wrinkle, cusp merge, and cusp-fold
moves do not change the cumulative winding number associated with the diagram pΣpfq;P,Qq.

Proof. The statements of Lemma 9.5 for wrinkles and cusp merges are easily verified. Next, we
examine how cusp-fold moves affect ω. Label the arcs before and after a cusp-fold move as in
Fig. 14. Then the contribution of φpαq is replaced with φpα1q`φpα2q, the contribution of φpβq is
replaced with φpβ1q`φpβ2q, and the contribution of φpγq is replaced with φpγ1q`φpγ2q`φpγ3q.
Consequently, under a cusp-fold move the winding number is modified continuously. Since the
cumulative winding number is an element of 1

2Z, we conclude that ω is unchanged under cusp-fold
moves. □
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Figure 14. Labeling of arcs involved in a cusp-fold move

Similarly, we can determine changes of cumulative winding number for Z2-valued chessboard
functions.

Lemma 9.6. For Z2-valued chessboard functions, the cusp merge, cusp-fold, and wrinkle moves
do not change the cumulative winding number.

Lemma 9.7. For any integral chessboard function, R3 moves change the cumulative winding
number by ˘1{2 or ˘1 or 0. For any Z2-valued chessboard function, R3-moves change the
cumulative winding number by ˘1.

The following proposition summarizes the above calculations for Z2-valued chessboard func-
tions.

Proposition 9.8. Let f : M Ñ F be a generic map of a smooth closed manifold of dimension
ě 2 to a parallelized surface. For any Z2-valued chessboard function, under generic homotopy of
a stable map f , the cumulative winding number ωpfq may change only under an ST , R2 or R3

move. Under an ST move, the cumulative winding number changes by ˘ 1
2 . Under an R2 or R3

move, the cumulative winding number changes by ˘1.

In the rest of the section we prove Lemmas 9.11 and 9.13. To prove Lemmas 9.11 and 9.13,
we will need Lemmas 9.9 and 9.10.

Lemma 9.9. Lef f : M Ñ F be a smooth map of a closed oriented manifold of dimension 3 to
an oriented surface. Then for the integral chessboard function of §7.2, the coorientation of arcs
in pΣpfq;P,Qq that have a cusp endpoint is as on Fig. 16. The opposite coorientation is not
possible.

Proof. Recall that locally a generic map f : M Ñ R2 is a Morse 2-function. In particular, for a
cusp point p P A2pfq, we may identify a neighborhood V of fppq with r0, 1sˆr0, 1s, and the inverse
image f´1pV q with r0, 1s ˆM0 in such a way that f |f´1pV q is given by pt, xq ÞÑ pt, gtpxqq, where
gt is a family of generalized Morse functions such that gt has no critical points for t P r0, 1{2q,
g1{2 has a unique critical point, and gt has two canceling Morse critical points for t P p1{2, 1s,
see Fig. 15.

Figure 15. The neighborhood V of a cusp point.
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Figure 16. Coorientations of singular arcs near a cusp when M is 3-dimensional

Let α and β be two arcs in fpΣq X V that share the common cusp endpoint p P A2pfq. Then
the indices iα and iβ of the two critical points of g3{4 on the arcs α and β satisfy the relation
iβ “ iα ` 1. The arcs α and β split V into two regions A and B containing the points p0, 1{2q

and p1, 1{2q respectively. Both in the case piα, iβq “ p0, 1q and piα, iβq “ p1, 2q the number of
path components in the inverse image of any point in A is one less than that of any point in B.
Therefore, the coorientations of the arcs α and β are as on Fig. 16. □

Lemma 9.10. Consider a smooth generic map f : M Ñ F of a closed manifold M of even
dimension m ě 2 to an oriented surface. When c is the integral Euler chessboard function, Σpfq

does not have self-intersection points of type pa, a´ 1, a, a´ 1q.

We note that the statement of Lemma 9.10 is not true for the depth chessboard function.

Proof. The intersecting strands of fpΣq break a neighborhood of a self-intersection point into
four regions, which we denote by R, T, L and B, for the right, top, left, and bottom regions,
respectively. Note that the diffeomorphism types of the fibers MR,MT ,ML and MB over points
in the four respective regions do not depend on the choice of regular values. If the manifold MT

is obtained from MR by a surgery of index i, then ML is obtained from MB by a surgery of the
same index i. Since M is of even dimension, we conclude

χpMT q ´ χpMRq “ χpMLq ´ χpMBq “ ˘2.

This rules out the existence of double points of type pa, a´ 1, a, a´ 1q. □

Recall that a cusp-fold move creates or eliminates two double points of the same type. We will
henceforth denote cusp-fold moves creating or eliminating double points of type pa1, a2, a3, a4q

by CF pa1, a2, a3, a4q, and practice the convention that a1 corresponds to the value of a pre-
scribed chessboard function in the bounded region (in Figure 14 this is the region with boundary
α1 Y β1 Y γ2). In particular, there are at most two types of cusp-fold moves involving self-
intersection points of type pa, a´1, a, a´1q, namely, CF pa, a´1, a, a´1q and CF pa, a`1, a, a`1q.

Lemma 9.11. Let f, g : M Ñ F be two homotopic image simple maps of a closed manifold M
to an oriented surface F .

‚ IfM is an oriented manifold of dimension 3, then for the integral or Z2-valued chessboard
function counting path components of fibers, the number of cusp-fold moves involving
self-intersection points of type pa, a´ 1, a, a´ 1q is even.

‚ If π1pF q “ 1 and M is of odd dimension ě 3, then the number of cusp-fold moves
involving self-intersection points of type pa, a´ 1, a, a´ 1q, with respect to the integral or
Z2-valued depth chessboard function, is even.

‚ If the dimension m ě 2 of M is even, then for the integral Euler chessboard function
there are no cusp-fold moves involving self-intersection points of type pa, a´ 1, a, a´ 1q.

Proof. Suppose M is a closed oriented manifold of dimension 3 equipped with the integral or
Z2-vaued chessboard function counting path components of fibers.

If a cusp fold move CF pa1, a2, a3, a4q involves a self-intersection point pa, a´ 1, a, a´ 1q, then
pa1, a2, a3, a4q is obtained from pa, a ´ 1, a, a ´ 1q by a cyclic permutation. In particular, only
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moves CF pa, a ´ 1, a, a ´ 1q and CF pa ´ 1, a, a ´ 1, aq may involve self-intersection points of
type pa, a´ 1, a, a´ 1q. Furthermore, we claim that the only possible cusp-fold moves involving
self-intersection points of type pa, a´ 1, a, a´ 1q are CF pa, a´ 1, a, a´ 1q.

Indeed, if the chessboard function is Z2-valued, then there are no cusp-fold moves except for
CF pa, a´ 1, a, a´ 1q. Suppose now that the chessboard function is integral. Equip pΣpfq;P,Qq

with the chessboard function counting the number of path components of regular fibers. By
Lemma 9.9, all cusps are cooriented as in Fig. 16, and therefore, the value of the chessboard
function over the bounded region is maximal. Thus, indeed, the only possible cusp-fold move
involving self-intersection points of type pa, a´ 1, a, a´ 1q is CF pa, a´ 1, a, a´ 1q.

Similarly, the only possible cusp-fold moves involving self-intersection points of type
pa, a ´ 1, a, a ´ 1q are CF pa, a ´ 1, a, a ´ 1q in the case of maps f : M Ñ F of a manifold
of arbitrary odd dimension m ě 3 equipped with the integral depth chessboard function as the
value of the depth chessboard function over the bounded region of Fig. 14 is greater than the
value over at least over one adjacent region.

On the other hand, every cusp-fold move changes the parity of self-intersection points of the
fold curve where one intersecting segment of the fold curve has an odd index while the other
one has an even index. No other moves change the parity of the number of such self-intersection
points of type pa, a ´ 1, a, a ´ 1q. Since fpΣq and gpΣq are embedded, we conclude that the
number of CF pa, a´ 1, a, a´ 1q moves must be even.

Now, let f : M Ñ F be a generic map of a manifold M of an arbitrary even dimension
m ě 2 to an oriented surface. By Lemma 9.10, there are no self-intersection points of type
pa, a ´ 1, a, a ´ 1q with respect to the Euler chessboard function, and therefore, there are no
cusp-fold moves involving self-intersection points of this type at all. □

Remark 9.12. We note that for an arbitrary chessboard function, its value need not be
maximal over the bounded region created by a cusp-fold move. In general, there may pos-
sibly be six different types of cusp-fold moves: CF pa, a ´ 1, a, a ´ 1q, CF pa, a ´ 1, a, a ` 1q,
CF pa, a´1, a´2, a´1q, CF pa, a`1, a, a`1q, CF pa, a`1, a, a´1q, and CF pa, a`1, a`2, a`1q.

Lemma 9.13. Suppose that f : M Ñ F is a generic map of a closed manifold of even dimension
to a parallelized surface. Then for the integral Euler chessboard function, the cumulative winding
number does not change under homotopy of f .

Proof. Consider a map f to F . By Lemma 9.10, no double points of type pa, a ´ 1, a, a ´ 1q

may occur for the Euler chessboard function. Consequently, the local coorientation of fold
arcs defines a global orientation of the curve of fold points as the coorientations of arcs with
common endpoints agree, see Fig. 7. Therefore, R3 moves do not change the cumulative winding
number. The cumulative winding number is preserved by R2 and ST moves by Lemma 9.1 and
Lemma 9.3. □

10. Proof of Theorem 1.1 and Theorem 1.2

Theorem 1.1. Let f and g be two homotopic image simple fold maps from a closed manifold
M of even dimension m ě 2 to an oriented surface F of finite genus. Then, the number of
components of Σpfq is congruent modulo two to the number of components of Σpgq.

Proof. To begin with let us assume that the target surface is R2. Recall that #|Σpfq| denotes
the number of components of Σpfq. Let c be the integral Euler chessboard function as described
in §7.3.

By Lemma 9.13,
ωpfq ” ωpgq pmod 2q.

Next, utilizing the hypothesis that fpΣq and gpΣq are embedded, we deduce

ωpfq ” #|Σpfq| pmod 2q.
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Combining the previous congruences yields the desired result

#|Σpfq| ” ωpfq ” ωpgq ” #|Σpgq| pmod 2q.

This concludes the proof of Theorem 1.1 in the case of maps to R2.
Now, suppose that F is a closed surface. Let p be a point in F , away from fpΣq. Then the

tangent bundle of F ztpu is trivial. We fix a trivialization τ : T pF ztpuq Ñ R2 of the tangent
bundle. Then the winding number ωpfq is well-defined. Under a generic homotopy of f , the
curve fpΣq may slide through the point p.

Lemma 10.1. As the curve fpΣq slides through the point p, the winding number changes by
˘χpF q, where χpF q denotes the Euler characteristic of the surface F .

Proof. Indeed, let D be a small disc in F centered at p. Recall that for every nowhere zero
vector field u over the boundary of D, there is a well-defined winding number which counts the
number of rotations of upxq with respect to a trivialization of the tangent bundle over D as
x traverses the boundary of D. It is well-known that the winding number of u|BD equals the
sum of indices of critical points of any extension of the vector field u over the disc. Now, let v
denote a nowhere vanishing vector field τ´1pe1q over F z IntpDq trivializing the tangent bundle
of F z IntpDq. It can be extended to a vector field over F , which we still denote by v. The sum
of indices of critical points of v is the Euler characteristic of F . Therefore the winding number
of v|BD with respect to the trivialization of the tangent bundle of D is χpF q. Consequently, if
w is a unit vector field in TF |BD that extends to a unit vector field over D, then the winding
number of w with respect to the trivialization τ of the tangent bundle of F z IntpDq is ˘χpF q.

Suppose tftu is a generic homotopy of f “ f0, parameterized by t P r0, 1s under which
fpΣq slides through the point p. Without loss of generality we may assume that f0pΣq shares
a common point with BD and has no other common points with D. Then the curve f1pΣq is
regularly homotopic in F ztpu to a smoothening of the concatenation of the curves f0pΣq and
BD. Thus, up to sign, the difference between the winding numbers of f0pΣq and f1pΣq is the
Euler characteristic of F . □

Since the surface F is closed and oriented of genus g, we have χpF q “ 2´2g. Thus, the parity
of the winding number is well-defined. Consequently, as in the case when the target surface is
R2, we have

ωpfq ” ωpgq pmod 2q.

This also shows that for every embedded closed curve γ on an oriented closed surface F , there
is a well-defined winding number ρpγq P Z2. The winding number ρpγq does not depend on the
orientation of γ.

Lemma 10.2. Let γ1 and γ2 be two embedded closed curves on an oriented closed surface F .
Suppose that γ1 and γ2 represent the same homology class in H1pF ;Z2q. Then

ρpγ1q ´ #|γ1| ” ρpγ2q ´ #|γ2| pmod 2q,

where #|γi| denotes the number of components of γi, for i “ 1, 2.

Proof. We may assume that the surface F is connected.
Recall that an oriented surgery of an embedded closed curve γ is embedded if the base of

surgery is an embedded strip whose interior is disjoint from the curve γ, see Fig. 17 and 18.
We note that under each oriented embedded surgery the value ρpγq, as well as the modulo two
residue class of #|γ|, is changed. Thus, the value ρpγq ´ #|γ| remains the same.

By performing an appropriate number of elementary surgeries, we may assume γ1 and γ2 are
path connected closed embedded curves. Since γ1 and γ2 represent the same homology class in
H1pF ;Z2q, they are either both separating or non-separating.
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If the curves are non-separating, then there is a diffeomorphism φ of the target surface F
to itself that takes γ1 to γ2. Thus, the parity of ρpγ1q ´ #|γ1| is the same as the parity of
ρpγ2q ´ #|γ2|.

Next, suppose that the curves γ1 and γ2 are separating. Without loss of generality, we may
assume that γ1 and γ2 are disjoint, since there is a diffeomorphism φ of F such that γ1 and
φpγ2q are disjoint. We may always construct a Morse function h on F such that γ1 and γ2 are
two regular level sets of F , say h´1p0q “ γ1 and h´1p1q “ φpγ2q. Each critical point of h in
h´1r0, 1s corresponds to an elementary oriented embedded surgery. The composition of these
elementary oriented embedded surgeries takes γ1 to a curve isotopic to γ2. As mentioned above,
the value of ρpγ1q and the modulo two residue class #|γ1| are changed under each elementary
oriented embedded surgery. Therefore, the value ρpγ1q ´ #|γ1| is preserved.

In both cases, we have deduced the desired result. □

Figure 17. Elementary surgery increasing the number of connected components.

Figure 18. Elementary surgery decreasing the number of connected components.

In view of Lemma 10.2, we conclude that

#|Σpfq| ” #|Σpgq| pmod 2q.

If F is not a closed surface, then it admits an embedding j into a closed surface F 1. Then
the numbers of path components of Σpfq and Σpgq are the same as the numbers of components
of Σpj ˝ fq and Σpj ˝ gq, respectively. Therefore, the case where F is an open surface of finite
genus follows from the case where F is a closed surface. □

Theorem 1.2. Let f and g be two homotopic image simple fold maps M Ñ F , where

‚ M is a closed manifold of odd dimension m ą 2 and F is R2 or S2, or
‚ M is a closed oriented manifold of dimension 3, and F is an oriented surface.

Suppose that no R3 moves occur during a generic homotopy from f to g. Then, the number of
components of Σpfq is congruent modulo two to the number of components of Σpgq.

Proof. We will work with the Z2-valued depth chessboard function if m ą 2 and F is R2 or S2.
If m “ 3 and M is oriented, then we will work with the Z2-valued chessboard function that
counts the number modulo 2 of path components in the preimage of a regular value.
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Since f and g are odd dimensional image simple fold maps to a surface, the homology class of
swallowtail singularities of a homotopy H of f to g is trivial, as the image of the set of swallowtail
singular points of H in F ˆ r0, 1s bounds the set of double points of HpΣq. Therefore, by the
argument in [17], there is a formal homotopy of f to g with no swallowtail singularities. By
the relative h-principle for swallowtail singular points [1], we may assume that the (genuine)
homotopy of f to g does not have swallowtail singular points.

By Lemma 9.11, the number of cusp-fold moves is even since for Z2-valued chessboard func-
tions all cusp-fold moves are of type CF pa, a´ 1, a, a´ 1q.

On the other hand, since there are no swallowtail singular points, the number of pairs of
self-intersection points changes under homotopy by

#|CF | ` #|R2| ” 0 pmod 2q.

Consequently, the number of R2 moves is also even.
Suppose now that F is a parallelized surface. By Proposition 9.8, only swallowtail, R2 and

R3 moves may change the cumulative winding number. We have assumed that the homotopy of
f to g does not involve swallowtail and R3 moves. Therefore, since each R2 move changes the
cumulative winding number by ˘1, and the number of R2 moves is even, we conclude that the
parity of the cumulative winding numbers for f and g are the same. Consequently, the number
of components of Σpfq is congruent modulo two to the number of components of Σpgq.

The argument in the proof of Theorem 1.1 shows that the same conclusion is true in the case
where the target surface F is a sphere if m ą 3, and in the case where F is an oriented surface
of finite genus when m “ 3. Indeed, in both cases we may choose a trivialization of the tangent
bundle of F ztpu. Therefore, by the argument in the previous paragraph, if fpΣq does not slide
through p under the homotopy from f to g, the parities of the cumulative winding numbers
for f and g are the same. On the other hand, when fpΣq slides through p, the cumulative
winding number changes by an even number ˘χpF q, by Lemma 10.1. Therefore, the parities of
the cumulative winding numbers for f and g are the same. Thus, the parities of #|Σpfq| and
#|Σpgq| are the same. □

Remark 10.3. We do not know if the statement of Theorem 1.2 is true for arbitrary closed
oriented surfaces F when m ą 3.

11. The invariant I and proof of Theorem 1.3

In this section we prove Theorem 1.3. The main ingredient of the proof is the Z4-valued
homotopy invariant Ipfq defined in the introduction. We will recall the precise definition of the
function Ipfq in the statement of Lemma 11.1.

Let M be a closed manifold of dimension m ě 2, and f : M Ñ F a smooth stable map to a
surface F . Then, the singular set Σpfq is a closed 1-dimensional submanifold ofM , which consists
of fold points A1pfq, and finitely many cusp points A2pfq. Recall, the number of components
of the singular set Σpfq is denoted by #|Σpfq|, while the number of cusp points is denoted by
#|A2pfq|. We will also consider the number of self-intersection points ∆pfq of fpΣq. We note
that if f is generic, then the image of cusp points is not at the self-intersection points of fpΣq.

Lemma 11.1. Let f, g : M Ñ F be two generic maps of a closed manifold of dimension m ě 2
into a surface. Suppose that there exists a generic homotopy H : M ˆ r0, 1s Ñ F ˆ r0, 1s between
f and g such that the singular set ΣpHq is an orientable submanifold of M ˆ r0, 1s. Then
Ipfq “ Ipgq where

I ” #|A2| ` 2∆ ` 2#|Σ| pmod 4q.

Proof. Let H : M ˆ r0, 1s Ñ N ˆ r0, 1s be a generic homotopy such that Hpx, 0q “ fpxq and
Hpx, 1q “ gpxq. Under the homotopy H, the singular set of f may be modified by any of the six
allowable homotopy moves. Let s denote the number of swallowtail moves and their inverses,
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and m the number of wrinkles, cusp merges, and the inverses of these moves. R3 moves do not
change the number of self-intersection points. Under R2 and cusp-fold moves the number of
self-intersection points may change, but the congruence class of 2∆pfq does not change modulo
4. Therefore,

2∆pgq ” 2∆pfq ` 2s pmod 4q,

since every swallowtail move and their inverse changes the number of self-intersection points of
the image of the singular set by 1. On the other hand, we have

#|A2pgq| ” #|A2pfq| ` 2s` 2m pmod 4q,

since every swallowtail move, wrinkle, cusp merge and their inverse changes the number of cusps
by two. Next, since the singular set of the homotopy H is orientable, every wrinkle, cusp merge
and their inverse changes the parity of #|Σpfq|. Consequently, we also have the congruence

2#|Σpgq| ” 2#|Σpfq| ` 2m pmod 4q.

To summarize,

2#|Σpgq| ` 2∆pgq ` #|A2pgq| ” 2#|Σpfq| ` 2∆pfq ` #|A2pfq| ` 4s` 4m pmod 4q,

which simplifies to

2#|Σpgq| ` 2∆pgq ` #|A2pgq| ” 2#|Σpfq| ` 2∆pfq ` #|A2pfq| pmod 4q,

yielding
Ipgq ” Ipfq pmod 4q.

□

Remark 11.2. When the manifold M is even dimensional and the surface F is orientable,
the singular set Σpfq is necessarily orientable, by Theorem 3.4. Thus, the function Ipfq is a
homotopy invariant for generic maps f :M Ñ F of a closed manifold of even dimension into an
orientable surface.

Corollary 11.3. The function

Ipfq “ #|A2pfq| ` 2#|Σpfq| pmod 4q

is a homotopy invariant of image simple maps f : M Ñ F , where M is an even dimensional
closed manifold and F is an orientable surface.

Corollary 11.4. The function

Ipfq{2 “ ∆pfq ` #|Σpfq| pmod 2q

is a homotopy invariant of simple stable maps f : M Ñ F , where M is an even dimensional
closed manifold and F is an orientable surface.

Theorem 1.3 essentially follows from the existence of the invariant Ipfq.

Theorem 1.3. Let f and g be two homotopic image simple fold maps from a closed manifold
M of dimension m ě 2 to a surface F of finite genus. Suppose the surface ΣpHq of singular
points of the homotopy H between f and g is orientable. Then, the number of components of
Σpfq is congruent modulo two to the number of components of Σpgq.

Proof. Consider the homotopy invariant

Ipfq “ #|A2pfq| ` 2∆pfq ` 2#|Σpfq| pmod 4q.

By assumption, the maps f and g have no cusps and are embedded, therefore

#|A2pfq| “ ∆pfq “ 0 and #|A2pgq| “ ∆pgq “ 0.

Therefore,
Ipfq “ 2#|Σpfq| pmod 4q and Ipgq “ 2#|Σpgq| pmod 4q.
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By Lemma 11.1, we have Ipfq ” Ipgq. Thus, 2#|Σpfq| ” 2#|Σpgq| pmod 4q, which results in
#|Σpfq| ” #|Σpgq| pmod 2q. □

12. Low dimensional applications

In this section we consider examples and applications in the cases of maps to surfaces of
manifolds of dimension m “ 2, 3 and 4.

12.1. Maps of Surfaces to Surfaces. Let f : Fg Ñ Fh be an image simple stable map
of oriented surfaces of genera g and h, respectively. By Theorem 1.1, the number of path
components in Σpfq depends only on the homotopy class of f . In fact, a stronger statement is
true.

Proposition 12.1 (M.Yamamoto [23]).

#|Σpfq| ” degpfqph´ 1q ´ pg ´ 1q pmod 2q.

The above proposition holds for arbitrary g, h ě 0 and even for non-embedded singular value
sets of fold maps. For example, for every fold map f of a sphere into itself (possibly with
self-intersecting fold curve fpΣq), we have

#|Σpfq| ” degpfq ´ 1 pmod 2q.

12.2. Maps of the 3-sphere to the 2-sphere. In [19], Saeki studied fold maps of 3-dimensional
manifolds into surfaces and showed that every closed connected oriented 3-manifold admits a
stable map to the 2-sphere without definite fold points. In particular, for maps of the 3-sphere
into the 2-sphere, Saeki constructed an image simple indefinite fold map f : S3 Ñ S2 such that
Σpfq “ n` 1, where n P Z is the Hopf invariant Hpfq of f . Saeki posed the following question.

Problem 12.2. For an integer n P Z » π3S
2, let us consider stable maps f : S3 Ñ S2 without

definite fold which represent the associated homotopy class and which satisfies that Σpfq ‰ H

and f |Σpfq is an embedding, where Σpfq is the set of singular points of f . Then, is the number
of components of Σpfq congruent modulo two to n` 1?

Saeki solved Problem 12.2 in the negative in [20]. The following corollary shows under what
conditions Saeki’s problem can be answered in the positive. As a corollary of Theorems 1.2
and 1.3, we prove the following statement related to Saeki’s question.

Corollary 12.3. Let f : S3 Ñ S2 be an image simple indefinite fold map with Hopf invariant
Hpfq “ n constructed by Saeki in [19]. If g : S3 Ñ S2 is obtained from f by a homotopy

F : S3 ˆ r0, 1s Ñ S2 ˆ r0, 1s

such that ΣpF q is orientable or F pΣq has no triple self-intersection points, then

#|Σpgq| ” #|Σpfq| ” n` 1 pmod 2q.

12.3. Maps of the 4-sphere to the 2-sphere. As a consequence of Theorem 1.1, we obtain
a result on the 4-dimensional analog of Problem 12.2.

Corollary 12.4. Let f : S4 Ñ S2 be an image simple fold map of the 4-sphere into the 2-sphere.
Then

#|Σpfq| ” 1 pmod 2q.

Proof. Let us examine an image simple fold map representative of both the trivial and non-
trivial elements of π4pS2q – Z2. We respectively denote the equivalence classes of the trivial
and non-trivial elements of π4pS2q by r0s and r1s. The trivial element is constructed via the
standard projection to R2, followed by the inclusion into S2, i.e. fr0s : S4 Ñ R2 ãÑ S2, where
fr0spΣq consists of one closed embedded definite fold curve. Therefore, by Theorem 1.1, any
image simple fold map g P r0s has a singular set such that #|Σpgq| is odd.
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Figure 19. Replacing Lefschetz critical points with cusp and indefinite fold points.

Figure 20. Three cusp merges.

Next, we examine the non-trivial element of π4pS2q. Consider the suspension of the Hopf
fibration H : S3 Ñ S2, defined as ΣH : ΣS3 Ñ ΣS2, which is equivalent to ΣH : S4 Ñ S3.
Composition of the suspended Hopf fibration with the Hopf fibration itself results in the map
fr1s : H ˝ ΣH : S4 Ñ S2. The singular set of fr1s consists of a pair of Lefschetz critical
points, see [13] for a detailed explanation. Each Lefschetz critical point can be deformed into
a component consisting of three cusps and indefinite folds as in Figure 19. For an explicit
description of the move in Figure 19, we refer the reader to the third section of [11].

We then obtain an embedding of three indefinite fold components after thrice merging pairs
of the recently created cusps, see Figure 20. Now, the singular set of the image simple fold map
fr1s has an odd number of components and thus, by Theorem 1.1, the singular set of any image
simple fold map h P r1s must also have an odd number of connected components.

Up to homotopy, we have examined the singular set of all image simple fold maps from
the 4-sphere to the 2-sphere. In all cases, the singular set has an odd number of connected
components. □

Remark 12.5. We note that through steps described in [19], every image simple fold map is
homotopic to an image simple indefinite fold map.

Combining the statement of Remark 11.2 with Corollary 12.4, we obtain the following corol-
lary.

Corollary 12.6. For every smooth stable map f : S4 Ñ S2, we have

Ipfq ” 2 pmod 4q.

We may also combine Corollary 11.4 and Corollary 12.6 to get the following result.

Corollary 12.7. For every simple stable map f : S4 Ñ S2, we have

∆pfq ” #|Σpfq| ` 1 pmod 2q.
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