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GRAPHS OF STABLE MAPS FROM CLOSED ORIENTABLE SURFACES

TO THE 2-SPHERE

D. HACON, C. MENDES DE JESUS AND M.C. ROMERO FUSTER

Abstract. We prove that any bipartite weighted graph can be associated to some stable map

from a closed orientable surface to the sphere and obtain necessary and sufficient conditions
on a graph to be attached to a fold map of a given degree.

1. Introduction

The local behaviour of stable maps between surfaces was described by Whitney, who deter-
mined the typical singularities that these maps may have, namely fold curves with isolated cusps.
More recently, the work of T. Ohmoto and F. Aicardi [17], based on the Vassiliev-type isotopy
invariants [21], has thrown new light on the study of stable maps from a non local viewpoint.
These invariants are related to the behaviour of the branch sets (or apparent contours) of these
maps.

In order to investigate the global classification of stable maps from surfaces to the plane,
graphs of stable maps were introduced in [12] to provide a combinatorial description of the
topology of the singular set (see §2 for the definition). A natural question is to characterize
graphs of stable maps (for example they are necessarily bipartite). In [13] the special case of
stable maps from the sphere to the plane was studied, with emphasis on fold maps (i.e. those
without cusps). The classification of fold maps between manifolds and possible related homotopy
principles has been addressed by various authors ([1], [2], [8], [19], [20]). In [13] it was shown
that any tree with zero weights is the graph of a stable map from the sphere to the plane. On the
other hand, the vertices of any tree may be labelled alternately positive and negative (i.e the tree
is bipartite). Graphs of fold maps from the sphere to the plane were then characterized as being
trees with an equal number of positive and negative vertices. In [14] it was shown that graphs
of stable maps of closed orientable surfaces to the plane are precisely non negatively weighted
bipartite graphs. As for fold maps, it was shown that the characterization in the spherical
case extends to fold maps all of whose regions are planar (this corresponds to the zero weight
condition).

Potential applications of stable maps such as the global study of Gauss maps on closed sur-
faces, or the determination of linking numbers of closed curves in terms of secant maps lead one
to consider stable maps and fold maps from surfaces to the sphere of arbitrary degree (the degree
zero case being essentially that of maps into the plane). In the present article we characterize
graphs of stable maps in this more general setting. The main results are as follows.

1) Any bipartite graph G with non negatively weighted vertices is the graph of a stable map
of a connected orientable and closed (compact and boundaryless) surface into the 2-sphere of
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arbitrary degree. The Euler characteristic of the surface is 2(χ(G) − g), where g stands for the
sum of all the weights in G.

A bipartite graph is said to be balanced provided the difference V +−V − between the numbers
of positive and negative vertices equals the difference g+ − g− between the sums of the weights
of the positive and the negative vertices.

2) A bipartite graph can be the graph of some fold map from a closed orientable surface to
the plane if and only if it is balanced. Moreover, any bipartite graph can be the graph of some
fold map from a closed orientable surface to the sphere of degree (V + − V −) − (g+ − g−) (in
particular, the degree of a fold map may be deduced from its weighted graph).

The basic techniques used here are surgeries on stable maps (together with the corresponding
modification of the graph) and Quine’s Theorem relating the degree and the number of cusps
(with signs) of stable maps between surfaces ([18]). In §3 reduction and extension of graphs are
defined, based on a suitable interpretation of certain codimension one transitions of stable maps
([17]) and used in §4 and §6 in the characterization of graphs of fold maps.

Finally, we notice that the pair given by the graph and the branch set is not enough to
determine the isotopy class of a stable map from a surface to the plane or the sphere. As
explained in §3, there are examples of non equivalent stable maps sharing both, their graph and
their branch set. In order to distinguish between them we need to add some extra information
which can be encoded in the form of Blank’s words [5, 4, 9, 10] conveniently associated to the
curves of the branch set.

2. Stable maps

We first recall some definitions and basic results. Two smooth maps f and g from a surface
M to a surface N are said to be C∞ right-left equivalent (simply, equivalent) if there are diffeo-
morphisms, l and k, such that g ◦ l = k ◦ f . The maps f and g are isotopic if both the above
diffeomorphisms are isotopic to the identity. A map f is said to be stable if all maps sufficiently
close to f (in the Whitney C∞-topology) are equivalent to f .

A point of the source surface M is a non singular point of f if the map f is a local diffeomor-
phism around that point, and singular otherwise. The singular set Σf of f is the set of singular
points of f , and its image Bf = f(Σf) is called the branch set of f . By Whitney’s theorem [11],
for any stable map f : M → N , its singularities are locally of fold type (x, y) 7→ (x2, y), and of
cusp type (x, y) 7→ (x3 + yx, y); Σf is a union of embedded curves on M and Bf is a union of
smooth curves on N with transverse double points and possibly many cusp points. The non-
singular set (which is immersed into the surface N by the map) consists of finitely many regions.
Given orientations of the surfaces M and N , a region is positive if the map preserves orientation
and negative otherwise. The singular set is the frontier of each half (positive or negative) of the
surface M , i.e. any singular curve lies in the frontier of a positive and a negative region. We
denote by M+ (resp. M−) the union of all the positive (resp. negative) regions including their
boundaries. Clearly, M+ and M− meet in their common boundary, the singular set of f .

Topological information of stable maps f may be conveniently encoded in a weighted graph
from which the pair M,Σf may be reconstructed (up to diffeomorphism) ([13], [14]). The edges
and vertices of the graph correspond (respectively) to the singular curves and the regions (i.e.
the connected components of the non-singular set). An edge is incident to a vertex if and only
if the singular curve corresponding to the edge lies in the frontier of the region corresponding to
the vertex. In other words, given a stable map f : M → N , its graph G(f) is the dual graph of
Σf in M . We attach a label to each vertex of the graph, + (or −) for positive (resp. negative)
regions. Since each component of Σf is the boundary of a positive and of a negative region, the
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signs of the vertices are assigned alternatively, that is, the graph G(f) is bipartite. The weight
gv of a vertex v is defined to be the genus of the corresponding region i.e the genus of the closed
surface obtained by adding disk to the region, one for each boundary curve. Figure 1 shows
different stable maps of zero degree from the torus and bi-torus to the plane and their weighted
graphs.

11 1

1

a)                                                           b)                                                            c) 

Figure 1. Stable maps and their graphs

In the particular case of stable maps from the sphere to the sphere, S. Demoto [7] has studied
the isotopy classes corresponding to a graph with a unique edge and 2 vertices. In this case,
the branch set is a connected closed curve which may have cusps and/or self-intersections. For
d = deg(f) ≥ 2, Demoto proves that when the branch set has no self-intersections the number
of cusps of f is at least 2d. Example c) in Figure 2 illustrates a map f : T → S2 with degree 1
whose graph has exactly one edge and the branch set has 4 self-intersections and no cusps. The
examples a) and b) in Figure 2 correspond respectively to stable maps from the sphere and the
torus to the sphere, whose branch set has no cusps and c) its singular set consists of a unique
curve, whereas the second one has degree 1. The corresponding graphs are shown on the left of
each picture. As we shall see later, the basic examples displayed in Figures 1 and 2 will take an
important role in the proofs of the results of this paper.

a)                                                   b)                                                 c)

1

1

Figure 2. Branch sets with 4 self-intersections and no cusps.

We say that the graph G(f) is of type T (G) = (m,n, g) if it has m edges, n vertices and the
total sum of the weights of its vertices is g (called the total weight of G(f)). We observe that
the following relation holds: g(M) = β1(G(f)) + g, where g(M) denotes the genus of M and
β1(G(f)) the 1st Betti number of the graph.

A cusp is called positive (resp. negative) if its local mapping degree is +1 (resp. −1) with
respect to given orientations.
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Figure 3. Example of negative and positive cusps.

Let f be a stable map between closed surfaces M and N of degree deg(f). In [18] it was
shown that

χ(M)− 2χ(M−) + C = deg(f)χ(N),

where χ denotes the Euler characteristic and C = C+−C−, the number of positive cusps minus
the number of negative cusps.

Lemma 2.1. For a stable map f : M → S2 with C = 0 one has

deg(f) = (V + − V −)− (g+ − g−),

where V + (resp. V −) is the number of positive (resp. negative) regions and g+ (resp. g−) the
genus of M+ (resp. M−).

Proof: It follows from Quine’s formula that χ(M) − 2χ(M−) = 2deg(f). Now, χ(M) =
χ(M+) + χ(M−)− χ(M+ ∩M−) = χ(M+) + χ(M−), and thus

χ(M+)− χ(M−) = 2deg(f). (1)

Then the result follows from the relation χ(M±) = 2(V ± − g± −m). �

3. Surgery of stable maps

One way of constructing a stable map is to glue together two stable maps. In particular, in a
surgery, a pair of disjoint disks in the surface is removed and replaced by a tube, the map then
being extended over the interior of the tube. There are two types of surgery: horizontal and
vertical. These were introduced in [14] for stable maps from surfaces to the plane. The extension
of these definitions for stable maps between closed surfaces in general is straightforward:

a) Horizontal surgery. Given a stable map h between two surfaces M and N , a bridge is
an embedded rectangle β in N which meets the branch set Bh in opposite edges (and nowhere
else) compatibly with the orientation of the branch set as shown in Figure 4(a) (see [16]). The
stable map hβ is constructed as follows. The bridge meets h(M) in two intervals, h(I) and h(J),
say. Choose small disks in M one containing I, the other J and replace their interiors by a
tube (i.e. an annulus), respecting the orientation of M, so as to obtain an oriented surface. As
illustrated in Figure 4(a), the map h may then be extended over the tube to give the required
stable map hβ . In particular, if M is the disjoint union of surfaces P and Q and f and g denote
the restrictions of h to P and to Q, with I in P and J in Q then we obtain the horizontal sum
f +hor g. In other words h = f ∪ g and (f ∪ g)β = f +hor g.

b) Vertical surgery. In this case we take a connected sum by identifying two small non-
singular disks in the domain, one positive and one negative (as in Figure 4 (b)) whose images in
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N coincide. The disks are replaced by a tube which is mapped into the plane, with a singular
curve running around the middle of the tube. Thus the surgery adds a disjoint embedded curve
to the branch set. We denote this sum as f +ver g. It is possible also to perform vertical surgery
using a bridge, but this will not be needed here. Observe that horizontal (resp. vertical) surgery
decreases (resp. increases) the number of edges by one.
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Figure 4. Surgeries: (a) horizontal, (b) vertical.

Figure 4 also shows the effects of the surgeries on the graphs. It is easy to see that if Gi
represents the graphs of fi, i = 1, 2 and G1 +hor G2, G1 +ver G2 respectively represent the graphs
of f1 +hor f2 and f1 +ver f2 , then

• T (G1 +hor G2) = T (G1) + T (G2)− (1, 0, 0),
• T (G1 +ver G2) = T (G1) + T (G2) + (1, 0, 0),

Observe that surgeries do not affect the degree. In particular, the degree of a horizontal or
vertical sum of f and g is the sum of the degrees of f and g. In particular, as illustrated in
Figure 5, taking the horizontal connected sum of any stable map f : M → S2 with g : S2 → S2

having two cusps depicted below increases the degree of f by one but does not change its graph.
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Figure 5. Altering the degree and preserving the graph.

c) Transitions. Apart from connected sums we can also use certain transitions in order to
alter the graph and/or the branch set of a stable map. A codimension one transition corresponds
to a generic homotopy from a given stable map f0 to another stable map f1 which is not right-
left equivalent to f0. In other words, this means a path transverse to all the strata of the the
discriminant hypersurface in the mapping space C∞(M,S2). See [12] or [17] for the description
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of all the possible transitions. The interesting transitions, from our viewpoint, are those altering
the numbers of cusps, or of singular curves, namely the swallowtail, beaks and lips transitions.
Figure 6 and 7 show some examples of swallowtail, lips and beaks transitions on a degree one
map from the sphere to the sphere. Clearly, the transitions do not alter the degree, for the new
map remains in the same pathcomponent of C∞(M,S2).

a)                                          b)                                           c)                                            d)

Figure 6. Lips (a→ b) and beaks (b→ d) transitions on maps of the sphere.

We shall focus our attention into a special combination of transitions that will be useful in
the last section of this paper: The double beaks+double inverse swallowtail. This is obtained
by successive application of beaks transitions in two nearby segments of neighbouring singular
curves (with opposite orientations), followed by successive annihilations of two pairs of cusps
(with opposite signs) trough swallowtail transitions. The effects of this homotopy on the graph
and branch set are shown in Figure 7. We observe that the total number of singular curves
decreases by two, which corresponds to the identification of three successive edges to form one
edge of the new graph (referred to as the reduced graph). In particular, by means of successive
reductions, any odd number of consecutive edges in a tree may be identified to form a single
edge in the reduced tree.
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Figure 7. Double beaks + double inverse swallowtail: Reduction of a graph .

The inverse homotopy, double swallowtail+double beaks, obtained by creating two couples of
cusps in a singular curve by means of two swallowtail transitions, followed by a suitable pair of
beaks transitions has the effect of replacing an edge by three consecutive edges in a new graph
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(referred to as the extended graph). Note that the extended graph depends on the location
where transitions happen. For example, as in Figure 8, given an edge pq, the set H (resp. F)
of edges emanating from p (resp. q) is divided into two subsets Hi (resp. Fi), i = 1, 2, so that
these subsets of edges are distributed to created vertices p1, p1, p2, q2 in the extended graph.
Also the weight of p (resp. q) is divided into two weights of p1, p2 (resp. q1, q2). Conversely, the
homotopy in the opposite direction is a reduction of graphs, which gathers edeges and weights.
Clearly these homotopies do not affect the degree of a map.
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Figure 8. Extensions of a graph.

Observe that the graph of any stable map f : M → S2 is bipartite and that χ(M) =
2χ(G(f))− 2g . In particular, M is the sphere if and only if the graph is a tree with all weights
zero. These considerations lead to

Theorem 3.1. Any bipartite graph with non-negatively weighted vertices is the graph of a stable
map of a surface to the sphere of arbitrary degree.

Proof: It was shown in [14] that any bipartite graph may be realized by a stable map of degree
zero from some surface into the sphere. Since the horizontal surgery in Figure 5 does not change
the graph the map may be taken to have arbitrary positive degree. To get negative degree
compose with the antipodal map of the sphere which does not change the graph. �

Remark 3.2. We observe that the pair (graph, branch set) is in general not enough to determine
the isotopy class of a stable map from a closed surface to the plane or the sphere. A good example
of this is obtained from Milnor’s example of a plane curve with 6 double points which can be seen
as the image of the boundary of a 2-disc by two different immersions. If we define a mapping
f : S2 → IR2 by putting it equal to one of these immersions on the lower hemisphere and to
the other on the upper hemisphere, we obtain a fold map from S2 to IR2. On the other hand,
by choosing the same immersion on both hemispheres we get a new fold map from S2 to IR2

which can be joined by a smooth family of fold maps to the orthogonal projection of the unit
2-sphere in IR3 on the equatorial plane. These two maps although share both, their graph and
their apparent contour, are not equivalent [8]. We thus need some extra information which is
encoded in the set of Blank’s words ([4], [5], [10]) associated to the curves of the branch set. Once
we specify a bijection between the edges of the graph and the curves in the branch set, we can
work separately at each vertex by applying the techniques described in [10] in order to recover the
class of the immersion of a surface with boundary associated to it. A convenient assemblage of
these immersions will lead to a stable map class.

4. Fold Maps

In this section we consider fold maps of surfaces into the plane which, of course, are also
fold maps into the sphere of degree zero. We recall that a fold map is a stable map without
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cusps, so that the branch set consists of curves immersed in the plane. In [13] it was shown
that a necessary and sufficient condition for a graph with zero weights to be the graph of a fold
map (of an orientable surface) is that the number of positive and negative vertices be equal.
We generalize this fact to the case of graphs with arbitrary weights. In fact it immediately
follows from Lemma 2.1 that the graph of fold maps f : M → S2 of degree zero is balanced, i.e.,
V +−V − = g+− g−. Furthermore, the converse is also true (Theorem 4.2 below). To show this,
we begin with the case of trees.

Proposition 4.1. Any balanced tree is the graph of a fold map of a surface into the plane and
hence of degree zero into the sphere.

Proof: The proof is by induction on the total weight g of the tree. The case of trees of total
weight zero was proven in [13]. Let T be a balanced tree of total weight g > 0. Denote by g+

(resp.g−) the sum of the weights of the positive (resp. negative) vertices of T . We may suppose
that g+ > 0. There are two cases to consider: a) g− > 0 and b) g− = 0.

a) We may choose a positive vertex v of weight g1 > 0 and a negative vertex w of weight
g2 > 0 and join them by a path in the tree (necessarily consisting of an odd number of
edges). We may assume that vertices of the path have weight zero (otherwise we could
choose a shorter such path). Let T ′ be the tree obtained by reducing the path to a single
edge vw of T ′. The tree T ′ also has total weight g. An important observation is that
reduction leaves g+, g− and V + − V − unchanged (though not V + or V −). Thus T ′ is
also balanced. Let T ′′ be the tree T ′ with the weights g1 and g2 replaced by g1 − 1 and
g2− 1 (Figure 9a)). Thus T ′′ is also balanced. The total weight of T ′′ is clearly g− 2 so
that, by induction, it is the graph of a fold map of a surface to the plane. The connected
sum (along the singular curve corresponding to the edge vw) of this fold map with the
fold map of the bitorus to the plane illustrated in Figure 1 (c) is a fold map with graph
T ′. By applying a sequence of double swallowtail + double beaks transitions we create
a fold map whose graph is T , as required.
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Figure 9. Decomposition of trees.

b) In this case, V + − V − = g+ > 0 so that V + > V − and g+ < V +. Claim: there exists
an extreme (i.e. belonging to just one edge) positive vertex of weight zero. Proof of
claim: Let L be the number of all positive vertices of weight zero. Then it is easy to see
V + − g+ ≤ L and by the assumption we have V − ≤ L. Now, suppose that there is no
extreme positive vertex of weight zero. Fix a negative vertex n and orient all edges of
the tree to be bound for n. Then to each positive vertex p of weight zero we may assign
a negative vertex z ( 6= n) so that zp is an edge pointing toward n. Hence V − > L, that
makes a contradiction. This proves the claim. Thus we may choose v a positive extreme
vertex of weight zero. Now g+ > 0 so there exists a positive vertex w of weight g1 > 0.
There is a path from v to w and we may insist that all vertices of this path between v
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and w have weight zero. Since both v and w are positive the length of the path is even
so we may reduce T to a tree T ′ in which v and w are connected by a path of length
two say vuw. As before, T ′ is also balanced. Now letT ′′ be the tree T ′ with the edge
uv removed and the weight of w reduced by one to g1 − 1 (recall g1 > 0). T ′′ is clearly
also balanced and of total weight g − 1. By hypothesis, T ′′ is the graph of a fold map.
Forming the horizontal connected sum with the fold map from the torus to the plane
(illustrated in Figure 2b)) yields a fold map whose graph is T ′. Finally, as before, a
sequence of double swallowtail + double beaks transitions produces a fold map whose
graph is T .

Clearly, in both cases the map f is a fold map from the closed surface M with Euler charac-
teristic χ(M) = 2− 2g to the plane. �

Theorem 4.2. Any bipartite balanced graph is the graph of a fold map from a surface to the
plane.

Proof: As above, it is enough to find some map f : M → IR2 whose graph is the given one. Now
observe that given any bipartite graph one may obtain a tree with the same vertices by removal
of appropriate edges. Moreover, the graph is balanced if and only if the tree is. We then have
from Proposition 4.1 that this tree may be realized by a fold map f : M → IR2, where M is a
closed surface with genus equal to the sum of all the weights in the tree. Finally we can apply
vertical surgeries on f in order to recover the removed edges, where f may be replaced properly
via homotopy of fold maps if necesary. �

We remark that a general result due to Y. Eliashberg (Theorem B, [8]) implies that for
any closed non necessarily connected curve C separating a closed orientable surface M into
pieces M+ and M− with common boundary C, there exists a fold map from M to the plane
whose singular set is C if and only if χ(M+) = χ(M−). We saw in [12] that there is a 1 − 1
relation between topological classes of curves in a surface M and weighted graphs satisfying
the relation χ(M) = 2(χ(G) − g). Since the condition χ(M+) = χ(M−) amounts to say that
the corresponding graph is balanced, we have that Proposition 4.1 can also be obtained from
Eliashberg result. Nevertheless, we emphasize that whereas Eliashberg’s techniques guarantee
the existence of such a map, those presented here furnish a practical method to construct it.

5. Fold maps with prescribed branching data in the plane

It is a well known fact (see [6] or [15]) that the sum of the winding numbers of the boundary
curves of a surface immersed in the plane is equal to the Euler characteristic of the surface.
Since we can view a fold map from a surface to the plane as a union of immersed surfaces with
boundary, with the boundary curves conveniently identified with the singular set of the map, we
can apply this result in order to obtain information on the branch set curves of fold maps from
closed surfaces to the plane.

Lemma 5.1. Any branch curve of a fold map f : M → IR2, whose graph is a (weighted) tree
has odd winding number (i.e., an even number of double points).

Proof: Consider the tree with each edge indexed by one plus the winding number of the corre-
sponding branch curve. At any vertex v, the local sum of the indices must be equal to χ(Rv),
where Rv denotes the region represented by v. Since the graph is a tree there is a vertex v1 which
belongs to just one edge e1. It follows that the index of e1 must be equal to χ(Rv1)+1 = 2−2ω1,
where ω1 is the weight of v1, and thus even. Removing e1 we obtain a subtree for which the
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local sums are also even. By induction on the number of edges of the tree, starting with the case
of one edge, the indices of the subtree are all even. In other words, the winding numbers are all
odd. �

· · ·· · · · · ·· · ·

a)                                                                          b)

Figure 10. Basic plane curves with odd winding numbers.

Figure 10 displays representatives of two different stable isotopy classes (see [3]) with odd
winding number. We shall denote them respectively as curves of type (1, 0) (10 a)) and (0, 1)
(10 b)). By a curve of type (a, b) we shall understand a connected sum of a curves of type (1, 0)
and b curves of type (0, 1). We shall refer to these curves as basic curves. By a curve of type
(0, 0) we understand an embedded circle.

Let T be a weighted tree with vertices {vk}nk=1 and corresponding weights {ωk}nk=1. We can
order the vertices in such a way that {vk}rk=1 are the positive ones and {vk}nk=r+1 the negative.
To each edge vivj , i = 1, · · · , r, j = r+ 1, · · · , n, we associate a variable Iij . We write Ck for the
sum of the indices Ikj for all the edges vkvj containing vk.

Lemma 5.2. The tree T is balanced if and only if the compatibility conditions

Ck = 2− 2ωk

have a unique solution.

Proof: Since T is a tree the number of edges is n−1. The compatibility condition at any vertex
vk is Ck = 2−2ωk. We thus have a linear system of n equations in n−1 variables. On the other
hand, we have the conditions,

r∑
i=1

(Ci − 2− 2ωi) =
∑

Iij − 2n =

n∑
j=1+r

(Cj − 2− 2ωj),

where the middle sum runs over all the edges of T .Thus any equation is a consequence of the
rest. Now fix a vertex ?. For any vertex vk define dk to be the length of the (unique) path in the
tree between vk and ?. Thus d? = 0, dk = 1 if vk? is an edge, for any edge vivj , di and dj differ
by one and, for any vertex vk 6= ? there is a unique edge vkvs such that dk = ds+1. The equation
Ck = 2 − 2ωk determines Iks in terms of the other variables i.e. in terms of the Iij for which
di = dj + 1. For the largest value of dk, Ck is just Iks, for which Iks = 2− 2ωk is, of course, the
unique solution. Thus the equations Ck = 2−2ωk may be solved uniquely for successively smaller
values of dk up to and including d1 = 1. The remaining equation C? = 2− 2ω∗ is a consequence
of the rest. We observe that the solution consists entirely of even integers, corresponding to the
fact (already proved) that the winding numbers must all be odd. �

Proposition 5.3. Any balanced weighted bipartite graph is the graph of a fold map from a
surface M to the plane whose branch set consists of basic curves.

Proof: It is enough to prove the result for a tree, for, given any balanced graph, we may take a
maximal tree which will also be balanced. If the tree is the graph of a fold map then by doing
vertical surgeries on the fold map we realize the original graph by a fold map. The extra curves
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introduced into the branch set are all embedded circles hence basic. For a tree the proof goes
by induction on the total weight. For zero weighted trees it was shown in [13] by using curves
of type (a, 0), a ∈ ZZ. Suppose the assertion is true for any balanced tree of total weight g and
let T be a balanced tree with total weight g+ 1. We proceed as in Proposition 4.1 and consider
the two cases a) and b) and the corresponding reduced trees. We observe that in both cases, the
decomposition of the reduced tree leads to two fold maps:

• f1, whose branch set is made of a curve of type (0, 1) in case a) and of two curves, one
of type (0, 1) and the other of type (0, 0) in case b), and

• f2, whose graph has total weight lesser than g+ 1 and thus, by the induction hypothesis
can be chosen in such a way that all its branch curves are of Type (a, b).

Now observe that their horizontal sum also gives rise to a fold map whose branch curves are
of type (a, b). Moreover, the new branch curves produced in the extension process in order to
obtain f from f1 +hor f2 may also be taken in in the family of curves of type (a, b) as can be
seen in Figure 11. �
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Figure 11. Different extensions of a graph.

It can be shown that given a natural number ω and a subset {i1, · · · , ik} of odd integers
satisfying the relation

(i1 + 1) + · · ·+ (ik + 1) = 2− 2ω,

we can find an immersion of a surface of genus ω and k boundary components whose respective
winding numbers in the plane are {i1, · · · , ik}. This is proven in a similar way than it was
done for discs with holes in [13]. In that case, the family of curves of type (a, 0) was enough to
perform all the image curves. Here we must consider all the possible types (a, b), for the curves
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of type (0, b) contribute to the genus of the considered surface. In fact, for a torus with a unique
boundary curve, we can use the curve (0, 1) (as in Figure 2a)) and if the curve has genus ω,
then the image curves must be chosen of types {(a1, b1), · · · , (ak, bk)}, with ω ≤ b1 + · · · + bk
for different combinations of these curves defining the image of the boundary of surfaces with
non zero genus). Figure 12 illustrates an inductive method for constructing the image of the
boundary of immersed regions having k boundary components with total winding number i, for
all possible compatible integer sets (i1 + 1, · · · , ik + 1), such that i = i1 + · · ·+ ik. This method
runs in a similar way to the one used in [13] for fold maps from S2 to the plane.

In order to construct a fold map corresponding to a given balanced weighted tree we must
conveniently assemble different immersed regions whose boundary curves are mapped into a
proposed branch set (determined by a given graph).

Proposition 5.4. Let f be a fold map all whose branch curves are of type (a, b) and suppose that
v is an extremal vertex with weight ω. Then the region associated to v has a unique boundary
curve whose image by f is of type (0, ω).

Proof: Since v is an extreme vertex, there is a unique edge attached to it in the graph. The
corresponding branch curve is the image of the boundary of the region Rv represented by v.
Supposing that this is a curve of type (a, b), we must have that a = 0, for curves wit a 6= 0 do
not satisfy Blank’s criterium in order to be the image of the boundary of immersed regions in
the plane [9]. On the other hand, the winding number of this branch curve must coincide with
the Euler characteristic of Rv, therefore, 1− 2ω = 1− 2b and we have the required result. �

Remark 5.5. The results of this section can be transported by stereographic projection to fold
maps of degree zero from surfaces to S2.

6. Biased graphs and Fold maps

Given an integer number d we say that a bipartite weighted graph is is biased by d if the
following equality holds

V + − V − = g+ − g− + d,

where V + and V − respectively denote the numbers of vértices with positive, and negative labels,
and g+ and g− the genus of the corresponding regions.

We shall prove now that any bipartite weighted graph G can be the graph of some fold map
whose degree is equal to the bias of G.

Remark 6.1. We observe that, as illustrated in Figure 13 below, a curve of type (0, d), d ≥ 0,
can be the branch set of a fold map of degree d′(≥ 0) from the surface of genus 2d′′ + d′(≥ 0)
into the sphere, where d = d′ + d′′.

Any fold map (of a surface into the sphere) has a bipartite graph and degree (V + − V −) −
(g+ − g−). Conversely,

Theorem 6.2. Any bipartite weighted graph may be realized by a fold map (of a surface into
the sphere).

Proof: We prove it first for a tree biased by d and then use vertical surgeries, as above, to
extend it to any bipartite graph with bias d. Assume that d is positive (resp. negative). Given
such a tree T , let v be one of its vertices that we may suppose is a positive (resp. negative)
vertex. Consider a new weighted tree, Td, obtained from T by adding d to the weight ω of v.
Clearly, Td is a balanced tree. Then it follows from Propositions 4.1 and 5.3 that there is a zero
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Figure 13. genus versus degree.

degree fold map f : M → S2 whose associated graph is Td, where χ(M) = 2 − 2(g+ + g− + d)
and all the curves in the branch set are of type (a, b). We know from Proposition 5.4 that the
branch curve corresponding to the edge e in Td must be of type (0, ω + d). Now, in view of the
above remark, we can construct a map f ′ : M ′ → S2 with χ(M) = 2− 2(g+ + g−), of degree d,
without changing the graph and the branch set (see Figure 13. �
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