Journal of Singularities Proc. of Singularities in Aarhus
Volume 2 (2010), 128-142 received 1 March 2010

DOI: 10.5427/jsing.2010.2h

A Short Note on Hauser’s Kangaroo Phenomena and
Weak Maximal Contact in Higher Dimensions

Anne Frithbis—Kriiger

Abstract
Currently there are several approaches to resolution of singularities in positive char-
acteristic all of which have hit some obstruction. One natural idea is to try to construct
new meaningful examples at this point to gain a wider range of experience. To produce
such examples we mimic the characteristic zero approach and focus on cases where it
fails. In particular, this short note deals with an example-driven study of failure of
maximal contact and the search for an appropriate replacement.

1 Introduction

Hypersurfaces of maximal contact are one of the key concepts in Hironaka’s inductive proof
of desingularization in characteristic zero, but unfortunately they need not even exist locally
in positive characteristic as e.g. Narasimhan’s example [I3] shows. In [5] and [9] Hauser re-
places hypersurfaces of maximal contact by the characteristic-free notion of hypersurfaces of
weak maximal contact, i.e. hypersurfaces which maximize the order of the subsequent coef-
ficient ideal, but which do not necessarily contain the equiconstant points after all sequences
of blowing ups in permissible centers. In the corresponding approach ([§], [10]) to resolution
of surface singularities in positive characteristic, this modification of the concept of maximal
contact turns out to be sufficient to enter into an approach in the flavour of Hironaka’s origi-
nal induction on the dimension of the ambient space. To obtain desingularisation of surfaces
along those lines, this is, of course, not the only change to the characteristic zero arguments;
important further modifications to certain components of the desingularisation invariant are
required. Considering higher dimensions, however, the first step toward a construction of a
desingularization similar to the characteristic zero approach or even toward new meaningful
examples illustrating the obstructions against it again needs to be a reconsideration of the
right generalization of maximal contact.

For readers convenience, we briefly recall some key concepts in section 2. Here one focus
will be on the question of recognition of a potential kangaroo. In section 3, we start by con-
sidering an example where the original definition of weak maximal contact does not suffice
for the description of a kangaroo phenomenon and then suggest a slightly modified version
which is suitable for any dimension and not just surfaces. Using this new notion of a flag of
weak maximal contact, section 4 is then devoted to examples of the different roles which the
hypersurfaces originating from the flag can play in the course of a sequence of permissible
blowing ups.
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2 Basic facts and definitions

A section of just a few pages is obviously not sufficient to even give a brief overview of the
tools and general philosophy of algorithmic desingularization, let alone all the delicacies of
the case of positive characteristic. On the other hand, more than just 5 pages would be by
far too long compared to the following two sections. Hence we do not attempt this here,
but only very briefly sketch the idea of the characteristic zero resolution process to give a
context, subsequently recalling the notions of hypersurfaces of weak maximal contact and
of kangaroo points in positive characteristic. For additional background information on the
characteristic zero case, we would like to point to more thorough discussions in section 4.2
of [6] from the practical point of view and in [5] embedded in a detailed treatement of the
resolution process. For a detailed introduction to characteristic p phenomena and kangaroo
points see [§].

2.1 The philosophy of the characteristic zero approach

In Hironaka’s original work [I1] and in all algorithmic approaches based on it, e.g. [3],[1],[5],
the general approach is that of a finite sequence of blow-ups at appropriate non-singular
centers. The very heart of these proofs is the choice of center which is controlled by a tuple
of invariants assigned to each point; it is of a structure similarﬂ to the following one

(ord,n;ord,n;...)

with lexicographic comparison, the upcoming center being the set of maximal value of the
invariant. Here ord stands for an order of an appropriate (auxiliary) ideal (see below), n for
a counting of certain exceptional divisors. At each ’;” a new auxiliary ideal of smaller am-
bient dimension, a coefficient ideal, is created by means of a hypersurface of maximal contact.

To fix notation, let W be a smooth equidimensional scheme over an algebraically closed
field K of characteristic zero and X C W a subscheme thereof. We now immediately focus
on one affine chart U with coordinate ring R and denote the maximal ideal at =z € U by m,.
The order of the ideal Ix = (g1,...,9,) C R at a point x € U is defined as

ord;(I) :==max{m € N| I C m]'}.

In characteristic zero, the order of the non-monomial part of an ideal can never increase un-
der blow-ups which makes it a good ingredient for the controlling invariant of the resolution

'n the case of Bierstone and Milman, the very first entry is a finer invariant, the Hilbert-Samuel function.
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process whose decrease marks the improvement of the singularities.

For the descent in ambient dimension, hypersurfaces of maximal contact are required;
these locally contain all points of maximal order, satisfy certain normal crossing conditions
and continue to contain all points at which the maximal order did not yet drop after any
permissible sequence of blow-ups. In characteristic zero, they always exist locally and can
be computed in a rather straight-forward way. The construction of the coefficient ideal for T
at X w.r.t. a hypersurface of maximal contact Z = V(z) is then performed in the following
way:

ord.(I)=1
Coeffz(I)= Y I

k=0

where I, is the ideal generated by all polynomials which appear as coefficients of z* in
some element of I. Given this notion of coefficient ideal, it is possible to rephrase the
condition on a hypersurface of maximal contact from ’containing all points of maximal order’
to 'maximizing the order of the non-monomial part of the arising coefficient ideal under all
choices of hypersurfaces’.

2.2 Weak maximal contact and kangaroos

In positive characteristic, there are well known examples of failure of maximal contact in the
sense that eventually the equiconstant points will leave the strict transform of any chosen
smooth hypersurface (see [I3]). Using the characteristic free formulation of the first condi-
tion for maximal contact, i.e. that it should maximize the order of the non-monomial part of
the subsequent coefficient ideal, and dropping the condition that this should hold after any
permissible sequence of blow-ups, we obtain Hauser’s definition of weak maximal contact. In
this way, Hauser and Wagner [10] then allow passage to a new hypersurface of weak maximal
contact, if the previously chosen one happens to fail to have the maximizing property at some
moment in the resolution process.

Additionally there are examples (see [12]) in which the order of the non-monomial part of
the first coefficient ideal can increase under a sequence of blow-ups in positive characteristic.
In [8] Hauser shows that these two phenomena are closely related in the sense that both arise
in the same rather rare settings and gives an explicit criterion for the possibility of such a
phenomenon, which he calls a kangaroo point focusing on the point where this occurs. In
this article, we often choose to refer to this as a kangaroo phenomenon, emphasizing the fact
that not the point itself is in the center of interest, but the deviation from the characteristic
zero case. Using the same notation for W, X etc. as in the previous section, we now recall
Hauser’s definition:

Definition 1 ([8]) Let 7 : W' — W be a blow-up at a permissible center Z, and x € Z
a point of maximal order ¢ for Ix. Denoting the weak transform of X under m by X', let
¥ € X' Na~(x) be a point at which ord, (Ix:) = c. Then ' is called a kangaroo point, if
the order of the non-monomial part of the coefficient ideal of Ix at x w.r.t. a hypersurface
of weak mazximal contact is less than the order of the non-monomial part of the coefficient
ideal of Ix+ w.r.t. a (possibly newly chosen) hypersurface of weak maximal contact.
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Definition 2 Generalizing Hauser’s notion of a kangaroo point, we shall call a blowing up,
at which such an increase in order occurs for one of the coefficient ideals at some level in the
descent of ambient dimension, a kangaroo phenomenon.

Remark 3 ([8]) A kangaroo point can only occur, if the following conditions are satisfied:

(a) the order ¢ of the ideal Ix at x does not exceed the order of Ix: at x’ and is divisible
by the charateristic of the ground field.

(b) The order of the non-monomial part of the coefficient ideal is a multiple of c. E|

(c) The exceptional multiplicities of the coefficient ideal need to satisfy a certain numerical
inequality (whose specification would need to much room here).

This remark does not yield a sufficient criterion of detection of kangaroos. However, if a
kangaroo phenomenon occurs, then its effect is an increase of order of the non-monomial part
of the coefficient ideal by means of leaving at least two exceptional divisors at the same time

and a suitable change of hypersurface of weak maximal contact (see examples in sections 3
and 4 for details).

Combining the above observations of Hauser with well-known observations by Hironaka
and Giraud, condition (a) can be made a bit more precise. To this end, we need to recall
another singularity invariant, the ridge (french: la faite). Following the exposition of [14], let
us consider the tangent cone C'x , of Ix at x and the largest subgroup scheme Ax , of the
tangent space Ty, satisfying the conditions that it is homogeneous and leaves the tangent
cone stable w.r.t. the translation action. Ay , is called the ridge of the tangent cone of Ix
at x.

It is a well-known, important fact that the ridge can be generated by additive polynomials,
i.e. by polynomials of the form
n
>t
i=1

where p is the characteristic of the underlying field. In characteristic zero the ridge is always
generated by polynomials of degree one; in positive characteristic the occurrence of a ridge not
generated by polynomials of degree one marks a point for which the reasoning of characteristic
zero might break down. Following the exposition of [2] the ridge can also be phrased as the
smallest set of additive polynomials {pi, ..., p,} generating the smallest algebra k[py, ..., p;]
such that

Ix = (Ix Nklp1,...,ps])k[z].

Combining this with Hauser’s condition (a), we obtain a refined version for hypersurfaces,
which, of course, still requires ord,s (Ix/) = ¢ = ord,(Ix) and, additionally, that the ridge
must at least have one generator in higher degree, i.e. in some degree p®. This sharpens the

2For kangaroo phenomena, this condition should analogously read ’one of the coefficient ideals occurring
in the descent of ambient dimension’.
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condition of divisibility of the order by a p-th power to the fact that some variable actually
only occurs as p-th powers in the tangent cone and is implicitly already present in [8]. Ac-
cording to Hauser’s condition (b), the degree of the non-monomial part of the first coefficient
ideal is required to be a multiple of the degree ¢. In contrast to condition (a), this can not
be made more precise by simply adding the condition that the ridge of the non-monomial
part of this coefficient ideal is not generated in degree 1, because higher order generators
of the coefficient ideal might introduce lower degree polynomials into the ridge which allow
dropping of certain contributions arising from the lowest order generators of the ideal. To
illustrate the role of the ridge, we give 3 examples:

Example 1 Over a field K of characteristic 3, consider an affine chart U = A} (with
variables named z,y, z, w) which already results from a sequence of 2 blow-ups and contains
exceptional divisors F; = V(w) and By = V(z), born from the first and second blow-up
respectively. (These two blow-ups are indeed necessary for the possibility of an occurrence of
a kangaroo point after the subsequent blowing up, according to Hauser’s technical condition
(c¢) which was not formulated explicitly in the previously stated remark.)

Locally at the coordinate origin of this chart, consider the three subvarieties of A% defined
by the following ideals:

o Iy, = (% + 21410(26 — b))
This is the strict transfornf®| of (% + 213 — zw'®) under the two blow-ups. The ridge of
Ix, can obviously be described by {23}, the non-monomial part of its first coefficient
ideal is
(212 4 250w 4 w2y,

with ridge {22, w?3}.
After blowing up again at the origin, we obtain (in the F3 = V(w)-chart) the strict
transform

Ix; = (23 + 2w (2% — 1))

which after a coordinate change z,¢, = z — 1 and a passage to a new hypersurface
of weak maximal contact V(z + 22,,w%) = V(Zpew) reads as Lyansy. = (T3, +
28 oW (= Znew + h.o.t.)). Since z,e, does not correspond to an exceptional divisor,
this has a non-monomial part of the first coefficient ideal of the form

(zhe, + h.o.t.).

This ideal is of order 14 as compared to the corresponding order 12 before the last
blowing up which clearly indicates the occurrence of a kangaroo point.

o Iy, = {22y + 2Mw'0(z5 — wb))
This is the strict transform of (z2y + 2! — 2w'®) under the two blow-ups[] The ridge of

3 Actually this is the weak transform of Ix, which in the principal ideal case happens to coincide with the
strict transform.

4Here we are actually already deviating a bit from Hauser’s original definition, because we consider an
initial part involving 2 variables and then descend in ambient dimension in one step of 2 to V(z,y) seen as
a hypersurface in V (z) which is in turn a hypersurface in A%. This is possible by collecting all coefficients of
monomials of the form z%y® with a + b = k into the ideal I;; for more details on this see e.g. [7], where this
has been used in a very explicit way.
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Ix, is obviously {z, y}, the non-monomial part of its coeflicient ideal w.r.t. the descent
in ambient dimension to V (z,y) is

<212 +26w6 +wl2>

as before with ridge {z3,w?}.
After blowing up again at the origin, we obtain (in the F3 = V(w)-chart) the strict
transform

Ix; = (z%y + 2w (2° - 1))

for which even a coordinate change z,e, = z — 1 cannot lead to a kangaroo point,
because no suitable passage to new hypersurfaces of weak maximal contact killing the
term 28, w?" is available. This could already be expected at the beginning due to the

fact that the ridge of Ix, is generated in degree 1.

The third example is of a different flavor and only serves to illustrate, how higher order
generators of the ideal might influence the ridge in a way which is not desirable for the
consideration of coefficient ideals:

o Iy, = (2% + 2Mw0(26 — w), 230wl7(y19 + 5 2Tw3))

This is the weak transform of (23 + 2!3 — zw!8, 45218 + y1%w) under the two blow-ups.
The ridge of Ix, is obviously {z3,y, z,w}, whereas only the hypersurface V(x) can be
chosen as hypersurface of weak maximal contact. The non-monomial part of the first
coefficient ideal is

<Zl2 + 2’6’(1}6 + ,w127 (26 _ ’U}6)<2’16U}7(y19 + y5z7w3)),
232’(1)14(3}38 _ y24z7w3 + y10z14w6)>.

The ridge can be computed to be {y, z,w}, e.g. by the algorithm of [2].
After blowing up again at the origin, we obtain (in the F3 = V(w)-chart) the weak
transform

Ix; = (z° + 2w (25 —1),...)

which after a coordinate change z,., = z — 1 and a passage to a new hypersurface of
weak maximal contact V(z + 22,,w?) = V(Zpeyw) has the same first generator of order
14 as in example 1, the second generator does not have effect on the order of the non-
monomial part of the first coefficient ideal as can be checked by explicit computation.
Comparing this to the first example, we see that the higher order generator, which
does not actually influence the order of the non-monomial part of the coefficient ideal,

masked the situation in the computation of the ridge.

From these three examples, we see the usefulness of the ridge for anticipating kangaroo
points in the case of hypersurfaces, whereas in the case of ideals this may be hidden by
contributions of higher order generators. However, if we only consider the ridge of the ideal
which is generated precisely by the lowest-order generators of the original ideal (instead of
the ridge of the whole ideal), then there is hope to use this new ridge for ideals and maybe
even to slightly sharpen item (b) in Hauser’s condition for kangaroo points.
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Remark 4 These considerations already suggest a strategy for finding interesting examples
by constructing hypersurfaces for which the ridge is not generated in degree 1 and, addition-
ally, at least once during the iterated descents in ambient dimension the ridge of the ideal
generated by the lowest order generators (denoted from now on as n-ridge for short) of the
non-monomial part of the respective coefficient ideal is also not generated in degree one. In
the experiments, which lead to the examples of the subsequent sections, an additional heuris-
tic in the choice of hypersurfaces of weak mazimal contact was used: When given the choice
between different hypersurfaces, more precisely between linearly independent initial parts of
possible hypersurfaces, we try to minimize the degree of the generator of the ridge/n-ridge
corresponding to the chosen hypersurface. The reasoning behind this heuristic is to force the
unpleasant, but interesting behaviour into the lowest possible ambient dimension and hence
keep a clearer view of the occurring phenomena.

Remark 5 Similar examples to those of the subsequent sections can easily be constructed
in any positive characteristic. For section 8 this is straight forward, for section 4 it is best
achieved by starting in the middle, i.e. precisely where the first kangaroo has just occurred
and construct from there by blowing down and blowing up.

3 In higher dimension not all hypersurfaces of weak max-
imal contact are suitable

The following example shows that the property of maximizing the order of the non-monomial
part of the upcoming coefficient ideal is not sufficient to properly cover all kangaroo phenom-
ena in higher dimensions. It is stated in characteristic 2 to allow considerations in rather low
degrees, but similar examples can be constructed for any positive characteristic.

Example 2 We consider a sequence of three blow ups of the hypersurface V(22 + w® +
Y% +y216) C A%, char(K) =2, K = K. At each step the respective maximal orders, chosen
hypersurfaces of weak maximal contact and coefficient ideals are specified. In the presence of
exceptional divisors, we make use of Bodnar’s trick [4], which allows skipping the intersection
with exceptional divisors in intermediate levels of the descent in ambient dimension, if we
have normal crossing between the upcoming hypersurface of weak maximal contact and the
exceptional divisors.

To keep the whole rather lengthy sequence of blowing ups more readable, we only give rather
scarce comments. A more commented version of a single blowing up step was already stated
at the end of the previous section.

original hypersurface:
I=(f) = {@® +w’ +y* +yz'%)
e in ambient space A%
I= (22 + w3+ y? + yz16)
The maximal order 2 is attained at V' (z,y, z,w).
The ridge of this ideal corresponds to {z?}.
As hypersurface of weak maximal contact we may use Hy = V(z) C A.
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e in ambient space H;
Iy, = (0 + y2 + y219).
The maximal order of 3 is then again attained at the origin of H;.
The n-ridge (in the short-hand notation introduced in section 2) is {w}
As hypersurface of weak maximal contact we now use

Hy = V(m,w) CcC H, C A%(

e in ambient space Ho
I, = {0 +122%) = (7 + 1)),
The maximal order of 34 is again attained at the origin of Hy and the n-ridge is {32, 2%2}.

e The only possible choice of center is V(z,y, z, w).

As a sideremark to the coefficient ideal in ambient space Hs: Here it becomes evident that
there are 2 mechanisms which can cause the n-ridge to have generators in higher degree: on
one hand, it may be an honest generator in higher degree, on the other hand, it might have
arisen from taking powers of contributing ideals I}, when forming the coefficient ideal (see
section 2). However, taking powers can not accidentally cause the degree of a generator of
the ridge to drop. Hence the degree of the generators of the ridge can still be used as a
rather weak indicator for the possibility of new phenomena in characteristic p. Moreover, a
higher degree generator of the n-ridge arising from mechanism 2 is only likely to occur, if the
contributing ideals I are principal, because otherwise mixed products of generators would
exist in the set of generators of the power of Ij.

after first blowing up, chart E; =V (y):
Istrict = <$2 +ywd + ¢ + y15216>

e in ambient space A%
Lstrict = <:E2 + y(w3 + y22 + y14216)>
The maximal order is again 2, attained at the origin and the ridge is again {z%}. We
can keep the strict transform of H; as our hypersurface of weak maximal contact.
(As {E1, Hy4rict t has normal crossings, we may use Bodnar’s trick [4] and hand the
exceptional divisor down to the lower dimension instead of intersecting with it at this
point.)

e in ambient space H1 gppict
The non-monomial part of the coefficient ideaﬂ is (w3 + y?2 + y14216).
The maximal order of 3 is again attained at the origin and the n-ridge is {w} as before.
We may also use the strict transform of Hy again for the descent in ambient dimension.
(Here we have normal crossing of {E1, H1strict, Hostrict } and can again use Bodnar’s
trick.)

e in ambient space Hogppict
non-monomial part of coefficient ideal: (y'6 + 232) = ((y® + 216)?)
maximal order 16 attained at the origin
n-ridge: {y!%}

5As taking the coefficient ideal and subsequently calculating the controlled transform under the blowing
up on one hand and calculating the weak transform of the ideal followed by computing the new coefficient
ideal on the other hand are known (e.g. [5]) to lead to the same ideal, we won’t go into details on this point.
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e It is easy to check that here again the choice of center has to be the origin.

after second blowing up, chart F; = V(z):
Lstrice = <.’172 + y22w3 + y23221 + y15229>
e in ambient space A%
Istrict = <JJ2 + yZQ(wS + y22219 + y14227)>
maximal order: 2 at V(z, zw,yz)
ridge: {z?}
hypersurface of weak maximal contact: strict transform of H,
({Elstricta E2a Hlstrict} D.CI’.)

e in ambient space Hy it
non-monomial part of coefficient ideal: (w? + y*2'(y® + 216))
maximal order: 3 at V(w,yz)
n-ridge: {w}
hypersurface of weak maximal contact: strict transform of H,
({El stricts E2a H23t7‘ict} Il.CI‘.)

e in ambient space Hogppiet
non-monomial part of coefficient ideal: (y'6 + 216) = ((y® + 2%)?)
maximal order: 16 at V(y + z)
n-ridge: {y!6 + 26}

e center needs to be V(x,y, z,w) as the locus of maximal order after the second descent

in ambient dimension is not normal crossing with the exceptional divisors

after third blowing up, chart E3; = V(2):
Lyrict = (22 4+ yz*w® + y232%2 4 y15242)

e in ambient space A%
Istm'ct = <(E2 + yz4(w3 + y22238 =+ y14238)>
maximal order: 2 at V(x, zw)
ridge: {z?}
hypersurface of weak maximal contact: strict transform of H;
(F does not meet this chart, {Esgpict, B3, Higprict ) D.CL.)

e in ambient space H1 gppiet
non-monomial part of coefficient ideal: (w? + y1224%(y® + 1))
maximal order: 3 at V(w,yz(y + 1)) n-ridge: {w}
hypersurface of weak maximal contact: strict transform of Ho
({EQStricta E37 HQstrict} Il.CI‘.)

e in ambient space Ha it
non-monomial part of coefficient ideal: (y'6 + 1) = ((y® +1)2)
maximal order: 16 at V(y + 1)

Changing the hypersurface for the first descent in ambient dimension from Hj g0 to V(z +
(y+1)%*2%%), however, we may increase the order of the coefficient ideal in ambient dimension
2. For simplicity of notation, we first make a coordinate change which translates the point

of maximal order to the coordinate origin:
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e in ambient space A%
<£L'2 + z4(w3 + yneww3 + ygewz?)S + yrgLewz?)g + hOt)>
maximal order 2 at V(x, zw)
ridge: {z?}
new hypersurface of weak maximal contact: H| =V (z + y*22!)
(E7 does not meet this chart, {Eogpiee, P3, H} n.cr.)

e in ambient space Hj
non-monomial part of coefficient ideal: (w? + y3,,,2%% + h.o.t.)
maximal order 3 at V(w, Ynew?)
n-ridge: {w}
hypersurface of weak maximal contact: H} = V(w)
({EQStricta Es, Hé} H.CI‘.)

e in ambient space H)
non-monomial part of the coefficient ideal: (y'® + h.o.t.)
maximal order: 18 exceeds previous order 16
kangaroo phenomenon

Here the new phenomenon is that the change of the hypersurface of weak maximal contact
was not forced by the first coefficient ideal, but by one of the later ones which would not be
covered by the standard definition of weak maximal contact.

In the light of the previous example, we suggest a slightly modified version of weak
maximal contact:

Definition 6 Consider a given point x of a scheme X (possibly in the presence of an excep-
tional divisor E) and pass to an affine chart U containing this point. We call a flag

H=H>Hy D> ---DHg
admissible at x, if the following properties hold:

(a) Hy is a smooth hypersurface in the ambient space U. H;y1 is a smooth hypersurface in
H;.

(b) H; is a hypersurface of weak mazimal contact for the coefficient ideal obtained by descent
of the ambient space through Hy, ..., H;_1.

(¢) € Hy.

H is called a flag of weak maximal contact for Ix at x if it mazimizes the resolution invariant
lezicographically among all choices of admissible flags at x.

This definition obviously behaves well under passage to a coefficient ideal w.r.t. H; by
omitting the first entry H; from H to obtain the new flag Hpy,. This is again a flag of
maximal contact, since conditions (a)-(c) and maximality follow trivially from the respective
conditions on H. Hence considering a flag of weak maximal contact instead of a hypersurface
of weak maximal contact does not change any of the key properties, but allows more flexibility
for dealing with lower level kangaroos.
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4 Two different kinds of double kangaroos

It is a well known fact that the situation in positive characteristic can only differ from the
one in characteristic zero in rather special situations. Hauser studied such phenomena in
great detail in [8] by considering precisely the two levels involved in a kangaroo point. For
surfaces, he and Wagner extended these considerations to a general treatment of the purely
inseparable case in [I0]. The situation in higher dimension differs from this easiest case in
the sense that there might be more than just two levels at which the ridge is not generated
in degree 1 at some time during the process of blowing ups. The following two examples
illustrate three different roles of the different levels of the flag of weak maximal contact in
such a setting.

Definition 7 Let H be a flag of weak mazimal contact for an ideal Ix C W at the point x
which we assume for simplicity to be the origin of our coordinate chart. We denote the i-th
coefficient ideal, which arises when descending to H;, by J; C Oy, . If the ideal generated by
the lowest order generators of J;_1 is not a principal ideal, H; is called

e neutral, if the degree 1 part of the generator of the principal ideal Iy, C Of, 0 5 in
the C-span of the degree 1 elements of the ridge/n-ridge of J;_1.

e active, if it is the H; of lowest index © which is not neutral.
e dormant, if it is neither active nor neutral.

If, on the other hand, the ideal generated by the lowest order generators of J;_1 is principal, it

is of the form gﬁ for some k < b and we change the notions of neutral, active and dormant
by replacing the ridge/n-ridge of J;—_1 by the one of (g).

Remark 8 1. According to Hauser’s description of the process leading to kangaroo points,
at least one active H; and one dormant H; are necessary to produce a kangaroo phe-
nOMENON.

2. If the ideal generated by the lowest order gemerators of J;_1 is not principal, there is
at least one ideal among the contributing Iy, of which the ideal generated by its lowest
order generators is itself not principal, e.g. generated by f1 and fo. Hence taking
the %—th power of of this I, upon forming the coefficient ideal, we obtain all mixed
products of the form fofy, a+b= %. This implies that higher degree generators of
the n-ridge can only occur if they would also occur for {f1, f2).

If on the other hand, the ideal generated by the lowest order generators of J;—1 is

principal, the gemerator is of the form g% for some k and hence masks the true
situation of the (n-)ridge of g. This is the reason for the special treatment of this case
in the above definition.

Both of the following examples were constructed in a straight forward way, combining two
occurrences of kangaroos at two different levels. Similar examples can be constructed in any
positive characteristic and for any ambient dimension exceeding 4. However, these examples
involve several blow-ups between the first and the second occurrence, basically making a
fresh start after the first. Here no effort is made to reduce this number of blow-ups, since the
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context of this article is the study of the roles of the hypersurfaces of weak maximal contact.

To keep these rather lengthy examples more readable, we only state the blow-ups, the
weak transform at each step and the flag of weak maximal contact, whenever the latter
changes, but omit all data which is related to coefficient ideals, since these can easily be
computed for these examples.

Example 3 In this example, a hypersurface in A%, char K = 3, we shall see 2 occurrences
of kangaroo points on two different levels of coefficient ideals. For both occurrences, the
active hypersurface of weak maximal contact is the first one in the flag. Note that the two
blowing ups with chart £ = V(y) after the first kangaroo are only used for setting up the
degrees for the following kangarooEI

e before 1st blowing up
I = (w? + 02302 + 29%® + 2182 + 218¢2)
Flag:
V(w) active, V(w,v) neutral, V(w,v, z) dormant, V(w, v, z,y) neutral

e after blowing up at the origin, chart E,e, = V(z)
I = (w + 28 (y°2%0% + 28y® + 2%? + 2%0?))

e after blowing up at the origin, chart E,c, = V(y)
I = (w? + 2316 (2302 + 28(2® + ) + 2%02))
Flag: V(w) active, V(w, v) neutral, V(w, v, z) dormant, V (w,v, z,y) dormant

e after blowing up at the origin, chart E,., = V(z)
I = (0 + 220y16(2302 + 2t 4 2493 + 2502))
coordinate change: Ynew = Yoid + 1, Wnew = Woiq + xloy
I = (w3 +22((y — 1)19(230% + 2%0%) — 2%y* + h.o.t.))
Flag in new coordinates:
V(w) active, V(w, v) neutral, V(w, v, z) dormant, V(w,v, z, y) neutral
Kangaroo at 3rd coefficient ideal

e after blowing up at the origin, chart E,., = V(z)
I = (w3 +2%((xy — 1)1 (230% + 2302) — 23y* + h.o.t))

e after blowing up at the origin, chart Fye,, = V (v)
I = (w3 + 22803023 + 23 — 2%yv? + h.ot.))

e after blowing up at the origin, chart E,., = V(y)

I = (w? + 2288030 (23 + 23 — 2y*v? + h.o.t.)

e after blowing up at the origin, chart E, ¢, =
I = (w3 + 228y116030 (23 + 23 — 2%y"v? + h.o.t.

(
)
(y)
)

6Whenever we write ’h.o.t.” we want to indicate that there are further terms of higher degree, which are
irrelevant for the further considerations. In this case only the first non-relevant term is stated, even if this
does not happen to be the term originating from the previous first non-relevant term
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e after blowing up at the origin, chart Epew =V(2)
I = (w? + a2y11617430(1 4 23 — 9721002 4 ho.t.))
coord. Change' Tpew = Told T 1a Ynew = Yold + 17 Wpew = Wold + 2
I = (w?® + 21030 (2* + 23y + h.o.t))
Flag: V(w), V(w,z), ...
Kangaroo at 1st coefficient ideal

58,0101.3

Example 4 In this example, again in the same affine space as before, we shall see 2 occur-
rences of kangaroo points on two different levels of coeflicient ideals. For the first occurrence,
a dormant hypersurface of weak maximal contact acts as the active one, for the second it
is the top-level active hypersurface of weak maximal contact. This example again basically
consists of two regular kangaroo phenomena in a row, occurring on two different levels, but
in a different flavor than example [4]

e before first blowing up
I = (W + 2y°2% + 27y + 234y20 + 296v)
Flag:
V(w) active, V(w,v) neutral, V(w,v, z) dormant, V(w,v,y, z) neutral

e after blowmg up at the origin, chart E, ., = V( )
I = (w? + 27 (3°2% + 289?00 + 21 7y2v + 227v))

e after blowing up at the origin, chart E,., = V(y)
1= (w? + 2 7y (2% + 28y + ' Tyv + 227y%0))
Flag: V(w) active, V(w, v) neutral, V(w, v, z) dormant, V(w,v,y, z) dormant

e after blowing up at the origin, chart Fje,, = V()
I = (w3 + 257y (2% + 29910 + 2% + 227y%))
coord. change: Ynew = Yota + 1, Znew = Zold +zy
I = (w3425 (y — 1) (2% + xgywv 2270 + 227y%))
Flag in new coordinates:
V(w) active, V(w, v) neutral, V(w, v, z) dormant, V(w, v, y, z) neutral
Kangaroo at 3rd coefficient ideal

e after blowing up at the origin, chart Fyc,, = V()

I = (w3 + 2% (zy — 1)33(2% + 21010 — 218y + 227y%))
e after blowing up at the origin, chart E,c, = V(z)

I = (w®+ 2722y — 1)3 (2% + 211y — 2% + 227y%0))

e after blowing up at the origin, chart E,., = V(v)
I = (w?+ 2™ (2%yv® — 1)33078 (2% — 2° + h.o.t))
Flag: V(w) active, V(w, z) dormant, V(w, z, z) dormant, ...

e after blowing up at the origin, chart E,c, = V(y)
I = (0 + 27y 508 (22503 — 1)33(29 — 2° + h.o.t))
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e after blowing up at the origin, chart E,c, = V(y)
I = (w3 + 2™y310078 (229003 — 1)33(2° — 29 + h.o.t))

e after blowing up at the origin, chart E,., = V(2)
I = (w3 + 27y3109 782465 (129603216 — 1)33(1 — 29 + h.o.t.))
coord. Change: Tnew = Told — 1a Ynew = Yold + 17 Wnew = Wold —
Kangaroo at 1st coefficient ideal

1}262155.133

In both examples the relevant order of the first respectively second coefficient ideal
dropped significantly after the first kangaroo phenomenon, but before the occurrence of
the kangaroo on this level. The examples have been constructed to illustrate roles of hy-
persurfaces of maximal contact in multiple kangaroos and not to specifically illustrate the
increase in order. Nevertheless the observed behaviour raises several questions, which seem to
be natural starting points for further experiments in the search for new meaningful examples:

e Is it possible to find an occurrence of two kangaroo phenomena whose ’distance’ is less
than 3 blow ups?

e Is it possible to find an occurrence of two kangaroo phenomena for which the drop
of order between the first and the second kangaroo does not outweigh the increase of
order?

e If one of the previous question has an affirmative answer, what is the smallest dimension
in which this occurs?
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