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THE RIGHT CLASSIFICATION OF UNIVARIATE POWER SERIES IN

POSITIVE CHARACTERISTIC

NGUYEN HONG DUC

Abstract. While the classification of univariate power series up to coordinate change is

trivial in characteristic 0, this classification is very different in positive characteristic. In this

note we give a complete classification of univariate power series f ∈ K[[x]], where K is an
algebraically closed field of characteristic p > 0 by explicit normal forms. We show that the

right determinacy of f is completely determined by its support. Moreover we prove that the

right modality of f is equal to the integer part of µ/p, where µ is the Milnor number of f . As
a consequence we prove in this case that the modality is equal to the proper modality, which

is the dimension of the µ-constant stratum in an algebraic representative of the semiuniversal

deformation with trivial section.

1. Introduction

In [Arn72] V.I. Arnol’d introduced the “modality”, or the number of moduli, for real and
complex hypersurface singularities and he classified singularities with modality smaller than or
equal to 2. In oder to generalize the notion of modality to the algebraic setting, the author and
Greuel in [GN13] introduced the modality for algebraic group actions and applied it to high jet
spaces.

Let the algebraic group G act on the variety X. Then there exists a Rosenlicht stratification
{(Xi, pi), i = 1, . . . , s} of X w.r.t. G, i.e. the Xi is a locally closed G-invariant subset of X,
X = ∪si=1Xi and the pi : Xi → Xi/G a geometric quotient. For each open subset U ⊂ X we
define

G-mod(U) := max
1≤i≤s

{dim
(
pi(U ∩Xi)

)
},

and for x ∈ X we call

G-mod(x) := min{G-mod(U) | U a neighbourhood of x}

the G-modality of x.
Let K be an algebraically closed field of characteristic p ≥ 0, let K[[x]] = K[[x1, . . . , xn]]

be the formal power series ring and let the right group, R := Aut(K[[x]]), act on K[[x]] by
(Φ, f) 7→ Φ(f). Two elements f, g ∈ K[[x]] are called right equivalent, f ∼r g, if they belong to
the same R-orbit, or equivalently, there exists a coordinate change Φ ∈ Aut(K[[x]]) such that
g = Φ(f).

Let f ∈ 〈x〉 ⊂ K[[x]] and let µ(f) := dimK[[x]]/〈fx1
, . . . , fxn

〉 be its Milnor number. We
call f isolated if µ(f) < ∞. By [BGM12, Thm. 5], f is isolated if and only if it is finitely
right determined, i.e. f is right k-determined for some k. Here f is right k-determined if each
g ∈ K[[x]] s.t. jkg = jkf , is right equivalent to f , where jkf denotes the k-jet of f in the
k-th jet space Jk := 〈x〉/〈x〉k+1. The minimum of such k is called the right determinacy of f .
For each isolated f , the right modality of f , R-mod(f), is defined to be the Rk-modality of jkf
in Jk with k ≥ 2µ(f) and Rk the k-jet of R. Notice that if f is right equivalent to g then
R-mod(f) = R-mod(g) (cf. [GN13, Prop. A.4]).
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In Section 2, we show that the right determinacy of an isolated univariate formal power
series f is equal to d(f), which is defined by a concrete formula determined by the support
of f (Definition 2.1, Proposition 2.8). Moreover we give an explicit normal form for any (not
necessary isolated) univariate power series f w.r.t. right equivalence (Theorem 2.11). We prove
in Section 3 that the right modality of an isolated series f is equal to the integer part of µ(f)/p
(Theorem 3.1). As a consequence we show that the right modality is equal to the dimension
of the µ-constant stratum in an algebraic representative of the semiuniversal deformation with
trivial section (Corollary 3.6).
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article is part of my thesis [Ng13] under the supervision of Professor Gert-Martin Greuel at
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2. Normal forms of univariate power series

Let f =
∑
n≥0 cnx

n ∈ K[[x]] be a univariate power series, let supp(f) := {n ≥ 0 | cn 6= 0} be

the support of f and mt(f) := min{n | n ∈ supp(f)} the multiplicity of f . If char(K) = 0 and
if ϕ(x) = a1x + a2x

2 + . . . , a1 6= 0, is a coordinate change, then the coefficients ai of ϕ can be
determined inductively from the equation f(x) = c0 + (ϕ(x))mt(g) with g(x) := f − c0. Hence f
is right equivalent to c0 + xmt(g).

In the following we investigate f ∈ K[[x]] with char(K) = p > 0. The aim of this section
is to give a normal form of f . It turns out that it depends in a complicated way on the
divisibility relation between p and the support of f . To describe this relation we make the
following definition, where later on ∆ will be supp(f).

Definition 2.1. For each n ∈ N and each non-empty subset ∆ ⊂ N \ {0}, we define

(a) m := m(∆) := min{n | n ∈ ∆}.
(b) e := e(∆) := min{e(n) | n ∈ ∆}, where e(n) := max{i | pi divides n}.
(c) q := q(∆) := min{n ∈ ∆ | e(n) = e}.
(d) k := k(∆) := 1 and e0(∆) := e+ 1 if e(m) = e (i.e. m = q), otherwise,

k := k(∆) := max{k∆(n) | m ≤ n < q, n ∈ ∆},

where

k∆(n) :=

⌈
q − n

pe(n) − pe

⌉
denotes the ceiling of

q − n
pe(n) − pe

and

e0 := e0(∆) := min{e(n) | m ≤ n < q, n ∈ ∆}.
(e) d := d(∆) := q + pe(k − 1).
(f) Λ̄(∆) = ∅ if e(m) = e, otherwise,

Λ̄(∆) := {n ∈ N | m < n ≤ d, e0 ≤ e(n)} ∪ {q}.

(g) If e(m) > e (i.e. m < q) we define
∆0 := {n ∈ ∆ | n < q}, q0 := q(∆0), d0 := d(∆0), d̄0 := min{d, d0},
Λ0(∆) := ∅ if e(m) = e0,
Λ0(∆) :=

{
n ∈ N | m < n ≤ d̄0, e0 < e(n)

}
∪ {q0} if e(m) > e0, and

Λ1(∆) := {n ∈ N | q ≤ n ≤ d, e ≤ e(n) < e0}.
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(h) If e(m) = e then Λ(∆) := ∅, otherwise,

Λ(∆) := Λ0(∆) ∪ Λ1(∆).

Remark 2.2. If f ∈ K[[x]] with µ(f) <∞ and ∆ = supp(f) then

(a) m(∆) = mt(f), the multiplicity (or, the order) of f .
(b) q(∆) = µ(f) + 1, the first exponent in the expansion of f which is not divisible by p.
(c) k∆(n) is the minimum of l for which

mt (ϕ(xn)− xn) ≥ mt (ϕ(xq)− xq) = q + l

with q := q(∆) and ϕ = x + ul+1x
l+1 + terms of higher order, ul+1 6= 0, a coordinate

change.
Indeed,

ϕ(xn) =
(
x+ ul+1x

l+1 + . . .
)n

=

[(
x+ ul+1x

l+1 + . . .
)n/pe(n)

]pe(n)

=
[
xn/p

e(n)

+ (n/pe(n)) · ul+1x
n/pe(n)+l + . . .

]pe(n)

= xn + (n/pe(n))p
e(n)

up
e(n)

l+1 xn+lpe(n)

+ . . . .

It yields that

mt (ϕ(xn)− xn) ≥ q + l⇔ l ≥ q − n
pe(n) − 1

.

This proves the claim.
(d) k(∆) is then the minimum of l for which

ϕ(f) = f mod xq+l

with q = q(∆) and a coordinate change ϕ as above. This is used to show that:
(e) d(∆) is the right determinacy of f , cf. Proposition 2.8.

Remark 2.3. The following facts (a)-(e) are immediate consequences of the definition.
Property (f) follows from elementary calculations.

(a) e(∆) < e0(∆), k(∆) > 0.
(b) If q(∆) = q(∆′) =: q and ∆ ∩ N<q = ∆′ ∩ N<q, then d(∆) = d(∆′) and Λ(∆) ≡ Λ(∆′).

That is, q(∆) is the “determinacy” of Λ(∆).
(c) If p does not divide m(∆), then

1. e(∆) = e(m(∆)) = 0 and q(∆) = m(∆).
2. k(∆) = 1 and d(∆) = m(∆).

(d) If e(m(∆)) = e(∆), then
1. q(∆) = m(∆).
2. k(∆) = 1 and d(∆) = m(∆).

(e) If n+ lpe(n) ≤ d(∆) for some l and some n ∈ ∆, then l ≤ k(∆).
(f) If k(∆) = k∆(n), then

k(∆)− 1 +
n

pe(n)
=

⌊
d(∆)

pe(n)

⌋
,

where
⌊
d(∆)
pe(n)

⌋
denotes the floor (or, integer part) of d(∆)

pe(n) .
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In fact, one has, by denoting e := e(∆), q := q(∆), k := k(∆), d := d(∆), that

d

pe(n)
−
(
k − 1 +

n

pe(n)

)
=

q + pe(k − 1)

pe(n)
−
(
k − 1 +

n

pe(n)

)
=

pe(n) − pe

pe(n)
·
(

q − n
pe(n) − pe

− k + 1

)
.

Then

0 <
d

pe(n)
−
(
k +

n

pe(n)
− 1

)
< 1

since k =
⌈

q−n
pe(n)−pe

⌉
. This gives us the formula.

Example 2.4. Let p = char(K) = 2, let

f = x8 + x36 + x37 + terms of higher order in K[[x]],

and let
∆ := supp(f) = {8, 36, 37, . . .}.

Then
e = 0, q = 37, k = k∆(8) = 5, d = 41,

e0 = 2, q0 = 36, d0 = 60, d̄0 = d = 41.

and
Λ(f) = {16, 24, 32, 36, 37, 38, 39, 40, 41},

]Λ(f) = 9 =

⌊
q

pe0

⌋
−
⌊
m

pe0

⌋
+ 2.

The following proposition is the first key step in the classification.

Proposition 2.5. With the notions as in Definition 2.1, assume that e(∆) = 0. Then

]Λ(∆) ≤
⌊
q

p

⌋
− m

p
+ 1.

More precisely,

(i) If e(m) < e0 then ]Λ(∆) = 0.

(ii) If e(m) = e0 then ]Λ(∆) =
⌊
q
pe0

⌋
− m

pe0
+ 1.

(iii) If e(m) > e0 and

(1) if p > 2 then ]Λ(∆) ≤
⌊
q
pe0

⌋
− m

pe0
+ 1;

(2) if p = 2 then ]Λ(∆) ≤
⌊
q
pe0

⌋
− m

pe0
+ 2.

Proof. (i) It is easy to see that, e(m) < e0 if and only if e(m) = e and then Λ(∆) = ∅.
(ii) Since e(m) = e0, Λ0(∆) = ∅ and k∆(m) = k. Then

Λ(∆) = Λ1(∆) = {n ∈ N | q ≤ n ≤ d, e(n) < e0}
and hence

]Λ(∆) = k −
(⌊

d

pe0

⌋
−
⌊
q

pe0

⌋)
=

⌊
q

pe0

⌋
− m

pe0
+ 1

since k − 1 + m
pe(m) =

⌊
d

pe(m)

⌋
due to Remark 2.3(f).

(iii) Since e(m) > e0 one has

k(∆0)− 1 =

⌈
q0 − n

pe(n) − pe0

⌉
− 1 <

q0 −m
pe0+1 − pe0
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for some n ∈ ∆0, e(n) > e0, and

Λ0(∆) =
{
n′ ∈ N | m < n′ ≤ d̄0, e(n

′) > e0

}
∪ {q0},

Λ1(∆) = {n′ ∈ N | q ≤ n′ ≤ d, e(n′) < e0} .

This implies that

]Λ0(∆) =

⌊
d̄0

pe0+1

⌋
− m

pe0+1
+ 1

and

]Λ1(∆) = (d− q + 1)−
(⌊

d

pe0

⌋
−
⌊
q

pe0

⌋)
= k −

(⌊
d

pe0

⌋
−
⌊
q

pe0

⌋)
.

We consider the following cases:

Case 1: k∆(q0) = k.

Then k − 1 + q0
pe0

=
⌊
d
pe0

⌋
by Remark 2.3(f). We obtain

]Λ(∆) = ]Λ0(∆) + ]Λ1(∆) =

⌊
q

pe0

⌋
−
(
q0

pe0
−
⌊

d̄0

pe0+1

⌋
+

m

pe0+1
− 2

)
≤

⌊
q

pe0

⌋
−
(
q0

pe0
−
⌊

d0

pe0+1

⌋
+

m

pe0+1
− 2

)
≤

⌊
q

pe0

⌋
−
(
q0

pe0
− q0 + (k(∆0)− 1) pe0

pe0+1
+

m

pe0+1
− 2

)
<

⌊
q

pe0

⌋
−
(

(p2 − 2p)q0 +m

pe0+2 − pe0+1
+

m

pe0+1
− 2

)
≤

⌊
q

pe0

⌋
−
(
m

pe0
− 2

)
,

due to k(∆0)− 1 < q0−m
pe0+1−pe0

, respectively q0 > m. Hence

]Λ(∆) ≤
⌊
q

pe0

⌋
− m

pe0
+ 1.

Case 2: k∆(q0) < k.
Then

k =

⌈
q − n

pe(n) − 1

⌉
<

q −m
pe0+1 − 1

+ 1

for some n ∈ ∆0, e(n) > e0. It yields that

d = q + k − 1 > (k − 1)pe0+1 +m
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and hence

]Λ(∆) =

⌊
q

pe0

⌋
−
(⌊

d

pe0

⌋
−
⌊

d̄0

pe0+1

⌋
+

m

pe0+1
− k − 1

)
≤

⌊
q

pe0

⌋
−
(⌊

d

pe0

⌋
−
⌊

d

pe0+1

⌋
+

m

pe0+1
− k − 1

)
≤

⌊
q

pe0

⌋
−
(⌊

(p− 1)d

pe0+1

⌋
+

m

pe0+1
− k − 1

)
≤

⌊
q

pe0

⌋
−
(

(p− 1)(k − 1) +
m

pe0
− k − 1

)
=

⌊
q

pe0

⌋
− m

pe0
+ 2− (p− 2)(k − 1).

This completes the proposition. �

Note that if f ∈ K[[x]] and mt(f) = 0 then mt(f − f(0)) > 0. Applying the results from
mt(f) > 0 to f − f(0) we obtain that f ∼r f(0) + g, where g is a normal form of f − f(0) (cf.
Theorem 2.11). From now on we assume that mt(f) > 0. We denote, by using notations as in
Definition 2.1 for ∆ = supp(f),

e(f) := e(∆), q(f) := q(∆), k(f) := k(∆), d(f) := d(∆)

and

Λ̄(f) := Λ̄(∆), Λ(f) := Λ(∆).

Remark 2.6. (a) The above numbers mt, e, q, k, d and the sets Λ and Λ̄ are invariant w.r.t.
right equivalence.

(b) Let f =
∑
n≥1 cnx

n ∈ K[[x]] and let

f̄(x) =
∑

n≥m(f)

cnx
n/pe(f)

.

Then f̄ ∈ K[[x]], f(x) = f̄(xp
e(f)

) and e(f̄) = 0. Moreover,

k(f) = k(f̄), ]Λ(f) = ]Λ(f̄), ]Λ̄(f) = ]Λ̄(f̄)

and if ζ(f) denotes one of mt(f), e(f), q(f), d(f) then

ζ(f) = pe(f)ζ(f̄).

(c) Note that µ(f) < ∞ if and only if e(f) = 0 and then q(f) = µ(f) + 1. By [BGM12,
Thm. 2.1] f is then right (2q(f)−mt(f))-determined. In Proposition 2.8 we will show
that d(f) is the right determinacy of f .

Lemma 2.7. If e(mt(f)) = e(f) then f ∼r xmt(f).

Proof. By Remark 2.6, there exists f̄ ∈ K[[x]] such that f(x) = f̄(xp
e(f)

) and e(f̄) = 0. This
implies that µ(f̄) = q(f̄)− 1 and then µ(f̄) = mt(f̄)− 1 since e(mt(f)) = e(f). It follows from
[BGM12, Thm. 2.1] that f̄ is right (mt(f̄) + 1)-determined. That is,

f̄ ∼r cmxmt(f̄) ∼r xmt(f̄)

and hence f ∼r xmt(f) with the same coordinate change.
In fact, in this case an inductive proof as in the case of characteristic 0 works. �

The next proposition is the second key step in the classification.
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Proposition 2.8. With f and d(f) as above, assume that µ(f) < ∞ then d(f) is exactly the
right determinacy of f .

Proof. We may assume that e(mt(f)) > e(f) since the case e(mt(f)) = e(f) follows from Lemma
2.7. Let us denote ∆ := supp(f) and use the notions as in Definition 2.1.

Step 1: Let us show that if g ∈ K[[x]] with jd(f) = jd(g) and d := d(f) then f ∼r g.
By Remark 2.3(b), d(g) = d(f) = d since

supp(f) ∩ {n ∈ N | n ≤ q} = supp(g) ∩ {n ∈ N | n ≤ q}.
It suffices to show that

f ∼r f0 := jd(f).

Indeed, we write
f = f0 + f1 with mt(f1) ≥ d+ 1.

and assume without loss of generality, that

f1 = bq+lx
q+l + terms of higher order, with bq+l 6= 0.

Then the coordinate change ϕ1(x) = x+ul+1x
l+1 with ul+1 a root of the following non-constant

polynomial:

qcqX +
∑

q−n

pe(n)−1
=l

(n/pe(n))p
e(n)

cnX
pe(n)

+ bq+l = 0

is sufficient to increase the multiplicity of f1 and does not change f0 by Remark 2.2(d). We thus
finish by induction.

Step 2: We now show that f is not right (d− 1)–determined.
For this we need the following

Claim: f ∼r g if and only if jdg ∈ Rk · jdf , where

Rk := {ψ = u0x+ u1x
2 + . . .+ uk−1x

k | u0 6= 0} ⊂ R
and it acts on the jet space Jd by (ψ, jdh) 7→ jd(ψ(jdh)).
Proof of the claim. The “if”-statement follows easily from the first step. We assume that f ∼r g,
i.e. g = ϕ(f) with

ϕ = u0x+ u1x
2 + . . . , u0 6= 0.

Setting
ψ := u0x+ u1x

2 + . . .+ uk−1x
k

and ϕ1 := ϕ ◦ ψ−1 we obtain that ϕ = ϕ1 ◦ ψ and that

ϕ1 = x+ akx
k+1 + terms of higher order.

Note that k = k(f) = k(ψ(f)) due to Remark 2.6(a). It follows from Remark 2.2(d) that

jd (ϕ1(ψ(f))) = jd(ψ(f)).

Hence
jdg = jdϕ(f) = jd (ϕ1(ψ(f))) = jd(ψ(f)) = jd(ψ(jdf)).

This completes the claim.
We write, for new indeterminates u0, . . . , uk−1, t,

f + txd − ψ(jdf) =

d∑
i=m

bi(u0, . . . , uk−1, t)x
i
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with ψ := u0x+ u1x
2 + . . .+ uk−1x

k and bi ∈ K[u0, . . . , uk−1, t], and define

V := Z(bm, . . . , bd) := {(u1, . . . , uk−1, t) ∈ Ak | bi(u0, . . . , uk−1, t) = 0}
with the structure sheaf OV and its algebra of global section

OV (V ) = K[u0, . . . , uk−1, t]/〈bm, . . . , bd〉.
We prove the second step by contradiction. Suppose the assertion were false. Then for all

t ∈ K, f would be right equivalent to f + txd, equivalently, jdf + txd ∈ Rk · jdf for all t due to
the above claim. This implies that the map p defined by

p : V → A1

(u0, . . . , uk−1, t) 7→ t

is surjective. It yields that dimV ≥ 1. We may assume without loss of generality that
dimO V ≥ 1, where O = (1, 0, . . . , 0) ∈ V and dimO V denotes the maximal dimension of irre-
ducible components of V containing O. Since OV,O ⊂ R := K[[u′0, u1, . . . , uk−1, t]]/〈bm, . . . , bd〉
with u′0 = u0 − 1,

dimR ≥ dimOV,O = dimO V ≥ 1.

By the Curve Selection Lemma, there exists a non-constant K–algebra homomorphism

φ : K[[u′0, u1, . . . , uk−1, t]] → K[[τ ]]

u′0 7→ u′0(τ)

ui 7→ ui(τ)

t 7→ t(τ)

such that
bi (1 + u′0(τ), u1(τ), . . . , uk−1(τ), t(τ)) = 0 for all i = m, . . . , d.

Since bm = cm(um0 − 1), it follows that

(1 + u′0(τ))
m − 1 = 0

and therefore u′0(τ) = 0. Notice that, the series ui(τ), i = 1, . . . , k − 1 could not be all equal to
zero since φ 6= 0 and since

bd(1, u1, . . . , uk−1, t) = qcquk−1 + t+ b′d(u1, . . . , uk−1), with mt(b′d) ≥ 2.

We set
l := min{j | uj(τ) 6= 0},

L := min{n+ lpe(n) | n ∈ ∆}
and

I := {n ∈ ∆ | L = n+ lpe(n)}.
By Remark 2.2 we can conclude that m < L < d and that

ψ(f)− f =
∑
n∈I

(
n/pe(n)

)pe(n)

cnul(τ)p
e(n)

xL + terms of higher order

where
ψ = x+ ul(τ)xl+1 + . . .+ uk−1(τ)xk.

It follows that

bL (1, u1(τ), . . . , uk−1(τ), t(τ)) =
∑
n∈I

(
n/pe(n)

)pe(n)

cnul(τ)p
e(n)

6= 0,

which is a contradiction. This proves the second step. �
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In Corollary 2.9, Lemma 2.10 and Theorem 2.11 below we do not assume that f is an isolated
singularity, i.e. µ(f) may be infinite or, equivalently, e(f) may be bigger than 0.

Corollary 2.9. Let f ∈ K[[x]] and d = d(f). Let g ∈ K[[x]] be such that e(f) = e(g) and
jd(f) = jd(g). Then f ∼r g.

We have in particular that f ∼r jd(f).

Proof. By Proposition 2.8, it suffices to prove the corollary for the case that e := e(f) = e(g) > 0.
Taking f̄ ∈ K[[x]] and ḡ ∈ K[[x]] such that f(x) = f̄(xp

e

), g(x) = ḡ(xp
e

) as in Remark 2.6 we
have

e(f̄) = e(ḡ) = 0, d̄ := d(f̄) = d/pe.

Since jd(f) = jd(g), jd̄(f̄) = jd̄(ḡ) and hence f̄ ∼r ḡ according to Proposition 2.8. This implies
f ∼r g with the same coordinate change. �

Lemma 2.10. With f , mt(f) and Λ̄(f) as above, we have

f ∼r xmt(f) +
∑

n∈Λ̄(f)

λnx
n,

for suitable λn ∈ K.

Proof. We decompose f = f0 + f1 with

f0 :=
∑

e(f)≤e(i)<e0

cix
i and f1 :=

∑
e(n)≥e0

cnx
n.

Then mt(f0) = q(f) and e(mt(f0)) = e(f0) = 0 and hence f0 ∼r xq(f) by Lemma 2.7. That is,
ϕ(f0) = xq(f) for some coordinate change ϕ ∈ Aut(K[[x]]). It yields that

g := ϕ(f) = ϕ(f0) + ϕ(f1) = xq(f) + ϕ(f1).

By Remark 2.6, d(g) = d(f) and

ϕ(f1) =
∑

e(n)≥e0

λnx
n

for some λn ∈ K. Hence

f ∼r g ∼r jd(g)(g) = xmt(f) +
∑

n∈Λ̄(f)

λnx
n

due to Corollary 2.9. �

From Proposition 2.5 and Remark 2.6(b), replacing f by f̄ if e(f) > 0, and denoting
∆ := supp(f) we can conclude that

]Λ(f) ≤
⌊
q

pe0

⌋
− m

pe0
+ 2 ≤

⌊
d

pe0

⌋
− m

pe0
+ 2 = ]Λ̄(f).

The following theorem is therefore stronger than Lemma 2.10 because it reduces the number of
parameters.

Theorem 2.11 (Normal form of univariate power series). With f , mt(f) and Λ(f) as above,
we have

f ∼r xmt(f) +
∑

n∈Λ(f)

λnx
n

for suitable λn ∈ K.
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Proof. We set ∆ := supp(f) and use the notations as in Definition 2.1. It is sufficient to prove
the theorem for the case that e(m) > e, because the case e(m) = e follows from Lemma 2.7.
Then

Λ0(∆) =
{
n ∈ N | m < n ≤ d̄0, e0 < e(n)

}
∪ {q0},

Λ1(∆) = {n ∈ N | q ≤ n ≤ d, e ≤ e(n) < e0} .
We decompose f = f0 + f1 with

f0 :=
∑
i<q

cix
i and f1 :=

∑
n≥q

cnx
n.

Applying Lemma 2.10 to f0 we obtain, by denoting Λ′0(∆) := Λ(∆) ∩ {n ∈ N | n < q} that

f0 ∼r xm +
∑

n∈Λ̄(∆0)

bnx
n = xm +

∑
n∈Λ′0(∆)

bnx
n mod xq,

for suitable λn ∈ K, since

Λ̄(∆0) ∩ {n ∈ N | n < q} ⊂ Λ′0(∆).

This means that there exists a coordinate change ϕ such that

ϕ(f0) = xm +
∑

n∈Λ′0(∆)

bnx
n mod xq.

We denote g := ϕ(f),

g0 := xm +
∑

n∈Λ′0(∆)

bnx
n,

and

g1 := g − g0 :=
∑
n≥q

bnx
n, bq 6= 0.

We will construct a series h such that f ∼r h and

h = xm +
∑

n∈Λ(∆)

λnx
n mod xd

by eliminating inductively all terms of exponent in

I := {i ∈ N | q ≤ i ≤ d, e ≤ e(i)} \ Λ(∆).

If we succeed then by Corollary 2.9

f ∼r h ∼r jdh ∼r xm +
∑

n∈Λ(∆)

λnx
n.

Let i1 be the minimum exponent in I for which bi1 6= 0. According to Remark 2.3 the coordinate
change

ϕ1(x) = x+ ul+1x
l+1

with l :=
i1 − q0

pe0
and ul+1 a root of the non-constant polynomial:

∑
n+lpe(n)=i1

bn
(
n/pe(n)

)pe(n)

Xpe(n)

+ bi1 = 0,

makes the coefficient of xi1 vanish, and no term of exponent i in I with i < i1 occurs. We prove
the last claim by contradiction. Suppose the claim were false, then we could find j ∈ I, j < i1
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such that the coefficient of xj in ϕ1(g) differs from zero. That is, j is an exponent of a term in
(x+ ul+1x

l+1)n for some n ∈ Λ(∆) with bn 6= 0. Then there exists an i ∈ N such that

j = n+ ilpe(n).

Note that i > 0 by the definition of i1. This implies that

n+ ilpe(n) ≥ n+ lpe(n) > j for all n ∈ Λ(∆) with bn 6= 0,

because

• if e(n) ≤ e0 then n is either q or q0, and hence

q0 + lpe0 = i1 > j

and
q + lpe ≥ q0 + lpe0 = i1 > j

since l ≤ k due to Remark 2.3(e).
• If e(n) > e0 then e(j) ≥ e(n) > e0 and therefore j > d̄0. This implies that

d̄0 = d0 < j < i1 < d

and therefore

l =
i1 − q0

pe0
≥ k(∆0).

It follows that

n+ ilpe(n) ≥ n+ lpe(n) ≥ q0 + lpe0 = i1 > j.

This contradiction shows that there is no term of exponent i in I with i < i1 in ϕ1(g). Hence
we obtain by induction a series h as required. �

Note that the families over Λ(f) resp. Λ̄(f) in Theorem 2.11 resp. Lemma 2.10 contain all
possible normal forms having the same set Λ resp. Λ̄ (and hence having the same m, q, k and d).
The number of parameters of normal forms in the µ–constant stratum (proof of Theorem 3.1)
could be bigger.

The following example shows that this normal form is in general not the best one we can get.
This means that, we can sometimes reduce the number of parameters even more.

Example 2.12. We consider

f = x8 + x36 + x37 + terms of higher order

in characteristic 2, as in Example 2.4. Then d(f) = 41 and

Λ(f) = {16, 24, 32, 36, 37, 38, 39, 40, 41}.
It follows from Theorem 2.11 that

f ∼r x8 + λ1x
16 + λ2x

24 + λ3x
32 + λ4x

36 + λ5x
37 + λ6x

38 + λ7x
39 + λ8x

40 + λ9x
41

for suitable λi ∈ K.
On the other hand, applying Lemma 2.7 to f1 := f − (x8 + x36) we get f1 ∼r x37. That is,

ϕ(f1) = x37 for some coordinate change ϕ. It yields

ϕ(f) = a0x
8 + a1x

16 + a2x
24 + a3x

32 + a4x
36 + x37 mod x41.

By Proposition 2.8,

f ∼r ϕ(f) ∼r a0x
8 + a1x

16 + a2x
24 + a3x

32 + a4x
36 + x37 + a5x

40

and hence
f ∼r x8 + b1x

16 + b2x
24 + b3x

32 + b4x
36 + b5x

37 + b6x
40.
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This shows that, we can find a “better normal form” for f . Moreover by the coordinate change

x+ b6/b5x
4,

we can even get rid of the term b6x
40 and obtain that

f ∼r x8 + c1x
16 + c2x

24 + c3x
32 + c4x

36 + c5x
37.

In the following, we will give a set of terms of f which can not be removed by coordinate
changes and then we conjecture the “best normal form” for f .

Remark 2.13. Let f ∈ K[[x]] be such that µ(f) <∞. Let ∆ := supp(f) and let

qi := min{n ∈ ∆ | e(n) ≤ i}.

Then

q(f) = q0 ≥ q1 ≥ . . . ≥ qe(m) = m = qi, for all i ≥ e(m).

We can see easily that the set {q0, . . . , qe(m)} is the set of exponents of terms which can not be
removed by coordinate changes. However it is not true in general that

f ∼r
e(m)∑
i=1

λix
qi

for suitable λi ∈ K as the following example shows:

f = x8 + x36 + x37 + x38 ∈ K[[x]] with char(K) = 2.

Then

q0 = q1 = q = 37, q2 = 36, q3 = m = 8.

It is not difficult to see that

f 6∼r λ0x
8 + λ1x

36 + λ2x
37

for any λ0, λ1, λ2 ∈ K.

We like to pose the following conjecture.

Conjecture 2.14. With notations as in Remark 2.13, let Λ∗(f) := ∅ if e(m) = 0, otherwise

Λ∗(f) := {n ∈ N | m < n ≤ q, e(n) ≥ i if qi ≤ n < qi−1}.

Then f is right equivalent to

xmt(f) +
∑

n∈Λ∗(f)

λnx
n

for suitable λn ∈ K, and moreover this is a modular family. That is, for each λ = (λn)n∈Λ∗(f),
there are only finitely many λ′ = (λ′n)n∈Λ∗(f) such that

xmt(f) +
∑

n∈Λ∗(f)

λnx
n ∼r xmt(f) +

∑
n∈Λ∗(f)

λ′nx
n.
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3. Right modality

Theorem 3.1. Let charK = p > 0. Let f ∈ 〈x〉 ⊂ K[[x]] be a univariate power series such that
its Milnor number µ := µ(f) is finite. Then

R-mod(f) = bµ/pc .

For the proof we need the following lemmas which are proven in [GN13] for unfoldings but
the proof works in general (for algebraic families of power series).

Let us recall the notion of unfoldings (see, [GN13]). Let T be an affine variety over K with the
structure sheaf O and its algebra of global section O(T ). An element ft(x) := F (x, t) ∈ O(T )[[x]]
is called an algebraic family of power series over T . A family ft(x) is said to be modular if for
each t ∈ T there are only finitely many t′ ∈ T such that ft′ is right equivalent to ft. An
unfolding, or deformation with trivial section of a power series f at t0 ∈ T over T is a family
ft(x) satisfying ft0 = f and ft ∈ 〈x〉 for all t ∈ T .

Remark 3.2. Let f ∈ 〈x〉 ⊂ K[[x]] be a univariate power series with Milnor number µ < ∞.

Then the system {x, x2, . . . , xµ} is a basis of the algebra 〈x〉/〈x · ∂f∂x 〉. By [GN13, Prop. 2.14]
the unfolding over Aµ,

ft(x) := f +

µ∑
i=1

ti · xi

with t := (t1, . . . , tµ) the coordinates of t ∈ Aµ, is an algebraic representative of the semiuniversal
deformation with trivial section of f .

Lemma 3.3. With f and ft(x) as in Remark 3.2, assume that there exists a finite number of

algebraic families of power series h
(i)
t (x) over varieties T (i), i ∈ I and an open subset U ⊂ Aµ

satisfying: for all t ∈ U there exists an i ∈ I and ti ∈ T (i) such that ft(x) is right equivalent to

h
(i)
ti (x). Then

R-mod(f) ≤ max
i=1,...,l

dimT (i).

Proof. cf. [GN13, Proposition 2.15(i)]. �

Lemma 3.4. If ft(x) is a modular unfolding of f over T then

R-mod(f) ≥ dimT.

Proof. It follows from [GN13, Propositions 2.12(ii) and 2.15(ii)]. �

Proof of Theorem 3.1. We first prove the inequality R-mod(f) ≤ bµ/pc. Indeed, let

I := {∆ ⊂ {1, . . . , q(f)}| q(f) ∈ ∆},

and let

hs∆(x) := xm(∆) +
∑

n∈Λ(∆)

s
(n)
∆ xn, ∆ ∈ I

the finite set of families over A∆ ≡ Al∆ with l∆ = ]Λ(∆) and s
(n)
∆ , n ∈ Λ(∆) the coordinates of

s∆ in A∆.
Notice that if ∆ ∈ I, then e(∆) = 0, q(∆) ≤ q(f) and therefore, by Proposition 2.5,

dimA∆ = ]Λ(∆) ≤ bq(∆)/pc ≤ bq(f)/pc = bµ/pc .

With ft as in Remark 3.2, setting

∆t := {n ∈ supp(ft) | n ≤ q(f)}



248 NGUYEN HONG DUC

for each t ∈ Aµ, we conclude that ∆t ∈ I and Λ(∆t) = Λ(supp(ft)) according to Remark 2.3(b).
By Theorem 2.11, ft ∼r hs∆t

for some s∆t
.

This implies that the finite set of families hs∆(x),∆ ∈ I satisfies the assumption of Lemma 3.3.
Hence

R-mod(f) ≤ max
∆∈I

dimA∆ ≤ bµ/pc .

In order to prove the other inequality we consider the two following cases.
Case 1: m(f) = p.

Then q := q(f) = µ(f) + 1, k := k(f) =
⌊
q−p
p−1

⌋
, d := d(f) = q + k − 1 and

Λ(f) = {n ∈ N | q ≤ n ≤ d, e(n) = 0}
and ]Λ(f) = bq/pc due to Proposition 2.5. It follows from Theorem 2.11 that

f ∼r g := xp +
∑

n∈Λ(f)

cnx
n

for suitable cn ∈ K with cq 6= 0. Consider the unfolding

gλ := g +
∑

n∈Λ(f)

λnx
n

of g over S :=
{
λ = (λn)n∈Λ(f) ∈ A]Λ(f) | λq + cq 6= 0

}
, where λn, n ∈ Λ(f) are the coordinates

of λ. Let us show that gλ is a modular unfolding. In fact, if λ′ = (λ′n)n∈Λ(f) ∈ S for which
gλ ∼r gλ′ , then there exists a coordinate change

ϕ := ax+ alx
l+1 + . . .

such that
ϕ(gλ) = gλ′ .

Looking at the coefficient of xp we deduce that ap = 1 and therefore a = 1. We have moreover
that l ≥ k, because if l < k, equivalently, q + l > p(l + 1) then p(l + 1) ∈ supp(ϕ(gλ)) but
p(l + 1) 6∈ supp(gλ′), that is ϕ(gλ) 6= gλ′ , a contradiction. It then follows from Remark 2.2(d)
that

jd(gλ) = jd(ϕ(gλ)) = jd(gλ′),

i.e. λ = λ′. This implies that gλ is a modular unfolding and hence

R-mod(f) = R-mod(g) ≥ ]Λ(f) = bq/pc = bµ/pc
due to Lemma 3.4
Case 2: m(f) > p.

By the upper semicontinuity of the right modality (cf. [GN13, Prop. 2.7]) one has

R-mod(f) ≥ R-mod(fs)

with fs = f + s · xp, for all s in some neighbourhood W of 0 in A1. Take a s0 ∈ W \ {0} then
R-mod(fs0) = bµ/pc by the first case and hence

R-mod(f) ≥ R-mod(fs0) = bµ/pc .
�

Remark 3.5. We have R-mod(f) ≥ ]Λ(f) by Theorem 3.1 and Proposition 2.5 with equality if
m(f) ≤ p. Moreover, if m(f) = p, then fλ ∼r fλ′ for λ, λ′ ∈ Λ(f) implies λ = λ′, which follows
from the proof of Theorem 3.1.

The example f = xp+1 with R-mod(f) = 1 but Λ(f) = ∅ shows that a strict inequality
R-mod(f) > ]Λ(f) can happen.
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With f and the semiuniversal unfolding ft(x) as in Remark 3.2 we define

∆µ := {t ∈ Aµ | µ(ft) = µ}
the µ-constant stratum of the unfolding ft.

Corollary 3.6. Let f ∈ 〈x〉 ⊂ K[[x]] with the Milnor number µ <∞. Then

R-mod(f) = dim ∆µ.

Proof. For each t = (t1, . . . , tµ) ∈ Aµ, if the set Nt := {i = 1, . . . , µ | ti 6= 0, e(i) = 0} is not
empty, then µ(ft) = n− 1 < µ with n := min{i | i ∈ Nt}. This implies that

∆µ = {t = (t1, . . . , tµ) ∈ Aµ | ti = 0 if e(i) = 0}.
It yields that

dim ∆µ = ] {1 ≤ n ≤ µ | e(n) > 0} = bµ/pc
and hence R-mod(f) = dim ∆µ by Theorem 3.1. �
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