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LINKS OF SINGULARITIES UP TO REGULAR HOMOTOPY

A. KATANAGA, A. NEMETHI, AND A. SZUCS

ABSTRACT. We classify links of the singularities 2 + y? 4+ 22 + v??¢ = 0 in (C*,0) up to
regular homotopies precomposed with diffeomorphisms of S3 x S2. Let us denote the link of
this singularity by Lg and denote by 44 the inclusion Lgy C S7. We show that for arbitrary
diffeomorphisms g : S3 x §2 — Ly the compositions i4 0 @y are image regularly homotopic
for two different values of d, d = d1 and d = da, if and only if dj = ds mod 2.

1. INTRODUCTION

It is well-known that the infinite number of Brieskorn equations in C3

29l LS 422 422 422 =0, (intersected with §° = {2z =1})

describe the finite number of homotopy spheres. Why do we have infinitely many equations for
a finite number of homotopy spheres? The answer was given in [E-Sz]: These equations give all
the embeddings of these homotopy spheres in S° up to regular homotopy.

The present paper grew out from an attempt to investigate the analogous question for the
equations
(%) 2y 422+ 0F=0.

It was proved in [K-N] that the links of the singularities () are S® or S® x S? depending on the
parity of k. Again we have infinite number of equations for both diffeomorphism types of links.
So it seems natural to pose the analogous

Question: What are the differences between the links for different values of k£ of the same
parity? Do they represent different immersions up to regular homotopy?

For k odd, when the link is S°, the question about the regular homotopy turns out to be
trivial, since any two immersions of S° to S7 are regularly homotopic. (By Smale’s result, see
[S1], the set of regular homotopy classes of immersions S® — S7 can be identified with 75(S07).
The later group is trivial by Bott’s result [B].)

The situation is quite different for k even. Put k = 2d and let us denote by X, the algebraic
variety defined by the equation (x), by Lg its link, and by i4 the inclusion Lq < S”. In this case
the question on regular homotopy classes of ig turns out to be not well-posed.

It is true that Ly is diffeomorphic to S$% x S? for any d, but the question about the regular
homotopy makes sense only after having given a concrete diffeomorphism g4 : S x S? — Ly,
and only then we can ask about the regular homotopy classes

Z.dOgOdl S3 XS2 —>S7.
(In the case of Brieskorn equations precomposing an immersion f : X7 — S° with an orientation

preserving self-diffeomorphism of the homotopy sphere X7 does not change the regular homotopy
class of the immersion f. This is not so for the manifold S3 x S2.)

Definition (see [P]). Given manifolds M, N, and two immersions fo and f; from M to N, we
say that fo and f; are image-regular homotopic if there is a self-diffeomorphism ¢ of M such
that fi is regularly homotopic to fy o ¢.
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Notation:

1) I(M, N) will denote the image-regular homotopy classes of immersions of M to N. The
image regular homotopy class of an immersion f will be denoted by im [f].

2) Recall that an immersion is called framed if its normal bundle is trivialized. Fr-Imm (M, N)
will denote the framed regular homotopy classes of framed immersions of M to N.

In the case when the immersion f is framed reg[f] will denote its framed regular homotopy
class.

Remark. Note that for the inclusions iq : Ly C S7 their regular homotopy classes reg [i4] are
not well-defined, but their image regular homotopy classes im [i4] are well-defined.

FORMULATION OF THE RESULTS

Theorem 1. For any simply connected, stably parallelizable, 5-dimensional manifold M® the
framed regular homotopy classes of framed immersions in S” can be identified with H3(M;Z),
i.e.

Fr-Tmm (M®, S7) = H*(M;7Z).

Corollary. In particular,
Fr-Tmm (S® x $2,87) = Z.

Theorem 2. The set 1(S* x S?,87) of image-regular homotopy classes of framed immersions
53 x 82 — 87 can be identified with Zs.

Theorem 3. The inclusions iq : Ly < S7 for d = dy and dy represent the same element in
I1(S% x §%2,87) = Zy (i.e. im[ig,] = im[ig,]) if and only if dy = d2 mod 2.

Remark. The identifications in the above Theorems arise only after we have fixed a paralleliza-
tion of the manifolds (or a stable parallelization). (Different parallelizations provide different
identifications. For the Corollary these identifications differ by an affine shift  — x + a, where
a € 73(S0O) = Z is the difference of the two parallelizations. Similarly, in Theorem 2, a is
replaced by a mod 2 in Zy = w3(S0O)/im j.(m3(S03)), where j is the inclusion j : SO3 C SO.
Now we describe a concrete stable parallelization of $3 x S2 we shall use.

Hence, we want to choose a trivialization of the stable tangent bundle
T(S*x S*) @& — 9% x 52,

where £! is the trivial real line bundle. This 6-dimensional vector bundle is the same as the
restriction T(S3 x R3) = (piTS3 ® p3TR3) , where p; and ps are the projections of
S3x .52 S3x 52
53 x R3 onto the factors. The quaternionic multiplication on S2 gives a trivialization of T'S3,
i.e. an identification with S® x R®. We need a trivialization of T(T'S?). The standard spherical
metric on S? gives a connection on the bundle 7'S® —s 3, that is a “horizontal” R3 C T(T'S?)
at any point. The trivialization of T'S® gives a trivialization of both the horizontal and the
vertical (tangent to the fibers) components in T(7'S3). Restricting this to the sphere bundle
S(TS3) = S x S? we obtain the required trivialization of
T(TS?) =T(S® x R?) =T(S3x S*H @£l
S3x 852 S3x52

Proof of Theorem 1. Having fixed a stable parallelization of M?®, any framed immersion
f: M° — RY? gives a map M® — SO, that — by a slight abuse of notation — we will de-
note by df.



176 A. KATANAGA, A. NEMETHI, AND A. SzUCS

By the Smale-Hirsch immersion theory [S1, H] the map

Fr-Imm (M,R?) — [M,S0,]
reg [f] — [df]

induces a bijection, where [M, SO,| denotes the homotopy classes of maps M — SO,.
Since M? is simply connected there is a cell-decomposition having a single 0-cell, a single

5-cell, and no 1-dimensional, neither 4-dimensional cells.

Let M be the punctured M5: M = M5\ D?. From the Puppe sequence of the pair (M,dM)
(see [Hu]),

St=0McMcM-— S°,
it follows that the restriction map [M®, SO,] — [M,SO,] is a bijection, since m4(SO) = 0 and
5 (SOq) =0.

Now consider the Puppe sequence of the pair (M, sks M). Note that sko M is a bouquete of
2-spheres, while the quotient M /sko M is homotopically equivalent to a bouquette of 3-spheres.
Hence, a part of the Puppe sequence looks like this:

sko M C M — VS> — S(ska M) = VvS?

where S( ) means the suspension. Mapping the spaces of this Puppe sequence to SO, ¢ > 5,
we obtain the following exact sequence of groups (we omit q):

[sky M, SO] «— [M, SO] «— [V8%, SO] > [S(sky M), SO].

Here [sko M, SO] = 0, because 2(SO) = 0.

Since m3(SO) = Z the group [VS?, SO] can be identified with the group of 3-dimensional
cochains of M with integer coefficients, i.e. [VS3, SO| = C3(M;Z).

Since there are no 4-dimensional cells this is also the group of 3-dimensional cocycles. The
group [S(skg M), SO] can be identified with the group of 2-dimensional cochains C?(M;Z).

Lemma. The map a can be identified with the coboundary map
5:C*(M;Z) — C3(M;Z).
Proof of this Lemma will be given in the Appendix.
Hence the cokernel of ¢, i.e. []\04 , SO] = Fr-Imm (M, R7) can be identified with the cokernel
of 8, i.e. with H3(M;Z). O

Remark 1. In the case when M = S% x §% and N € S? is a fixed point in S?, for example the
North pole, the inclusion S3 < M, z — (z, N) gives an isomorphism

[M, SO] — [S?,80].

Hence, for M = S x S? two framed immersions M® — R7 (or M® — S7) are regularly
homotopic if their restrictions to S% x N are framed regularly homotopic (adding the two normal
vectors of S3 in M? to the framing).

Lemma 1. The inclusion j : SOz — SOq (¢ > 5) induces in w3 the multiplication by 2
(if we choose the generators in w3(SOs) = Z and in w3(SO4) = Z properly), i.e., for any
x € m3(S03) = Z the image j.(v) € m3(SO) = Z is 2x.
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Proof. Tt is well-known that 75(505) =~ 73(S0g) ~ --- = w3(SO) and by Bott’s result [B]
m3(SO) ~ Z. Let us consider Va(R®) = SO5/S0;. It is well-known that m3(V2(R®)) = Z (see
for example [M-S]). It is also well-known that m3(S03) = Z.

Now the exact sequence of the fibration SO5 — V2(R?) gives that the homomorphism
m3(S03) — m3(SO0;5) induced by the inclusion is a multiplication by +2 (or —2, but choosing
the generators properly it can be supposed that it is multiplication by +2). ([

Remark 2. It is well-known that m3(S04) = m3(S®) @ 73(S03) and the map jy. : m3(SO04) —
73(S05) induced by the inclusion
j4 : 504 — SO5
is epimorphic.
It follows that j4. maps 73(S3) = Z to the group Zs = m3(S05) /s« (7T3(503)) epimorphically.

From now on we shall denote by M the manifold S3 x S? (except in the Appendix). We shall
write simply S3 for the subset S x N C S% x S2, where N € S2.

Lemma 2. For any class 2m € 27Z = imjy, C Z = 7w3(SO), there is a diffeomorphism
am 1 M — M such that for any framed immersion f: M — R7 the difference of the regular
homotopy classes of f and f o o, is 2m, i.e.

reg[f o au,] — reg[f] € m3(SO) = Z
15 2m.

Proof. Let p,, : S® — SO3 be a map representing the class m € w3(S03) and define the
diffeomorphism
am: 9% x 8% — 83 x §?
by the formula
(#,y) — (@, pm (2)y)-
We have the following diagram:

reg [f] € Fr-Imm (M,R?) — Fr-Imm (5%, RY) 3 reg {f

)

I~ I~ >
(M, SO,] — 153, 50,]
df — df
A(f © ) — A(f © o)
SS

It shows that the regular homotopy class of the (framed) immersion f is detected by the ho-
motopy class of df ’SS in w3(S0), while the regular homotopy class of f o «,, is detected by the

homotopy class of d(f o am)’ )
So we have to compare the homotopy classes of maps
df| : S* — SO, and d(foay)
S3
By the chain rule one has:

;83— SO,.
S3

d(foay)| =df

S3

-doyy,
am(ss)

S3

1 83 — 53 x 82 is homotopic to a map into S3V S?, representing
SS
in the third homotopy group 73(S% V S?) = Z @ Z the element (1,*), where * is an integer,

The restriction map o,
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* € m3(S?) = Z (at this point its value is not important, but later we shall show that it is m,

see Lemma A). Since the map df maps S® x S? into SO and 72 (SO) = 0, the map df can
S3v.S2

be extended to S Vv D3 = S3.

Finally we have that d(f o ayy) is homotopic to the pointwise product of the maps df
S3

SS
and do,,

S3

But it is well-known that this gives the sum of the homotopy classes [df ] € m3(S0) and

[dam SJ € 13(S0). i

It remained to show the following

Sublemma. [dam } =2m € m3(50y) = Z.

S3

Proof. The differential da,, acts on T(S3 x R3) = piTS? & psTR3
S3x.52
identity on p;T'S® and by pi,(x) on (z,) x R? for any = € S3, y € 52

Hence, dam’ is j o pm, where j : SOs — SO, is the inclusion. Recall that the map

as follows: by

S3x.S52

53
fm @ S3 — SO3 was chosen so that its homotopy class [u,,] € m3(S03) is m € Z = 73(503).
Since j, is “the multiplication by 2” map it follows that [dam } =2m. O
S3
This ends the proof of Lemma 2 too. O

Proposition. Any self-diffeomorphism of S x S% changes the regular homotopy class of any
immersion by adding an element of the subgroup in im j, = 2Z C Z = w3(SO). That is for any
framed immersion f: M — R? with (framed) reqular homotopy class

reg [f] € [M, SO] = 75(SO)
and any diffeomorphism ¢ : M — M the difference of reqular homotopy classes

reg [f] —reg[f o ¢]
belongs to the subgroup im j. = 27 in Z = 73(S0).

The proof will rely on the following two lemmas (Lemma A and Lemma B).

Definition. A self-diffeomorphism ¢ : S% x §2 — §2 x §2 will be called positive if it induces
on H3(S3 x S?) = Z the identity.

Lemma A. For any positive self-diffeomorphism ¢ there exists a natural number m € Z such

that for N € S? the restrictions ¢ and oy, represent the same homotopy class in
(S3xN) (S3xN)
7T3(M).

Lemma B. Let ¢ and v be self-diffeomorphisms of M such that the images of S® x N at ¢ and

1 represent the same element in w3(M). Then for any framed-immersion f : M — R7 the
regular homotopy classes of f oy and f o coincide.

Proof of Lemma B. Let us extend the self-diffeomorphisms ¢ and v to those of M x D by taking
the product with the identity map of D, for some large ¢, and denote these self-diffeomorphisms
of M x D7 by ¢ and . Similarly we shall denote by f the product of f with the standard inclusion
D? C RY.
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By the Smale-Hirsch theory [S1, H] (or by the so-called Compression Theorem of Rourke—
Sanderson [R-S]) the restriction induces a bijection

Fr-Tmm (M, R7) <— Fr-Imm (M x D?, R7*9),
Again the regular homotopy class of a framed immersion in
Fr-Imm (M, R™"%) = Fr-Imm (M x D? R7+%)
is uniquely defined by the restriction to S3(= S3 x N).
The maps ¢ and 1) restricted to the sphere S? x N are framed isotopic. By Thom’s isotopy
lemma [T] there is an isotopy ¥, : M x D? — M x D7 such that ¥y = ¢ and ¥; = 9.
It follows that the induced maps dp : M — SO and dip : M — SO are homotopic. Hence,

the framed-regular homotopy classes of f o ¢ and f o 1& coincide. Then the compositions f o ¢
and f o1 are also regularly homotopic. (|

Proof of Lemma A. Let m be the homotopy class of the composition
$% 5 8% x 5% 2y 2,
where i, is the inclusion z — ¢(z, N) and p is the projection S® x $? — S2. We claim that
the maps ¢’ = po and o, = po ay are homotopic maps from S® to S?. To
(S3xN) (S8xN)

show this it is enough to compute the Hopf invariants of these maps.

Let us consider first the case m = 1. We need to show that the Hopf invariant of o} is equal
to 1.

The map u1 : S3 — SOz representing the generator in m3(S03) can be provided by the
standard double covering S® — SO3. Then «; is the self-diffeomorphism of 3 x §2

0[1(1', y) = ({E7 ﬂl(x)y)
and o is the composition of the following three maps: the inclusion
S3 s 8% x 8%,z (z,N);

the map «; and the projection p: S% x §2 — S2.

In order to compute the Hopf invariant of of : S3 — S? first we need to compute the
preimage of a regular value. Let us compute first the preimage of N in S3, i.e., (o)) ~(IV). The
map o can be further decomposed as the composition of j; : S% — SO3 with the evaluation
map e : SO3 — S% g+ g(N), for g € SO3. The set e~ *(N) is the subgroup SOy C SOs,
which consists of the rotations around the line (N, —N) (the stabilizer subgroup of N).

When we identify SOs; with the ball D2 of radius 7 with identified antipodal points on
the boundary S2, then this subgroup SO, corresponds to the diameter N, —N with identified
endpoints N and —N. The preimage of this diameter at u; : S3 — SOs is a great circle. If we
take any other point V in S2, then e=1(V) is a coset of the previous subgroup SO,. Then its
preimage at pp is also a great circle. Therefore the linking number of two such preimages is 1.

The map o/, can be obtained from o} by precomposing it with a degree m map S* — S3.
Hence the Hopf invariant of o, is m. O

PARAMETRIZATIONS OF THE LINKS L4 (OR, EQUIVALENTLY, OF THE SINGULARITIES X)

Let us denote by ¢ the complex C?-bundle TCP! @ ¢}, over CP' = S? where TCP! is
the tangent bundle of CP', and 510 is the trivial complex line bundle. Note that the bundle
¢ considered as a real R*-bundle is isomorphic to the trivial bundle. Hence its total space is
diffeomorphic to S% x R%. Let us denote by Ey(¢) the complement of the zero section in the total
space of the bundle . We shall give below a diffeomorphism of this space Fy(¢) onto Xy \ 0.
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The existence of such a diffeomorphism will give a new proof of the result of [K-N] about the
diffeomorphism type of L.

Proposition. L, is diffeomorphic to S x S2.

Proof. X4\ 0 is diffeomorphic to Ly x R, and the space Ey(() is diffeomorphic to $% x S? x R*.
For simply connected 5-manifolds it is well-known, that two such manifolds are diffeomorphic
if their products with the real line are diffeomorphic (see [Ba], Theorem 2.2). Hence L, and
83 x §2 are diffeomorphic. O

Next we give a concrete parametrization:
va: Eo(() — Xa\0={z,y,2v | 2 +y? 4+ 22+ 02 =0, |z + |y| + [2] + |v] # 0}.
The composition ig 0 ¢4 (or its restriction to ¢;1(57)) will give a framed-immersion
S3 % 8% — 87,
and its regular homotopy class reg [ig © p4] will turn out to be the number
d € Z = Fr-Tmm (8% x §2,57).

This will imply that the image-regular homotopy class of the link Ly in S7 is d mod 2 in
Zo = I(S% x §%,97).
Proof of Theorem 3. For arbitrary manifolds N and @ the natural map

Fr-Imm (N, Q) — Fr-Imm (N, Q x R)

induces a bijection — by the Smale—Hirsch immersion theory (or by the Compression Theorem of

Rourke-Sanderson). Hence Fr-Imm (X4\0 C C*\ 0) = Fr-Imm (5% x §? C S7). By a coordinate
transformation of C* we obtain the following equivalent equation defining Xy

Xg= {m,y,z,v | zy — z(z + o) = 0}.
The parametrization of X4\ 0 is the following.
The inclusion
Ey(¢) it = {(z,y,2,v) | z,y,2,v € C} with image im¥ = X;\ 0
will be described on two charts:
1) ((a:b),z,v), where a,b,z,v € C,b#0, (a: b) € CP', and ||z + [|v]| # 0. Put t = ¢ € C.
The map ¥ on this chart will be given by the formula
U (t,x,v) — (z,2z + tvd, tx, v).

2) For a # 0 denote the quotient 2 by ¢'. On the part of Ey(¢) that projects to CP!\ (1:0)
(that is diffeomorphic to CP\ (1: 0) x (C?\ 0)) consider the coordinates (¥, y,v) and define ¥
by the formula

U (t,y,v) — %y —tvly t'y —vdv).
The change of coordinates between the two coordinate charts of Ey(() is
t'=t"1, v=v, =ty —t'v? or equivalently
Yy = 2z + tv?.
In order to see that these local coordinates give indeed the bundle ¢ over CP' we can precompose
the first local system with the map (¢, z,v) +— (¢, z—tv%,v). (Note that this map can be connected
to the identity by the diffeotopy (t,z,v) — (¢, — stv?,v), 0 < s < 1.) Then the change from
the first coordinate system to the second one for t € S' on the equator of $2 = CP' will
be given by the map (t,z,v) + (t,t?x,v), where x,v € C. Now it is clear that the obtained
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bundle is ¢ = TCP! @ ¢},. (The map of the equator to U(2) defining the bundle ¢ gives in
m1(U(2)) the double of the generator, and its image in m(SO4) = Zs is trivial. That is why
the bundle ( is trivial as a real bundle although it has first Chern class equal 2 as a complex
bundle.) Note that ¥ maps the part of the first chart corresponding to the points ¢t = 0, (i.e.,
the space C* = {(0 : 1), z,v}) identically onto the coordinate space C2, = {z,0,0,v} of C*.
The restriction of ¥ to this part determines the framed immersion of X, \ 0 to C*. Hence, the
immersion itself is very simple: just the inclusion of C2\ 0 — C*. But we need to consider also
the framing. It is coming a) from the paramatrization ¥ and b) from the defining equation of
Xq.
a) The parametrization gives the complex vector field
aa—f = (0,v¢,z,0).
t=0
b) The defining equation g(z,y, z,v) = xy — 2(z + v¢) = 0 at the points (x,0,0,v) gives the
complex vector field
grad g(z,0,0,v) = (0,2, —v?,0).

These two complex vector fields have zero first and last complex coordinates (on the coordinate
subspace (Ciw = {z,0,0,v}). Hence, we shall write only their second and third coordinates: those
are (v?,x) and (—z,v?) respectively. These two complex vectors give four real vector fields if we
add their i-images as well. Let us denote by a; and as the real and imaginary coordinates of v
v = ay + ias. Similarly x; and x5 are those of z, i.e., * = x1 + iz2. Then the four real vectors
in R* = C? = (0,y, 2,0) are:

(a1,a2,331,332)
(az,*al,@, 1)
= (21,22, —a1, —as)
= (- xz,:m,az,—cn)
The map (x,v) € R*\ 0 — (ul,uz,U3,U4) can be decomposed as a degree d branched

covering (z,v) > (z,v%) and a map representing an element in 73(S04) = 73(S%) @ 73(S03) of
the form (1, %) for some unknown element * in w3(SO3). (This is because the map

(favd) = (z1,22,0a1,a2) = uy = (a1,az,21,22)

is almost the identity, it differs only by an even permutation of the coordinates.) Hence the
composition represents an element of the form (d,?) € m3(S®) @ 73(503), and its image in
7m3(S0)/jax(m3(S03)) = Zso is dmod 2, see Remark 2. That finishes the proof of Theorem 3. O

APPENDIX

For any space Y let us denote by CY the cone over Y. Here we show that the map provided
by the Puppe sequence
a: [C(M)UC(skeM),SO] — [M UC(skoM), SO
can be identified with the coboundary map in the cochain complex:
§: C*(M;Z) — C3(M; 7).

We have seen that the sources and targets of 6 and « can be identified.
For simplicity let us consider the situation when skoM = S? and M has a single 3-cell D3,

attached to this 52 by a map 6 of degree k. Then M = S? LéJ D3.
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Let us denote the sets
M UC(skoM) and CM UC(skyM)

by A and B respectively.

Clearly we can choose any degree k map for 6 in order to study the induced map «. Take for 8
a branched k-fold cover of $? along S°. Then the inclusion A C B can be described homotopically
as follows:

In S3 x [0,1] contract an interval % x [0,1] for some * € S3 to a point. A will be identified
with $3 x {0}. Further on S3 x {1} identify the points that are mapped into the same point by
the suspension of 6. The part of B coming from S* x {1} will be denoted by Bj. The space By
is a deformation retract of B.

Let us denote by r the retraction B — Bp. Clearly, its restriction 7|4 : A — Bj is a
degree k map (it is actually the suspension of the branched covering 6). So the inclusion A C B
induces in the 3-dimensional homology group Hj (or in 73) a multiplication by k.

The proof of the special case (when in M there is a single 2-cell and a single 3-cell) is finished.
The general case follows easily taking first the quotient of sko M by all but one 2-cell and
considering any single 3-cell.
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