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AXIUMBILIC SINGULAR POINTS ON SURFACES IMMERSED IN R4 AND

THEIR GENERIC BIFURCATIONS

R. GARCIA, J. SOTOMAYOR, AND F. SPINDOLA

Abstract. Here are described the axiumbilic points that appear in generic one parameter
families of surfaces immersed in R4. At these points the ellipse of curvature of the immersion,

Little [7], Garcia - Sotomayor [11], has equal axes.

A review is made on the basic preliminaries on axial curvature lines and the associated
axiumbilic points which are the singularities of the fields of principal, mean axial lines, axial

crossings and the quartic differential equation defining them.
The Lie-Cartan vector field suspension of the quartic differential equation, giving a line field

tangent to the Lie-Cartan surface (in the projective bundle of the source immersed surface

which quadruply covers a punctured neighborhood of the axiumbilic point) whose integral
curves project regularly on the lines of axial curvature.

In an appropriate Monge chart the configurations of the generic axiumbilic points, denoted

by E3, E4 and E5 in [11] [12], are obtained by studying the integral curves of the Lie-Cartan
vector field.

Elementary bifurcation theory is applied to the study of the transition and elimination

between the axiumbilic generic points. The two generic patterns E1
34 and E1

45 are analysed
and their axial configurations are explained in terms of their qualitative changes (bifurcations)

with one parameter in the space of immersions, focusing on their close analogy with the saddle-

node bifurcation for vector fields in the plane [1], [10].
This work can be regarded as a partial extension to R4 of the umbilic bifurcations in

Garcia - Gutierrez - Sotomayor [5], for surfaces in R3. With less restrictive differentiability

hypotheses and distinct methodology it has points of contact with the results of Gutierrez -
Guiñez - Castañeda [3].

Introduction

In this work are described the axiumbilic singularities, at which the ellipse of curvature, as
defined in Little [7] and Garcia - Sotomayor [11], has equal axes. The focus here are the axiumbilic
points that appear generically in one parameter families of surfaces immersed in R4. It can be
regarded as an extension from R3 to R4, as target spaces for immersed surfaces, and from umbilic
to axiumbilic points as singularities, of results obtained by Gutierrez - Garcia - Sotomayor in [5].
It is also a continuation, in the direction of bifurcations of axiumbilic singularities, of the study
of the structural stability of global axial configurations started in Garcia - Sotomayor [11].

An outline of the organization of this paper follows:
Section 1 deals with geometric preliminaries and a review of axial lines and axiumblic points

in order to define the principal and mean curvature configurations and their quartic differential
equations.
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In Section 2, locally presenting a surface M immersed into R4 with a Monge chart, are studied
the axiumbilic points and the transversality conditions in terms of which are defined the generic
axiumbilic points are made explicit.

Section 3 establishes the axial principal and mean configurations in a neighborhood of generic
axiumbilic points, denoted E3, E4 and E5. This description uses the suspension of Lie-Cartan,
giving rise to a line field tangent to a surface, which quadruply covers a punctured neighborhood
of the axiumbilic point, and whose integral lines project regularly on the lines of axial curvature.
This follows the approach of Garcia and Sotomayor in [11] and [12], chap. 8. After this review
follow two subsections devoted to describe the behaviors of the axial lines near the axiumbilic
points denoted E1

34 and E1
45, which are the transversal transitions between the generic axiumbilic

points.
In fact, the axiumbilic point E1

34 (Figure 7) characterizes the transition between an axiumbilic
point of type E3 and one of type E4, which is explained by the variation of one parameter family
in the space of immersions Cr, r ≥ 5 of a surface M into R4 (Proposition 11), in a first analogy
with the saddle-node bifurcation of vector fields [1], [10].

The axiumbilic point E1
45 (Figure 11) is characterized by the collision and subsequent elimina-

tion between one point of type E4 and other of type E5. Here also, this bifurcation phenomenon
is explained by means of a parameter variation in the space of immersions (Proposition 17), in
a second analogy with the saddle-node bifurcations in the plane [1] [10].

Section 4 establishes the genericity of the axiumbilic bifurcations studied in this paper.
This work is related to the papers by Gúıñez-Gutiérrez [2] and Gúıñez-Gutiérrez-Castañeda

[3] where a description, in class C∞ and in the context of quartic differential forms, of the points
E1

34 and E1
45 (using the notation H34 and H45), can be found.

Here was adopted a different approach, using the Lie-Cartan suspension as established in
Garcia-Sotomayor [11], for immersions of class Cr, 5 ≤ r ≤ ∞. This leads to an interpretation of
these points with less restrictive differentiability hypotheses and allows proofs with techniques
closer to those of elementary bifurcation theory as in [1] and [10].

Section 5 closes the paper with related comments on its results and their connection with
others found in the literature.

Acknowledgment. The authors are grateful to the referee for his/her careful reading and
helpful style suggestions.

1. Differential Equation of Axial Lines

Let α : M −→ R4 be an immersion of class Cr, r ≥ 5, of an oriented smooth surface in R4, with
the canonical orientation. Assume that (x, y) is a positive chart of M and that {αx, αy, N1, N2}
is a smooth positive frame in R4, where for p ∈ M , {αx = ∂α/∂x, αy = ∂α/∂y}p is the the
standard basis of TpM in the chart (x, y) and {N1, N2}p is an orthonormal basis of the normal
plane NpM .

In the chart (x, y), the first fundamental form is expressed by

Iα = 〈Dα,Dα〉 = Edx2 + 2Fdxdy +Gdy2

where, E = 〈αx, αx〉, F = 〈αx, αy〉 and G = 〈αy, αy〉 and the second fundamental form is given
by IIα = II1

αN1 + II2
αN2 where IIiα, i = 1, 2, is

IIiα := 〈D2α,Ni〉 = eidx
2 + 2fidxdy + gidy

2,

with ei = 〈αxx, Ni〉, fi = 〈αxy, Ni〉 and gi = 〈αyy, Ni〉.
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The mean curvature vector is defined by H = h1N1 + h2N2 with

hi =
Egi − 2Ffi +Gei

2(EG− F 2)
.

For v ∈ TpM , the normal curvature vector in the direction v is defined by:

(1) kn = kn(p, v) =
IIα(v)

Iα(v)
=
II1
α(v)

Iα(v)
N1 +

II2
α(v)

Iα(v)
N2.

The image of kn restricted to the unitary circle S1
p of TpM describes in NpM an ellipse

centered in H(p), which is called ellipse of curvature of α at p, and it will be denoted by εα(p).
When (e1− g1)f2− (e2− g2)f1 6= 0, it is an actual non-degenerate ellipse, which can be a circle.
Otherwise it can be a segment or a point. As kn|S1

p
is quadratic, the pre-image of each point of

the ellipse is formed of two antipodal points on S1
p , and therefore each point of εα(p) is associated

to a direction in TpM . Moreover, for each pair of points in εα(p) antipodally symmetric with
respect to H(p), it is associated two orthogonal directions in TpM , defining a pair of lines in
TpM [7], [8], [9].

Consider the function:

‖kn −H‖2 :=

[
e1dx

2 + 2f1dxdy + g1dy
2

Edx2 + 2Fdxdy +Gdy2
− Eg1 − 2Ff1 +Ge1

2(EG− F 2)

]2

+

[
e2dx

2 + 2f2dxdy + g2dy
2

Edx2 + 2Fdxdy +Gdy2
− Eg2 − 2Ff2 +Ge2

2(EG− F 2)

]2

For each p ∈ M in which εα(p) is not a circle, the points maximum and minimum of this
function determine four points over the ellipse of curvature εα(p), which are their vertices, located
at the large and small axes.

Figure 1. Ellipse of curvature εα(p) and lines of axial curvature

As illustrated in Figure 1, to the small axis AB is associated the crossing A′A′′B′B′′ and
to the large axis CD is associated the crossing C ′C ′′D′D′′. Thus, for each p ∈ M at which
the non-degenerate ellipse is not a circle or a point, two crossings are defined in TpM , one
associated to the large axis and the other to the small axis of the ellipse of curvature. These
fields of 2-crossings in M are called fields of axial curvature.

Outside the set Uα of points at which the ellipse of curvature is a circle (i.e. has equal
axes), called axiumbilic points, the lines and crossings are said to be lines and crossings of axial
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curvature. Those related to the large (respectively small) axis of the ellipse of curvature are
called lines and crossings of principal (respectively mean) axial curvature.

From the considerations above, the axial directions are defined by the equationm

Jac(‖kn −H‖2, Iα) = 0

which has four solutions for p /∈ Uα and is singular at p ∈ Uα. According to [11] and [12], the
differential equation of axial lines is given by:

(2) a4dy
4 + a3dy

3dx+ a2dy
2dx2 + a1dydx

3 + a0dx
4 = 0,

where

a4 = −4F (EG− 2F 2)(g2
1 + g2

2) + 4G(EG− 4F 2)(f1g1 + f2g2),

+ 8FG2(f2
1 + f2

2 ) + 4FG2(e1g1 + e2g2)− 4G3(e1f1 + e2f2)

a3 = −4E(EG− 4F 2)(g2
1 + g2

2)− 32EFG(f1g1 + f2g2),

+ 16EG2(f2
1 + f2

2 )− 4G3(e2
1 + e2

2) + 8EG2(e1g1 + e2g2)

a2 = −12FG2(e2
1 + e2

2) + 12E2F (EG− 4F 2)(g2
1 + g2

2),

+ 24EG2(e1f1 + e2f2)− 24E2G(f1g1 + f2g2)

a1 = 4E3(g2
1 + g2

2) + 4G(EG− 4F 2)(e2
1 + e2

2)

+ 32EFG(e1f1 + e2f2)− 16E2G(f2
1 + f2

2 )− 8E2G(e1g1 + e2g2),

a0 = 4F (EG− 2F 2)(e2
1 + e2

2)− 4E(EG− 4F 2)(e1f1 + e2f2)

+ −8E2F (f2
1 + f2

2 )− 4E2F (e1g1 + e2g2) + 4E3(f1g1 + f2g2).

Proposition 1 ([11], [12]). Let α : M −→ R4 be an immersion of class Cr, r ≥ 5, of an oriented
and smooth surface. Denote the first fundamental form of α by

Iα = Edx2 + 2Fdxdy +Gdy2

and the second fundamental form by:

IIα = (e1dx
2 + 2f1dxdy + g1dy

2)N1 + (e2dx
2 + 2f2dxdy + g2dy

2)N2

where {N1, N2} is an orthonormal frame.

i) The differential equation of axial lines is given by:

G = [a0G(EG− 4F 2) + a1F (2F 2 − EG)]dy4

+ [−8a0EFG+ a1E(4F 2 − EG)]dy3dx

+ [−6a0GE
2 + 3a1FE

2]dy2dx2 + a1E
3dydx3 + a0E

3dx4 = 0,

where

a1 = 4G(EG− 4F 2)(e2
1 + e2

2) + 32EFG(e1f1 + e2f2)

+ 4E3(g2
1 + g2

2)− 8E2G(e1g1 + e2g2)− 16E2G(f2
1 + f2

2 )

and

a0 = 4F (EG− 2F 2)(e2
1 + e2

2)− 4E(EG− 4F 2)(e1f1 + e2f2)

+ 4E3(f1g1 + f2g2)− 4E2F (e1g1 + e2g2)− 8E2F (f2
1 + f2

2 ).
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ii) The axiumbilic points of α are characterized by a0 = a1 = 0.

The axiumbilic points are defined by the intersection of the curves a0(x, y) = 0 and a1(x, y) = 0.
Assume, with no lost of generality, that they intersect at (x, y) = (0, 0). In this work it will be
considered the case where the intersection is transversal or quadratic at (0, 0).

Figure 2 illustrates the generic contact of the curves a0(x, y) = 0 and a1(x, y) = 0, whose
intersection characterizes the axiumbilic points.

Figure 2. Transversal and quadratic contact between the curves a0 = 0 and
a1 = 0 at an axiumbilic point p.

An axiumbilic point given by (x, y) = (0, 0) is called transversal if

(3)
∂(a0, a1)

∂(x, y)

∣∣∣∣
(0,0)

=

∣∣∣∣∣ ∂a0
∂x (0, 0) ∂a0

∂y (0, 0)
∂a1
∂x (0, 0) ∂a1

∂y (0, 0)

∣∣∣∣∣ 6= 0.

The axiumbilic point given by (x, y) = (0, 0) is said to be of quadratic type if the matrix

(4)
∂(a0, a1)

∂(x, y)

∣∣∣∣
(0,0)

=

[
∂a0
∂x (0, 0) ∂a0

∂y (0, 0)
∂a1
∂x (0, 0) ∂a1

∂y (0, 0)

]
has rank 1 and, assuming ∂a0

∂y (0, 0) 6= 0, it follows from the implicit function theorem that y(x)

is a local solution of a0(x, y(x)) = 0. Writing s(x) = a1(x, y(x)) it follows that s′(0) = 0 and
s′′(0) 6= 0.

A similar analysis can be carried out if other element of the matrix ∂(a0,a1)
∂(x,y)

∣∣∣∣
(0,0)

is non zero.

Remark 2 ([11]). In isothermic coordinates, where E = G and F = 0, it follows that

a1 = −a3 = E3[e2
1 + e2

2 + g2
1 + g2

2 − 4(f2
1 + f2

2 )− 2(e1g1 + e2g2)]

a0 = a4 = −a2

6
= 4E3[f1g1 + f2g2 − (e1f1 + e2f2)]

and the differential equation of axial lines is simplified to

(5) a0(x, y)(dx4 − 6dx2dy2 + dy4) + a1(x, y)(dx2 − dy2)dxdy = 0.

1.1. Axial configurations of immersed surfaces in R4. Let Ir = Ir(M,R4) the set of
immersions of class Cr. For α ∈ Ir, the differential equation of axial lines is well defined
(equation (2)):

(6) G(x, y, dx, dy) = a4dy
4 + a3dy

3dx+ a2dy
2dx2 + a1dydx

3 + a0dx
4 = 0

in the projective bundle PM of M .
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For each α ∈ Ir, define the Lie-Cartan surface of the immersion α by Lα := G−1
α (0), which

is of class Cr−2, regular in M − Uα and may present singularities at Uα.
Moreover, as the set defined by the quartic equation (6) contains the projective lines at Uα,

it follows that Lα is a ramified covering of degree 4 in M − Uα and contains the projective line
π−1(p) for each p ∈ Uα.

In the chart (x, y, p) of PM , with p = dy
dx , equation (6) is given by

(7) G(x, y, p) = a4p
4 + a3p

3 + a2p
2 + a1p+ a0 = 0.

Consider the Lie-Cartan vector field Xα, of class Cr−3, tangent to the surface G = 0

(8) Xα := Gp
∂

∂x
+ pGp

∂

∂y
− (Gx + pGy)

∂

∂p
.

The axial curvature lines are the projections by π : PM −→ M restricted to Lα, of the
integral curves of Xα.

See illustration in Figure 3. For each p ∈ M − Uα there are 4 well defined axial directions,
given the four roots of equation (7).

Two axial configurations are given: the principal axial configuration Pα = {Uα,Xα} defined by
the axiumbilic points Uα and by the net Xα (related to the crossing of principal axial curvature),
in M − Uα and the mean axial configuration Qα = {Uα,Yα}, defined by the axiumbilic points
Uα and the net Yα (related to the crossing of mean axial curvature), in M − Uα.

Figure 3. Projection on M of the integral curves of the Lie-Cartan vector field
tangent to Lα in a neighborhood of p ∈M −Uα. For each point in M pass four
lines, associated, in pairs, to the axis of the ellipse.

2. Differential Equation of Axial Lines in a Monge Chart

The surface M will be locally parametrized by a Monge chart near an axiumbilic point p as
follows

z = R(x, y), and w = S(x, y),

where

(9)
R(x, y) =

r20

2
x2 + r11xy +

r02

2
y2 +

r30

6
x3 +

r21

2
x2y +

r12

2
xy2 +

r03

6
y3

+
r40

24
x4 +

r31

6
x3y +

r22

4
x2y2 +

r13

6
xy3 +

r04

24
y4 + h.o.t.,

(10)
S(x, y) =

s20

2
x2 + s11xy +

s02

2
y2 +

s30

6
x3 +

s21

2
x2y +

s12

2
xy2 +

s03

6
y3

+
s40

24
x4 +

s31

6
x3y +

s22

4
x2y2 +

s13

6
xy3 +

s04

24
y4 + h.o.t.
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At the point (x, y,R(x, y), S(x, y)), the tangent plane to the surface is generated by {t1, t2},
where t1 = (1, 0, Rx, Sx) and t2 = (0, 1, Ry, Sy). The normal plane is generated by {N1, N2},
where N1 = Ñ1

|Ñ1|
and N2 = Ñ2

|Ñ2|
are defined by Ñ1 = (−Rx,−Ry, 1, 0) and Ñ2 = t1 ∧ t2 ∧ Ñ1.

Here ∧ is the exterior or wedge product v1 ∧ v2 ∧ v3 of three vectors v1, v2, v3 in R4 is defined
by equation det(v1, v2, v3, v) = 〈v1 ∧ v2 ∧ v3, v〉 for all v ∈ R4.

Therefore it follows that:

det(t1, t2, Ñ1, •) = 〈Ñ2, •〉.
From the expressions of R and S given by equations (9) and (10), it follows that:

E = 1 +O(2), F = O(2), G = 1 +O(2),

and
e1 = r20 + r30x+ r21y +O(2), e2 = s20 + s30x+ s21y +O(2),
f1 = r11 + r21x+ r12y +O(2), f2 = s11 + s21x+ s12y +O(2),
g1 = r02 + r12x+ r03y +O(2), g2 = s02 + s12x+ s03y +O(2).

The axiumbilic points are defined by a0(x, y) = 0 and a1(x, y) = 0. So, in a neighborhood of
(0, 0), it follows that

(11) a0(x, y) = a0
00 + a0

10x+ a0
01y +O(2)

and

(12) a1(x, y) = a1
00 + a1

10x+ a1
01y +O(2),

where

a0
00 = r11(r02 − r20) + s11(s02 − s20),

a0
10 = r21(r02 − r20) + r11(r12 − r30) + s11(s12 − s30) + s21(s02 − s20),

a0
01 = r12(r02 − r20) + r11(r03 − r21) + s11(s03 − s21) + s12(s02 − s20)

and

a100 = (r02 − r20)2 + (s02 − s20)2 − 4(r211 + s211),

a110 = 2(r12 − r30)(r02 − r20) + 2(s12 − s30)(s02 − s20)− 8(r21r11 + s21s11),

a101 = 2(r03 − r21)(r02 − r20) + 2(s03 − s21)(s02 − s20)− 8(r12r11 + s12s11).

Therefore a point p, expressed in a Monge chart by (0, 0), is an axiumbilic point when the
following relations hold.

(13)

{
a0

00 = r11(r02 − r20) + s11(s02 − s20) = 0,
a1

00 = (r02 − r20)2 + (s02 − s20)2 − 4(r2
11 + s2

11) = 0.

Algebraic manipulations of the equations above, see [2], show that (0, 0) is an axiumbilic point
when the following equations hold

(14)

{
2r11 = (s02 − s20),
2s11 = −(r02 − r20, )

or

{
2r11 = −(s02 − s20),
2s11 = (r02 − r20).

Remark 3. Let r02 = r20 + r and s02 = s20 + s, ρ2 = r2
11 + s2

11. Then condition for (0, 0) to be
an axiumbilic point, see equation (13), is given by

(15)

{
r11 · r + s11 · s = 0,
r2 + s2 = 4ρ2.
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These condition for being an axiumbilic point can be interpreted as the intersection of a circle
and a straight line in the plane (r, s). The intersections are given by

(16)

{
r11 = s

2 ,
s11 = − r2 ,

or

{
r11 = − s2 ,
s11 = r

2 ,

and therefore equation (16) is another form of equation (14).
Let

α1 =s12 − s30 + 2r21, α2 = r30 − r12 + 2s21,

α3 =s03 − s21 + 2r12, α4 = r21 − r03 + 2s12.

The discussion above is synthesized in the following lemma.

Lemma 4. Let p be an axiumbilic point with coordinates (0, 0) in a Monge chart. The differential
equation of axial lines in a neighborhood of (0, 0) is given by

(17) ã0(x, y)(dx4 − 6dx2dy2 + dy4) + ã1(x, y)(dx2 − dy2)dxdy +H(x, y, dx, dy) = 0,

where

(18)
ã0(x, y) =

1

2
(rα1 + sα2)x+

1

2
(rα3 + sα4)y + a0

20x
2 + a0

11xy + a0
02y

2,

ã1(x, y) =2(sα1 − rα2)x+ 2(sα3 − rα4)y + a1
20x

2 + a1
11xy + a1

02y
2

and H contains terms of order greater than or equal to 3 in (x, y).

With the notation in equation (17), the condition of transversality between the curves a0 = 0
and a1 = 0 is given by ∣∣∣∣ a0

10 a0
01

a1
10 a1

01

∣∣∣∣ 6= 0.

The determinant above has the following expression:

[α2α3 − α1α4] · (r2 + s2),

where r = r02−r20 and s = s02−s20. If (r2+s2) is zero, it follows that a0
10 = a0

01 = a1
10 = a1

01 = 0,
and therefore the matrix [

a0
10 a0

01

a1
10 a1

01

]
is identically zero. Thus the axiumbilic points with r = s = 0 form a set of codimension at least
four.

Therefore, the condition of transversality, supposing r2 + s2 6= 0, is given by:

(19) T := α2α3 − α1α4 6= 0.

Long, but straightforward calculations show that condition (19) is invariant by positive rota-
tions in the tangent and in the normal planes.

Lemma 5. Consider the quartic differential equation

(a10x+ a01y)(dx4 − 6dx2dy2 + dy4) + (b10x+ b01y)dxdy(dx2 − dy2) = 0.

Consider a rotation x = cos θu+sin θv, y = − sin θu+cos θv, where θ is a real root of the system
of equations

−a01t5 + (a10 − b01)t4 + (6a01 + b10)t3 + (b01 − 6a10)t2 − (a01 + b10)t+ a10 = 0, t = tan θ.

Then it follows that

ā01v(du4 − 6du2dv2 + dv4) + ( ¯b10u+ ¯b01v)dudv(du2 − dv2) = 0,where
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ā01 =(t2 + 1)[a01(t4 − 6t2 + 1) + b01t(t
2 − 1)t]

¯b10 =− 16t(t2 − 1)(a10 − a01t) + (t4 − 6t2 + 1)(b10 − b01t)

¯b01 =− 16(t2 − 1)(ta10 + a01) + (t4 − 6t2 + 1)(b10t+ b01)

Proof. The result follows from straightforward calculations. Observe that when a01 = 0 a
rotation of angle π/2 is sufficient to obtain the result stated. �

Proposition 6. Let p be an axiumbilic point. Then there exists a Monge chart and a homothety
in R4 such that the differential equation of axial lines is given by

(20) y(dy4 − 6dx2dy2 + dx4) + (ax+ by)dxdy(dx2 − dy2) +H(x, y, dx, dy) = 0

where H contains terms of order greater than or equal to 2 in (x, y). Moreover, the axiumbilic
point p is transversal if and only if a 6= 0.

Proof. Consider a parametrization X(x, y) = (x, y,R(x, y), S(x, y)) given by equations (9) and
(10) such that 0 is an axiumbilic point. By equation (18) it follows that:

a0(x, y) =
1

2
(rα1 + sα2)x+

1

2
(rα3 + sα4)y +O(2),

a1(x, y) =2(sα1 − rα2)x+ 2(sα3 − rα4)y +O(2).

By an appropriate choice of the rotation in the plane {x, y} given by Lemma 5 and a homothety
in R4, it is possible to make 2a10 = rα1 + sα2 = 0 and, when (α1α4 − α2α3)(r2 + s2) 6= 0, also

a01 = 1
2 (rα3 + sα4) = 1. So the result is established, a = 4(sα1−rα2)

rα3+sα4
when rα1 + sα2 = 0 and

b = 4(sα3−rα4)
rα3+sα4

. If r 6= 0 it follows that a = − 4(r2+s2)α2

r(rα3+sα4) and a = 4α1

α4
when s 6= 0 and r = 0. �

Remark 7. Let p = dy
dx . Then the differential equation (20) is given by:

(21) y(p4 − 6p2 + 1) + (ax+ by)p(1− p2) +H(x, y, p) = 0,

where H contains terms of order greater than or or equal to 2 in (x, y).

3. Axial configuration in the neighborhood of axiumbilic points

Let p be an axiumbilic point whose neighborhood is parametrized by a Monge chart and
assume the notation established at the beginning of Section 2.

When it is a transversal axiumbilic point, which is determined by transversal intersection of
the curves a0 = 0 and a1 = 0 (see equation (3)), it results from Proposition 6 and Remark 7
that the differential equation of axial lines is given by

(22) G(x, y, p) = y(p4 − 6p2 + 1) + (ax+ by)p(1− p2) +H(x, y, p) = 0,

where H(x, y, p) contains higher order terms greater or equal to 2 in (x, y).
The Lie-Cartan surface Lα in PM is defined implicitly by

(23) G(x, y, p) = 0.

In the case that p is a transversal axiumbilic point the surface defined above is regular and of
class Cr−2 in the neighborhood of the projective axis p.

In the coordinates (x, y, p), the Lie-Cartan vector field X, is of class Cr−3, (equation (8)):

(24) X := Gp
∂

∂x
+ pGp

∂

∂y
− (Gx + pGy)

∂

∂p
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and the projections of the integral curves of X

∣∣∣∣
G=0

are the axial lines in a neighborhood of p

(Figure 3).
Restricted to the projective axis p, defined by x = 0, y = 0, the Lie-Cartan vector field is

given by

X = −p[(p4 − 6p2 + 1) + (1− p2)(a+ bp)]
∂

∂p
.

Therefore, the singular points of the Lie-Cartan vector field in the projective line are given
by the equation:

(25) P (p) = pR(p) = p[(p4 − 6p2 + 1) + (1− p2)(a+ bp)] = 0.

The discriminant of R(p) = (p4 − 6p2 + 1) + (1− p2)(a+ bp) is

(26)
∆(a, b) =16a5 + 4(b2 + 68)a4 + 16(b2 + 144)a3

−8(b2 − 80)(16 + b2)a2 + 96(16 + b2)2a+ 4(16 + b2)3.

Furthermore, R(±1) = −4, R(0) = 1 + a and limp−→±∞R(p) = +∞, thus R has at least two
simple real roots, one is less than −1 and the other is greater than 1.

The derivative of X at (0, 0, p) is given by:

DX(0, 0, p) =

 a(1− 3p2) 4p3 + b(1− 3p2)− 12p 0
a(1− 3p2)p p[4p3 + b(1− 3p2)− 12p] 0

0 0 −P ′(p)


whose eigenvalues are 0 and

λ1(p) = a(1− 3p2) + p[4p3 + b(1− 3p2)− 12p],
λ2(p) = −P ′(p).

Recall that P (p) = pR(p), and so P ′(p) = R(p) + pR′(p). Therefore at the roots of R, it
follows that −P ′(p) = −pR′(p). Also, as ±1 are not roots of R, it follows that

a =
(−p4 + 6p2 − 1) + bp(1− p2)

1− p2
.

Substituting the equation above into the expression of λ1(p), p being a root of R(p) (a singular
point of X), it follows that {

λ1(p) = (p2+1)3

(p2−1) ,

λ2(p) = −pR′(p).
Therefore, the eigenvalues of DX, at the singular points (0, 0, p0) = (0, 0, 0) and (0, 0, pi),

pi 6= 0, on the tangent space to G = 0, are as follows:

(27) p0 = 0 :

{
λ1 = a,
λ2 = −(a+ 1),

(28) pi 6= 0 :

{
λ1 =

(p2i+1)3

(p2i−1)
,

λ2 = −piR′(pi).
The eigenspace associated to the eigenvalue λ1 is transversal to the axis p and the eigenvalue

λ2 has the projective axis as the associated eigenspace.
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In [11] the axial configuration near an axiumbilic point was established in the following situ-
ation:

• ∆(a, b) < 0,
• ∆(a, b) > 0, a < 0, a 6= −1,
• ∆(a, b) > 0, a > 0.

When ∆(a, b) < 0, R has two simple real roots, and the Lie-Cartan vector field has three
hyperbolic saddles in the projective axis. This axiumbilic point is called of type E3.

When ∆(a, b) > 0, a < 0, a 6= −1, R has four simple real roots, and the Lie-Cartan vector field
has 5 singular points in the projective line. Four are hyperbolic saddles and one is a hyperbolic
node. This axiumbilic point is called of type E4.

When ∆(a, b) > 0, a > 0, the Lie-Cartan vector field has 5 hyperbolic saddles in the projective
line. This axiumbilic point is called of type E5.

In Figure 4 the Lie-Cartan surfaces and the integral curves of the Lie-Cartan vector field
are sketched in the three cases E3, E4 and E5. The projections of the integral curves by
π : PM −→M are the axial lines near the axiumbilic points (see Figure 5) E3, E4 and E5.

Figure 4. Lie-Cartan vector field and its integral curves in the cases E3, E4

and E5.

Figure 5. Axial configurations near axiumbilic points E3 (left), E4 (center)
and E5 (right).
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For an immersion α of a surface M into R4, the axiumbilic singularities Uα and the lines
of axial curvature are assembled into two axial configurations: the principal axial configuration
Pα = {Uα, Xα} and the mean axial configuration Qα = {Uα, Yα}.

An immersion α ∈ Ir is said to be principal axial stable if it has a Cr neighborhood V(α)
such that, for any β ∈ V(α) there exists a homeomorphism h : M → M mapping Uα onto Uβ
and mapping the integral net of Xα onto that of Xβ . Analogous definition is given for mean axial
stability.

In Proposition 8 are described the axiumbilic points which are principal axial stable. In Figure
6 are sketched the curves ∆(a, b) = 0, a = −1 and a = 0 in the plane a, b, which bound the open
regions corresponding to the three types of axiumbilic points of principal axial stable type.

Proposition 8 ([11], [12] p. 209). Let p be an axiumbilic point of α ∈ Ir, r ≥ 5. Then, α is
locally principal axial stable and locally mean axial stable at p if and only if p is of type E3, E4

or E5. The curve ∆(a, b) = 0 has three connected components, is contained in the region a ≤ −1

and it is regular outside the points (− 27
2 ,±

5
√

5
2 ) which are of cuspidal type.

E
4

E
4

E
4

E
4

E
4

E
4

b

a

E5

E5

E
3

E
3

0-1

Figure 6. Diagram of stable axiumbilic points, E3, E4 and E5.

Proof. The function ∆(a, b) defined by equation (26) is symmetric in b. The polynomials ∆(a, b)
and ∂∆

∂b in the variable b have resultant equal to a positive multiple of

(1 + a)(a2 + 8a+ 32)2a16(2a+ 27)6.

The critical points p± = (− 27
2 ,±

5
√

5
2 ) of ∆ are contained in ∆(a, b) = 0.

Near the point p+ it follows that:

∆(a, b) =− 54675

[(
a+

27

2

)2

+ 5

(
b− 5

√
5

2

)2

+ 2
√

5

(
a+

27

2

)(
b− 5

√
5

2

)]
+h.o.t.

Further analysis shows p± are Whitney cuspidal points.
Also the curve ∆(a, b) = 0 is contained in the region a ≤ −1 and near (−1, 0) it is given by

a = − 1
20b

2 +O(3). In fact, for a > −1 all the roots of ∆(a, b) are complex.
By the classification of axiumbilic points E3, E4 and E5 by the sign of ∆(a, b) and of a, the

diagram of stable axiumbilic points, see [11], [12] p. 209, is as shown in Fig. 6. �
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3.1. The axiumbilic point E1
34.

Definition 9. Let α : M −→ R4 be an immersion of class Cr, r ≥ 5, of a smooth and oriented
surface. An axiumbilic point p is said to be of type E1

34 if a defined in Proposition 6 does not
vanish and:

i) ∆(a, b) = 0, (a, b) 6= (−1, 0) and (a, b) 6= (− 27
2 ,±

5
2

√
5), or

ii) b 6= 0 if a = −1.

Proposition 10. Let α : M −→ R4 be an immersion of class Cr, r ≥ 5 of a smooth and
oriented surface having an axiumbilic point p of type E1

34. Then the axial configuration, defined
in subsection 1.1, of α in a neighborhood of p is as shown in Figure 7.

Figure 7. Axial configurations in a neighborhood of an axiumbilic point of type E1
34.

Proof. Since the condition of transversality (a 6= 0) is preserved at an axiumbilic point of type
E1

34 the implicit surface defined by equation (23) is regular in a neighborhood of the projective

line. From the hypotheses ∆(a, b) = 0, (a, b) 6= (−1, 0) and (a, b) 6= (− 27
2 ,±

5
2

√
5) or b 6= 0, if

a = −1, the polynomial P (p) = p[(p4 − 6p2 + 1) + (1− p2)(a+ bp)] = pR(p), which defines the
singularities of the Lie-Cartan vector field, has one double root and three real simple roots.
With no loss of generality, we can consider the case a = −1 and b 6= 0, where p = 0 is a double
root of the polynomial P (p). In this case, we have P (p) = p2(p3 − bp2 − 5p+ b).
The eigenvalues of DX at (0, 0, p) are given by:

λ1 = 4p4 − 3bp3 − 9p2 + bp− 1 and λ2 = p(−5p3 + 4bp2 + 15p− 2b).

Therefore, at the singular points (0, 0, p), p 6= 0, of X it follows that:

λ1 =
(p2 + 1)3

p2 − 1
and λ2 = −p

2(p4 + 2p2 + 5)

p2 − 1
.

Then, λ1λ2 < 0 when p 6= 0 and these three singular points of X are hyperbolic saddles. At
p = 0, double root of P , it follows that λ1 = −1, λ2 = 0. Recall that the eigenspace associated
to λ1 is transversal to the axis p and that one associated to λ2 is the projective axis itself.
Since Gy(0, 0, 0) = 1, it follows from the implicit function theorem that y(x, p) = xp + O(3) is
defined in a neighborhood of (0, 0, 0) such that G(x, y(x, p), p) = 0. In this case, the Lie-Cartan
vector field in the chart (x, p) is given by:

(29)

{
ẋ = −x+ bxp+O(3)
ṗ = −bp2 +O(3)

with b 6= 0. Therefore, (0, 0, 0) is a quadratic saddle-node with the center manifold tangent to
the projective line. The phase portrait is sketched in Figure 8, and the projections of the integral
curves are the axial lines shown in Figure 7.
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Figure 8. Integral curves of X|G=0 in the neighborhood of the projective line
in the case of an axiumbilic point of type E1

34

When (a, b) 6= (−1, 0), (a, b) 6= (− 27
2 ,±

5
2

√
5) and ∆(a, b) = 0 the polynomial

P (p) = p[(p4 − 6p2 + 1) + (1− p2)(a+ bp)]

has a double root p0 6= 0 and three real simple roots. This case is reduced to the case when
p = 0 is a double root, making an appropriate rotation of coordinates in the plane {x, y} so that,
in the new coordinates, the double root p0 is located at p = 0. �

Proposition 11. Let α ∈ Ir, r ≥ 5, be an immersion such that p is axiumbilic point of type
E1

34. Then, there is a neighborhood V of p, a neighborhood V of α and a function F : V −→ R
of class Cr−3 such that for each µ ∈ V there is an unique axiumbilic point pµ ∈ V such that:

i) dFα 6= 0,
ii) F(µ) < 0 if and only if pµ is of type E3,
iii) F(µ) > 0 if and only if pµ of type E4,
iv) F(µ) = 0 if, and only if, pµ is of type E1

34.

Proof. Since p is a transversal axiumbilic point of α, the existence of the neighborhoods V and
V follows from the Implicit Function Theorem. For µ ∈ V with an axiumbilic point pµ ∈ V ,
after a rigid motion Γµ in R4, locally the immersion µ ∈ V can be parametrized in terms of a
Monge chart (x, y,Rµ(x, y), Sµ(x, y)), with the origin being the axiumbilic point pµ and

Rµ(x, y) =
r20(µ)

2
x2 + r11(µ)xy +

r02(µ)

2
y2 +

r30(µ)

6
x3 +

r31(µ)

2
x2y

+
r13(µ)

2
xy2 +

r03(µ)

6
y3 + h.o.t.,

Sµ(x, y) =
s20(µ)

2
x2 + s11(µ)xy +

s02(µ)

2
y2 +

s03(µ)

6
x3 +

s21(µ)

2
x2y

+
s12(µ)

2
xy2 +

s03(µ)

6
y3 + h.o.t.

For µ, performing rotations and homoteties as described in Section 2, the coefficients aµ and
bµ can be expressed in function of the coefficients of the surface presented in a Monge chart, as
was done in Proposition 6, considering the coefficients in function of the parameter µ ∈ V.

Define F(µ) = ∆(a(µ), b(µ)) whose zeros define locally the manifold of immersions with an
E1

34 axiumbilic point. Here, ∆(a, b), given by equation (26), is the discriminant of the polynomial
R(p) = (p4 − 6p2 + 1) + (1− p2)(a+ bp).

Notice that due to the particular representation of the 3-jets taken here, the condition
a(µ) = −1 in Definition 9, the jet extension of the immersion is not transversal, but tangent, to
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the manifold of jets with E1
34 axiumbilic points. It is always possible, by an appropriate rotation

in the plane {x, y} to suppose that a(α) /∈ {− 27
2 ,−1}. See Section 2.

Assertions (ii), (iii) and (iv) follow from the definition of F and the previous analysis on the
sign of the discriminant ∆(aµ, bµ).

Moreover, the derivative of F(µ) in the direction of the coordinate a does not vanish, leading
to conclude that dFα 6= 0.

In fact, assuming s11(α) = 1
2r 6= 0, it follows that a0(µ) = y + 0(2),

a1(µ)(x, y) = − 4(r(µ)2 + s(µ)2)α2(µ)

r(µ) (r(µ)α3(µ) + s(µ)α4(µ))
x+

4(s(µ)α3(µ)− r(µ)α4(µ))

r(µ)α3(µ) + s(µ)α4(µ)
y +O(2)

= a(µ)x+ b(µ)y +O(2),

α1 = s12 − s30 + 2r21, α2 = r30 − r12 + 2s21, α3 = s03 − s21 + 2r12, and α4 = r21 − r03 + 2s12.

Consider the deformation

µ = (x, y,Rα(x, y), Sα(x, y)) +

(
0, 0, t(

1

6
x3 − 1

2
xy2), tx2y

)
.

Then, as α2 = r30 − r12 + 2s21, it follows that a(µ) = − 4(r2+s2)(α2+t)
r(rα3+sα4) and

d

dt
(∆(a(µ), b(µ))

∣∣∣∣
t=0

=
∂∆

∂a
· da
dt

=
∂∆

∂a
·
(
− 4(r2 + s2)

r(rα3 + sα4)

)
6= 0.

In the case where s11(α) = 0 it follows that r11(α) = − 1
2s 6= 0, α1α4 6= 0 and α2(µ) = 0. Now

consider the deformation

µ = (x, y,Rα(x, y), Sα(x, y)) +

(
0, 0, tx2y, t(−1

6
x3 +

1

2
xy2)

)
.

Then, a(µ) = 4(α1+t)
α4

and

d

dt
(∆(a(µ), b(µ))

∣∣∣∣
t=0

=
∂∆

∂a
· da
dt

=
∂∆

∂a
·
(

4

α4

)
6= 0.

�

Figure 9. Axial configuration near axiumbilic points. E3 (left), E1
34 (center)

and E4 (right).
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Figure 10. Bifurcation diagram of the axial configuration near an axiumbilic
point E1

34 and the structure of separatrices.

3.2. The axiumbilic point E1
4,5. Consider the Monge chart described by equations (9) and

(10). Suppose that the origin is an axiumbilic point, which is expressed by

(30)
R(x, y) =

r20

2
x2 + r11xy +

r02

2
y2 +

r30

6
x3 +

r21

2
x2y +

r12

2
xy2 +

r03

6
y3

+
r40

24
x4 +

r31

6
x3y +

r22

4
x2y2 +

r13

6
xy3 +

r04

24
y4 + h.o.t.,

(31)
S(x, y) =

s20

2
x2 + s11xy +

s02

2
y2 +

s30

6
x3 +

s21

2
x2y +

s12

2
xy2 +

s03

6
y3

+
s40

24
x4 +

s31

6
x3y +

s22

4
x2y2 +

s13

6
xy3 +

s04

24
y4 + h.o.t.,

where, r02 = r20 + r, r11 = − 1
2s, s02 = s20 + s, s11 = 1

2r.

Let α1 = s12 − s30 + 2r21, α2 = r30 − r12 + 2s21, α3 = s03 − s21 + 2r12, α4 = r21 − r03 + 2s12,
β1 = s22 − s40 + 2r31, β2 = r40 − r22 + 2s31, β3 = s13 − s31 + 2r22, β4 = r31 − r13 + 2s22,
β5 = s04 − s22 + 2r13, and β6 = r22 − r04 + 2s13.

The functions a0 and a1 (see Proposition 1) are given by

(32) a0(x, y) = a10x+ a01y +
1

2
a20x

2 + a11xy +
1

2
a02y

2 + h.o.t. and

(33) a1(x, y) = b10x+ b01y +
1

2
b20x

2 + b11xy +
1

2
b02y

2 + h.o.t.,

where

a10 =
1

2
(rα1 + sα2), a01 =

1

2
(rα3 + sα4),

a20 = −α2r21 + α1s21 +

[
β1

4 + s20
2 (r2

20 + s2
20)

]
r+[

β2

4 −
r20
2 (r2

20 + s2
20)

]
s+ (r2

20 − s2
20)sr − 3

8 (r2 + s2)(s20r − r20s) + r20s20(s2 − r2),

a11 = −r12α2 + s12α1 − r21α4 + s21α3 −
[
β3

2 + r20(r2
20 + s2

20)

]
r +

[
β4

2 − s20(r2
20 + s2

20)

]
s

−2s20r20rs− 1
2 (3s2

20 + r2
20)s2 − 1

2 (3r2
20 + s2

20)r2 − 3
8 (r2 + s2)2 − 5

4 (r2 + s2)(r20r + s20s),
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a02 = −r12α4 + s12α3 +

[
β5

2 −
s20
2 (r2

20 + s2
20)

]
r +

[
β6

2 + r20
2 (r2

20 + s2
20)

]
s+

(−2s2
20 + 2r2

20)sr + 2s20r20(s2 − 2r2) +− 9
8 (r2 + s2)(rs20 − sr20),

b10 = 2(sα1 − rα2), b01 = 2(sα3 − rα4),

b20 = α2
1 + α2

2 − 4(s21α2 + r21α1) +

[
− β2 + 2r20(r2

20 + s2
20)

]
r+[

β1 + 2s20(r2
20 + s2

20)

]
s− 1

2 (r2 + s2)(s20s+ r20r) + 4(r20s− s20r)
2,

b11 = 2(α3α1 + α2α4)− 4(α1r12 + α2s12 + α3r21 + α4s21)+

2

[
− β4 + 2s20(r2

20 + s2
20)

]
r + 2

[
β3 − 2r20(r2

20 + s2
20)

]
s+ 4(s2

20 − r2
20)rs+ 4r20s20(r2 − s2),

b02 = α2
3 + α2

4 + 4(r2
12 + s2

12) + 4s12(r21 − r03) + 4r12(s03 − s21)+

[−β6 − 2r20(r2
20 + s2

20)]r + [β5 − 2s20(r2
20 + s2

20)]s+ 2(r2
20 − 3s2

20)s2 + 2(s2
20 − r2

20)r2.

Definition 12. An axiumbilic point is said to be of type E1
4,5 if the variety Lα has exactly 4

singular points which are of Morse type located along the projective line over the point.

Proposition 13. Consider a Monge chart and a homothety such that the differential equation
of axial lines is written as

a0(x, y)(dx4 − 6dx2dy2 + dy4) + a1(x, y)dxdy(dx2 − dy2) + 0(3) = 0,

where

a0(x, y) =y +
1

2
a20x

2 + a11xy +
1

2
a02y

2 + h.o.t.,

a1(x, y) =b01y +
1

2
b20x

2 + b11xy +
1

2
b02y

2 + h.o.t.

Then the following conditions are equivalent:

i) the curves a0 = 0 and a1 = 0 are regular and have quadratic contact at 0,
ii) the axiumbilic point 0 is of type E1

4,5,
iii) the Lie-Cartan vector field defined in Lα has a quadratic saddle-node in the projective axis

with the center manifold transversal to the projective line.

Proof. The differential equation of axial lines can be written as

a0(x, y)(dx4 − 6dx2dy2 + dy4) + a1(x, y)dxdy(dx2 − dy2) + 0(3) = 0,

where

a0(x, y) =a10x+ a01y +
1

2
a20x

2 + a11xy +
1

2
a02y

2 + h.o.t.

a1(x, y) =b10x+ b01y +
1

2
b20x

2 + b11xy +
1

2
b02y

2 + h.o.t.

where the coefficients of a0 and a1 are given by equations (32) and (33). Here O(3) means terms
of order greater than or equal to 3 in the variables x and y.

In what follows it will be considered a Monge chart such that a10 = 0. This is possible as
shown in Lemma 5 and Proposition 6. Since the contact between a0 = 0 and a1 = 0 is supposed
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to be quadratic it results that b10 = 0 and a01 · b01 6= 0. Also by a homothety it is possible to
obtain a01 = 1.

So, it results that:

a0(x, y) = y +
1

2
a20x

2 + a11xy +
1

2
a02y

2 + h.o.t.(34)

a1(x, y) = b01y +
1

2
b20x

2 + b11xy +
1

2
b02y

2 + h.o.t.(35)

Therefore, the condition of quadratic contact between the two regular curves is expressed by
χ = b20 − a20b01 6= 0.

Notice that this amounts to establish the implication i)→ ii).

Claim 14. In the neighborhood of (0, 0, 0), the Lie-Cartan vector field restricted to the surface
G = 0, can be expressed in the chart (x, p) by

(36)

{
ẋ = χ

2x
2 +O(3),

ṗ = −p+ 3
2a11a20x

2 − (a11 + χ)p− b01p
2 + 0(3)

and (0, 0, 0) is a saddle-node when χ 6= 0.

Since Gy(0, 0, 0) = 1 6= 0, it follows from implicit function theorem that locally y = y(x, p)
and G(x, y(x, p), p) = 0.

The Taylor expansion of y(x, p) in the neighborhood of (x, p) = (0, 0) is given by:

(37) y(x, p) = −1

2
a20x

2 +O(3).

The Lie-Cartan vector field restricted to the surface G = 0 is given by{
ẋ = Gp(x, y(x, p), p) = 1

2χx
2 +O(3)

ṗ = −(Gx + pGy)(x, y(x, p), p) = −p+ 3
2a11a20x

2 − (χ+ a11)p− b01p
2 + 0(3)

The eigenvalues of the vector field (36) at 0 are λ1 = 0 and λ2 = −1 with respective associated
eigenspaces `1 = (1,−a20) and `2 = (0, 1). By Invariant Manifold Theory the center manifold is
tangent to `1 and is given by W c = {(x,−a20x+ 3

2a20(χ+ a11)x2 +O(3))}.
The restriction of the vector field (36) to the center manifold is given by [ 1

2χx
2 + 0(3)] ∂∂x .

This establishes that ii)→ iii).

Claim 15. The function G has exactly 4 critical points in the projective line, and they are of
Morse-type of index 1 or 2 if and only if χ 6= 0.

The critical points of G along the projective line are determined by

(38) S(p) = Gv(0, 0, p) = (p4 − 6p2 + 1) + b01p(1− p2) = 0,

which has for 4 simple real roots located in the intervals (−∞,−1), (−1, 0), (0, 1) and (1,∞).
This follows from S(±1) = −4, S(0) = 1 and from the discriminant ∆(S) = 4(16 + b201)3 > 0.
Along the projective line, the determinant of the Hessian of G is given by

(39) HessG(0, 0, p) = −(a20(1− 6p2 + p4) + b20p(1− p2))(b01 − 12p− 3b01p
2 + 4p3)2.

The resultant of S(p) and HessG(0, 0, p) is given by 256χ4(16 + b201)6 and therefore
HessG(0, 0, p) 6= 0 at the critical points of G. This implies that the critical points are of Morse
type. As G(0, 0, p) = 0 it follows that the index of a critical point is 1 or 2 and so locally the
level set G = 0 is a cone.

The eigenvalues of the derivative of the Lie-Cartan vector field at a point (0, 0, p) are given
by:
λ1 = −p(−4p3 + 3b01p

2 + 12p− b01), λ2 = −1 + 18p2 − 5p4 − 2b01p+ 4b01p
3.
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At the critical points pi (satisfying S(pi) = 0) it follows that λ1 = −λ2 = p6+3p4+3p2+1
p2−1 , then

λi1λ
i
2 < 0, for i = 1..4.

Therefore, these 4 points are saddles of the Lie-Cartan vector field. As the projective line is
invariant it is follows that the other invariant manifold (stable or stable) of a singular point is
transversal to the projective line.

This amounts to prove that iii)→ i). �

Proposition 16. Let α ∈ Ir, r ≥ 5 and p be an axiumbilic point. Suppose, in the Monge chart
expressed by equations (30) and (31), that α1 = α3 = 0 and χ 6= 0. Then p is an axiumbilic
point of type E1

4,5 and the axial configurations of α in a neighborhood of p is as shown in Figure
11.

Figure 11. Axial configurations in a neighborhood of an axiumbilic point of
type E1

4,5.

Saddle Node

Parallel

Figure 12. Lie-Cartan vector field near an axiumbilic point E1
45 and the axial

configuration (principal and mean).
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Proof. Condition α1 = α3 = 0 implies the non-transversal contact of the curves a0 = 0 and
a1 = 0 at the axiumbilic point p expressed in the Monge chart by (0, 0). By Lemma 5 and
Proposition 6, it is possible to express these curves as in equation (34). Assuming χ 6= 0, we
have the quadratic contact of the curves at the axiumbilic point.
Proposition 13 implies that over the axiumbilic point we have five equilibria of the Lie-Cartan
vector field. One of them is a regular point of the Lie-Cartan surface, and this is an equilibrium
of saddle-node type with center manifold transversal to the axis p (see Claim 14).
The remaining equilibria are critical points of Morse type of the Lie-Cartan surface. In the
neighborhood of these points, the level set G = 0 are locally cones, and the 4 points are saddles
of the Lie-Cartan vector field (see Claim 15).
Therefore, we conclude that the configuration is as described in Figure 12, whose projection of
the saddle-node and parallel sectors describe the principal axial and mean axial configurations
close to the axiumbilic point p of type E1

45 (Figure 11). �

Proposition 17. Let α ∈ Ir, r ≥ 5, be an immersion having an axiumbilic point p of type E1
4,5.

Then, there exist a neighborhood V of p, a neighborhood V of α and a function F : V −→ R of
class Cr−3 such that:

i) dFα 6= 0,
ii) F (µ) = 0 if, and only if, µ ∈ V has just one axiumbilic point in V , which is of type E1

4,5,
iii) F (µ) < 0 if, and only if, µ has exactly two axiumbilic points in V , one of type E4 and the

other of type E5,
iv) F (µ) > 0 if, and only if, µ has no axiumbilic points in V .

Proof. By Proposition 13, α being an immersion having an axiumbilic point p of type E1
45, the

curves aα0 = 0 and aα1 = 0 have quadratic contact at p.

Since
∂aα0
∂y (0, 0) = a01 6= 0, if follows from Implicit Function Theorem that locally, for µ in a

neighborhood V of α, y = yµ(x) and aµ0 (x, yµ(x)) = 0.

Moreover,
∂2aα1
∂x2 (0, 0) = b20 6= 0, and so x = xµ is a local solution of

∂aµ1
∂x (xµ, yµ(xµ)) = 0.

Define F (µ) = aµ1 (xµ, yµ(xµ)). Consider the variation

ht(x, y) = (x, y,R(x, y) + txy, S(x, y) + txy).

It follows that dF (t)
dt

∣∣∣∣
t=0

6= 0, and so dFα 6= 0. Therefore, the result follows from the Implicit

Function Theorem.
The axiumbilic point of type E1

45 is therefore the transition between zero and two axiumbilic
points, one of type E4 and the other of type E5.

In Figures 13 and 15 are illustrated this transition, with the axial configurations sketched
in two different styles. See also Figure 15 for an illustration of transition in the Lie - Cartan
surface. �

Proposition 18. In the space of smooth mappings of M × R −→ R4 which are immersions
relative to the first variable, those which have all their axiumbilic points either generic (of types
E3, E4 and E5) or of types E1

34 and E1
45, crossed transversally, is open and dense. Furthermore,

for such families the axiumbilic points describe a regular curve in M × R whose projection into
R has only non-degenerate critical points at E1

45 and the regular points of the projection is a
collection of arcs bounded by E1

34 points, which a the common boundary points of the arcs
consisting of points of types E3 and E4.

Proposition 18 follows from the analysis in Propositions 11 and 17 and an application of
Thom Transversality Theorem to the submanifold of four jets of immersions at axiumbilic points,
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Figure 13. Axiumbilic point E1
45. The axiumbilic points E4 and E5 collapse

in an axiumbilic point E1
45, and after they are eliminated and there are no

axiumbilic points.

Figure 14. Bifurcation diagram of the axial configuration near an axiumbilic
point of type E1

45 and the structure of separatrices

Figure 15. The Lie-Cartan surface. In the left, with two axiumbilic point, in
the center with four singular points, and in the right the four regular levels.

stratified by the generic axiumbilic points of types E3, E4 and E5, by those of types E1
34 and

E1
45, and by their complement which has codimension larger than 3. See Section 4.
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4. Transversality and Stratification

Consider the space Jk(M,R4) of k-jets of immersions α of a compact oriented surface M
into R4, endowed with the structure of Principal Fiber Bundle. The base is M ; the fiber is the
space R4 × Jk(2, 4), where J k(2, 4) is the space of k-jets of immersions of R2 to R4, preserving
the respective origins. The structure group, Ak+, is the product of the group Lk+(2, 2) of k-jets
of origin and orientation preserving diffeomorphisms of R2, acting on the right by coordinate
changes, and by the group of positive isometries of R4, acting on the left. This group is generated
by the groups of translations and that of positive rotations, O+(4), of R4.

Denote by Πk,l, k ≤ l the projection of J l(2, 4) to J k(2, 4). It is well known that the group
action commutes with projections.

Definition 19. We define below the canonic axiumbilic stratification of J 4(2, 4). The term
canonic means that the strata are invariant under the action of the group Ak+= O+(4)×Lk+(2, 2).

1) Axiumbilic Jets: U4, those in the orbit of j4(x, y,R(x, y), S(x, y)), where R and S are as
in equations (9) and (10) satisfying the axiumbilic conditions defined in terms of j2R(0)
and j2S(0). It is a closed variety of codimension 2.

2) Non-axiumbilic Jets: (NU)4 is the complement of U4. It is an open submanifold of
codimension 0.

3) Non-stable axumbilic Jets: (NE)4, in the orbit of the axiumbilic jets for which:
• T = (α1α4 − α2α3)(r2 + s2) = 0 or
• T 6= 0 and conditions that characterize E3 or E4 axiumbilic points in Proposition 8
fail.

E1
45 is a closed variety of codimension 3, which can be expressed as the union of the following

invariant strata:

3.1) Non-Transversal jets: E1
45 for which T = 0 and χ 6= 0. It has codimension 3.

3.2) Transversal-double jets: (E1
34)4, The Lie-Cartan field has a quadratic saddle-node in the

projective line which is characterized by Proposition 11. It has codimension 3.

4) The stable axumbilic jets: UE4, the complement in U4 of NE4.

Proposition 20. In the space of 1-parameter families of immersions, those whose 4-jet extension
are transversal to the canonical axiumbilic stratification is open and dense.

Proof. Follows from Thom Transversality Theorem [6]. �

5. Concluding Comments

In this work was established the principal axial and the mean axial configurations in a neigh-
borhood of the axiumbilc points of types E1

34 and E1
45. The approach concerning methods and

class of differentiability requirements is distinct from that presented in the work of Gutiérrez-
Gúınez-Castañeda in [3]. The use of the Lie-Cartan suspension method made possible the study
of these points by means the classic theory of differential equations, in clear analogy with the
saddle-node bifurcation of vector fields in the plane, following [1], [10] and [5].

The type E1
34 satisfies the transversality condition of the curves a0 and a1, Proposition 6,

which amounts to the fact the Lie-Cartan surface remains regular in a neighborhood of the
projective axis over the axiumbilic point. In this case there is a saddle-node equilibrium point
of the Lie-Cartan vector field whose central separatrix is along the projective axis itself. The
axial configurations are established in Proposition 10 and the qualitative change (bifurcation)
between the types E3 and E4, with the variation of a parameter in the space of immersions, is
explained in Proposition 7. See Figure 10.
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In the case E1
45 the transversality condition fails, since curves a0 and a1, Proposition 13, have

quadratic contact at the axiumbilic point. Here the Lie-Cartan surface is not regular along the
projective axis. It is established in Proposition 13 that there are four conic critical points of
Morse type on the p−axis. At these points there are partially hyperbolic equilibria of the Lie-
Cartan vector field. There is also a saddle-node equilibrium in the regular part of the surface
whose central separatrix is transversal to the projective axis. The integral curves of the Lie
- Cartan vector field on the regular components of the Lie - Cartan surface (which are four
bi-punctured disks) are illustrated in Figure 12. Their projections on the plane give the axial
configurations in a neighborhood of the axiumbilic point.

In Proposition 18 is established the one parameter variation (bifurcation) in the space of im-
mersions. This leads to the fact that for small perturbations of an immersion with an axiumbilic
point of this type it holds that two axiumbilic points, one of type E4 and the other of type
E5, bifurcate form E1

45 or disappear leaving a neighborhood free from axiumbilic points, in full
analogy with the saddle-node bifurcation [1] and [10]. See Figure 14.

In Proposition 20 the genericity of the points E1
34 and E1

45 is established in terms of stratifi-
cation and transversality.
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