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THE GENERICITY OF THE INFINITESIMAL LIPSCHITZ CONDITION

FOR HYPERSURFACES

TERENCE GAFFNEY

Abstract. We continue the development of the theory of infinitesimal Lipschitz equivalence,

showing the genericity of the condition for families of hypersurfaces with isolated singularities.

1. Introduction

In an earlier paper [7], we introduced a candidate for a theory of infinitesimal Lipschitz
equisingularity for families of complex analytic hypersurfaces with isolated singularities. The
definition given there has an equivalent formulation, using the theory of integral closure of
modules. This alternate form is easier to work with in many situations. In this paper we show
that a slightly evolved version of this condition is generic. More precisely, we show, in the case of
two strata, considered here, that the condition holds on a Zariski open subset of the parameter
stratum Y . Proving that a stratification property is generic is essential for an equisingularity
condition to have any value.

In preparation for using the integral closure formulation of our condition, we review some
elements of the theory of integral closure of modules in section 2.

In section 3, we review the definition of the Lipschitz saturation of an ideal, give its alternate
formulation using the theory of integral closure and define two infinitesimal Lipschitz conditions,
one which we denote by iLmY

which is the analogue of the Whitney conditions and one which
is the analogue of the Whitney A or the af condition which we denote by iLA. We also give a
geometric interpretation of these conditions on the family X.

We also introduce an invariant coming from the integral formulation of the Lipschitz condition.
We use this invariant to show when two different ideals have the same Lipschitz saturation. We
also use it to characterize generic hyperplanes in section 4.

In section 4, we come to the heart of this paper. As mentioned earlier, proving a genericity
theorem is an important step in developing the theory attached to an equisingularity condition.
Not only is this result necessary to ensure the condition is widely applicable, but the fact of
genericity implies a strong connection with the geometry of the family. For example, Teissier
proved that condition C held on a Zariski open and dense subset of the parameter space Y k, of
a k parameter family of isolated hypersurface singularities in Cn+k in [16]. Condition C later
was seen to be equivalent to Verdier’s condition Wf for the pair of strata {Cn+k − Y k, Y k},
where f defined the family. Condition C was the keystone of Teissier’s work on the Whitney
equisingularity of families of hypersurfaces with isolated singularities. We use Teissier’s proof in
[16] as a model in developing a similar theorem for the iLA condition. Currently a proof for the
genericity of the iLmY

remains unknown.
In section 4, we state and prove the genericity theorem for the iLA condition for the case

of families of isolated hypersurface singularities. For the proof, we work in the module setting.
Analogous results exist in the general case for families of isolated singularities, but requires
further work in developing the definition of the infinitesimal Lipschitz condition; since you start
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with modules in the general case instead of ideals, a further layer of complexity is added in
passing to the module theoretic version of the definition.

Also in section 4, we give an application of the genericity theorem. Given an equisingularity
condition it is natural to ask if it passes to the family of generic plane sections of the singularity.
We use the genericity theorem to show that it does for the iLA condition. We then use the
invariant introduced in section 3, and the multiplicity polar theorem, discussed in section 2, to
give a condition for a hyperplane to be generic.

Ultimately, we hope to use the stratification condition defined here to prove that for a family
of isolated hypersurface singularities, the iLA condition gives a necessary and sufficient condition
for the family to have a bi-Lipschitz stratification which includes Y as a stratum. This would
give an infinitesimal criterion for the existence of a bi-Lipschitz stratification of such a family.
It is known by work of Mostowski, [13] that bi-Lipschitz stratifications exist in the complex
analytic setting, but not much is known about them besides their existence.

Using the conditions of this paper to characterize the “thick” and “thin” zones of Birbrair,
Neumann and Pichon [1], developed by them for normal surface singularities, would open an av-
enue to generalizing these notions to higher dimensions, as well as linking them with Mostowski’s
work on showing the existence of these stratifications.

I am happy to acknowledge the impetus to this work given by the beautiful paper of Birbrair,
Neumann and Pichon [1] and the stimulation afforded from conversation with them.

2. The theory of the Integral closure of modules

Let (X,x) be a germ of a complex analytic space and X a small representative of the germ
and let OX denote the structure sheaf on a complex analytic space X. One of the formulations
of the definition of the infinitesimal Lipschitz condition uses the theory of integral closure of
modules, which we now review. This theory will also provide the tools for working with the
condition.

Definition 2.1. Suppose (X,x) is the germ of a complex analytic space, M a submodule ofOpX,x.

Then h ∈ OpX,x is in the integral closure of M , denoted M , if for all analytic φ : (C, 0)→ (X,x),

h ◦ φ ∈ (φ∗M)O1. If M is a submodule of N and M = N we say that M is a reduction of N .

To check the definition it suffices to check along a finite number of curves whose generic point
is in the Zariski open subset of X along which M has maximal rank. (Cf. [3].)

If a module M has finite colength in OpX,x, it is possible to attach a number to the module, its

Buchsbaum-Rim multiplicity, e(M,OpX,x). We can also define the multiplicity e(M,N) of a pair
of modules M ⊂ N , M of finite colength in N , as well, even if N does not have finite colength
in OpX .

We recall how to construct the multiplicity of a pair of modules using the approach of Kleiman
and Thorup [9]. Given a submodule M of a free OXd module F of rank p, we can associate a
subalgebra R(M) of the symmetric OXd algebra on p generators. This is known as the Rees
algebra of M . If (m1, · · · ,mp) is an element of M then

∑
miTi is the corresponding element

of R(M). Then Projan(R(M)), the projective analytic spectrum of R(M) is the closure of
the projectivised row spaces of M at points where the rank of a matrix of generators of M is
maximal. Denote the projection to Xd by c. If M is a submodule of N or h is a section of
N , then h and M generate ideals on ProjanR(N); denote them by ρ(h) and ρ(M). If we can
express h in terms of a set of generators {ni} of N as

∑
gini, then in the chart in which T1 6= 0,

we can express a generator of ρ(h) by
∑
giTi/T1. Having defined the ideal sheaf ρ(M), we blow

it up.
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On the blow up Bρ(M)(ProjanR(N)) we have two tautological bundles. One is the pullback
of the bundle on ProjanR(N). The other comes from ProjanR(M). Denote the corresponding
Chern classes by cM and cN , and denote the exceptional divisor by DM,N . Suppose the generic
rank of N (and hence of M) is g.

Then the multiplicity of a pair of modules M,N is:

e(M,N) =

d+g−2∑
j=0

∫
DM,N · cd+g−2−j

M · cjN .

Kleiman and Thorup show that this multiplicity is well defined at x ∈ X as long as M = N
on a deleted neighborhood of x. This condition implies that DM,N lies in the fiber over x,
hence is compact. Notice that when N = F and M has finite colength in F then e(M,N) is
the Buchsbaum-Rim multiplicity e(M,OpX,x). There is a fundamental result due to Kleiman

and Thorup, the principle of additivity [9], which states that given a sequence of OX,x-modules
M ⊂ N ⊂ P such that the multiplicity of the pairs is well defined, then

e(M,P ) = e(M,N) + e(N,P ).

Also if M = N then e(M,N) = 0 and the converse also holds if X is equidimensional. Combining
these two results we get thet if M = N then e(M,N) = e(N,P ). These results will be used in
Section 5.

In studying the geometry of singular spaces, it is natural to study pairs of modules. In dealing
with non-isolated singularities, the modules that describe the geometry have non-finite colength,
so their multiplicity is not defined. Instead, it is possible to define a decreasing sequence of mod-
ules, each with finite colength inside its predecessor, when restricted to a suitable complementary
plane. Each pair controls the geometry in a particular codimension.

We also need the notion of the polar varieties of M . The polar variety of codimension k of
M in X, denoted Γk(M), is constructed by intersecting ProjanR(M) with X ×Hg+k−1 where
Hg+k−1 is a general plane of codimension g + k − 1, then projecting to X.

Setup: We suppose we have families of modules M ⊂ N , M and N submodules of a free
module F of rank p on an equidimensional family of spaces with equidimensional fibers X d+k,
X a family over a smooth base Y k. We assume that the generic rank of M , N is g ≤ p. Let
P (M) denote ProjanR(M), πM the projection to X .

We will be interested in computing, as we move from the special point 0 to a generic point,
the change in the multiplicity of the pair (M,N), denoted ∆(e(M,N)). We will assume that the
integral closures of M and N agree off a set C of dimension k which is finite over Y , and assume
we are working on a sufficiently small neighborhood of the origin, so that every component of
C contains the origin in its closure. Then e(M,N, y) is the sum of the multiplicities of the pair
at all points in the fiber of C over y, and ∆(e(M,N)) is the change in this number from 0 to a
generic value of y. If we have a set S which is finite over Y , then we can project S to Y , and the
degree of the branched cover at 0 is multyS. (Of course, this is just the number of points in the
fiber of S over our generic y.)

Let C(M) denote the locus of points where M is not free, i.e., the points where the rank of
M is less than g, C(ProjanR(M)) its inverse image under πM .

We can now state the Multiplicity Polar Theorem. The proof in the ideal case appears in [5];
the general proof appears in [6].

Theorem 2.2. (Multiplicity Polar Theorem) Suppose in the above setup we have that M = N
off a set C of dimension k which is finite over Y . Suppose further that

C(ProjanR(M))(0) = C(ProjanR(M(0))),



INFINITESIMAL LIPSCHITZ CONDITION 111

except possibly at the points which project to 0 ∈ X (0).
Then, for y a generic point of Y ,

∆(e(M,N)) = multyΓd(M)−multyΓd(N),

where C(ProjanR(M))(0) is the fiber of C(ProjanR(M)) over 0, X (0) is the fiber over 0 of the
family X d+k, and M(0) is the restriction of the module M to X (0).

3. The Lipschitz saturation of an ideal and the definition of the iL conditions

The construction of the integral closure of an ideal is an example of a general approach to
constructing closure operations on sheaves of ideals and modules given a closure operation on a
sheaf of rings. Here is the idea. Denote the closure operation on the ring R by C(R). Given
a ring, R, blow-up R by an ideal I. (If we have a module M which is a submodule of a free
module F , form the blow-up Bρ(M)(ProjanR(F )), as in the last section.) Use the projection
map of the blow-up to the base to pullback I to the blow-up. Now apply the closure operation
to the structure sheaf of the blow-up, and look at the sheaf of ideals generated by the pull back
of I. The elements of the structure sheaf on the base which pull back to elements of the ideal
sheaf are the elements of C(I).

Two examples of this are given by the normalization of a ring and the semi-normalization of
a ring. (In the normalization, all of the bounded meromorphic functions become regular, while
in the semi-normalization only those which are continuous become regular. Cf [8] for details on
this construction.) Consider BI(X), the blow-up of X by I. If we pass to the normalization of
the blow-up, then h is in Ī iff and only if the pull back of h to the normalization is in the ideal
generated by the pullback of I [11]. If we pass to the semi-normalization of the blow-up, then h
is in the weak sub-integral closure of I denoted ∗I, iff the pullback of h to the semi-normalization
is in the ideal generated by the pullback of I. (For a proof of this and more details on the weak
subintegral closure cf. [8]).

There is another way to look at the closure operation defined above; in the case of the
integral closure of an ideal, we are looking at an open cover of the co-support of an ideal sheaf,
and choosing locally bounded meromorphic functions on each open set, and seeing if we can
write a regular function locally in terms of generators of the ideal using our locally bounded
meromorphic functions as coefficients. This suggests, that in the Lipschitz case, we use locally
bounded meromorphic functions which satisfy a Lipschitz condition. The closure operation on
rings that this indicates is the Lipschitz saturation of a space, as developed by Pham-Teissier
([15]).

In the approach of Pham-Teissier, let A be a commutative local ring over C, and Ā its
normalization. (We can assume A is the local ring of an analytic space X at the origin in Cn.)
Let I be the kernel of the inclusion Ā⊗C Ā→ Ā⊗A Ā.

In this construction, the tensor product is the analytic tensor product which has the right
universal property for the category of analytic algebras, and which gives the analytic algebra for
the analytic fiber product.

Pham and Teissier then defined the Lipschitz saturation of A, denoted Ã, to consist of all
elements h ∈ Ā such that h ⊗ 1 − 1 ⊗ h ∈ Ā ⊗C Ā is in the integral closure of I. (For related
results see [12].)

The connection between this notion and that of Lipschitz functions is as follows. If we pick
generators (z1, . . . , zn) of the maximal ideal of the local ring A, then zi ⊗ 1 − 1 ⊗ zi ∈ Ā ⊗C Ā
give a set of generators of I. Choosing zi so that they are the restriction of coordinates on the
ambient space, the integral closure condition is equivalent to

|h(z1, . . . , zn)− h(z′1, . . . , z
′
n)| ≤ C sup

i
|zi − z′i|
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holding on some neighborhood U , of (0, 0) on X ×X. This last inequality is what is meant by
the meromorphic function h being Lipschitz at the origin on X. (Note that the integral closure
condition is equivalent to the inequality holding on a neighborhood U for some C for any set of
generators of the maximal ideal of the local ring A. The constant C and the neighborhood U
will depend on the choice.)

If X,x is normal, then passing to the Lipschitz saturation doesn’t add any functions. Denote
the saturation of the blow-up by SBI(X), and the map to X by πS . Then we make the definition:

Definition 3.1. let I be an ideal in OX,x, then the Lipschitz saturation of the ideal I, denoted
IS , is the ideal IS = {h ∈ OX,x|π∗S(h) ∈ π∗S(I)}.

Since the normalization of a local ring A contains the seminormalization of A, and the semino-
malization contains the Lipschitz saturation of A, it follows that Ī ⊃ ∗I ⊃ IS ⊃ I. In particular,
if I is integrally closed, all three sets are the same.

Here is a viewpoint on the Lipschitz saturation of an ideal I, which will be useful later.
Given an ideal, I, and an element h that we want to check for inclusion in IS , we can consider
(BI(X), π), π∗(I) and h ◦ π. Since π∗(I) is locally principal, working at a point z on the
exceptional divisor E, we have a local generator f ◦ π of π∗(I). Consider the quotient (h/f) ◦ π.
Then h ∈ IS if and only if at the generic point of any component of E, (h/f)◦π is Lipshitz with
respect to a system of local coordinates. If this holds we say h ◦ π ∈ (π∗(I))S .

We can also work on the normalized blow-up, (NBI(X), πN ). Then we say h◦πN ∈ (π∗N (I))S if
(h/f)◦πN satisfies a Lipschitz condition at the generic point of each component of the exceptional
divisor of (NBI(X), πN ) with respect to the pullback to (NBI(X), πN ) of a system of local
coordinates on BI(X) at the corresponding points of BI(X). As usual, the inequalities at the
level of NBI(X) can be pushed down and are equivalent to inequalities on a suitable collection
of open sets on X.

This definition can be given an equivalent statement using the theory of integral closure of
modules. Since Lipschitz conditions depend on controlling functions at two different points as
the points come together, we should look for a sheaf defined on X ×X. We describe a way of
moving from a sheaf of ideals on X to a sheaf on X ×X. Let h ∈ OX,x; define hD in O2

X×X,x,x,

as (h ◦ π1, h ◦ π2), πi the projection to the i-th factor of the product. Let I be an ideal in OX,x;
then ID is the submodule of O2

X×X,x,x generated by the hD where h is an element of I.

If I is an ideal sheaf on a space X then intuitively, h ∈ Ī if h tends to zero as fast as the
elements of I do as you approach a zero of I. If hD is in ID then the element defined by
(1,−1) · (h ◦ π1, h ◦ π2) = h ◦ π1 − h ◦ π2 should be in the integral closure of the ideal generated
by applying (1,−1) to the generators of ID, namely the ideal generated by g ◦ π1− g ◦ π2, g any
element of I. This implies the difference of h at two points goes to zero as fast as the difference
of elements of I at the two points go to zero as the points approach each other. It is reasonable
that elements in IS should have this property. In fact we have:

Theorem 3.2. Suppose (X,x) is a complex analytic set germ, I ⊂ OX,x. Then h ∈ IS if and

only if hD ∈ ID.

Proof. This is theorem 2.3 of [7], and is proved there under the additional assumption that h ∈ Ī.
However, as we have noted if h ∈ IS , then h ∈ Ī. If hD ∈ ID, it follows that (1, 0) · hD is in the
integral closure of π∗1(I) on X ×X, which clearly implies h ∈ Ī. �

Here is an example showing the difference between the integral closure of the Jacobian ideal
and its saturation. Consider f(x, y) = x2 + yp, p > 3 odd. Denote the plane curve defined by f
by X. Then X has a normalization given by φ = (tp, t2). The elements in the integral closure
of the Jacobian ideal are just those ring elements h such that h ◦ φ ∈ φ∗(J(f)) = (tp). Now
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yq ◦ φ = t2q, so yq ∈ J(f) for q > p/2. Denote a matrix of generators for J(f)D by [J(f)D].
Consider the curve mapping into X ×X given by Φ(t) = (tp, t2, tp, ct2), where c is a p-th root
of unity different from 1. Now consider the ideal generated by the entries of the vector

< 1,−1 > [J(f)D] ◦ Φ(t).

This ideal is generated by (yp−1 − y′p−1, (x, x′, yp−1, y′p−1)(y − y′)) ◦ Φ(t) = (tp+2). Meanwhile
the order in t of < 1,−1 > (yq, y′q) ◦Φ(t) = 2q. If p < 2q < p+ 2 ie. q = (p+ 1)/2, then (yq, y′q)

cannot be in J(f)D, hence yq /∈ J(f)S but yq is in J(f).
Because we have re-cast the Lipschitz saturation of an ideal in integral closure terms, the

invariants associated with integral closure become available to describe/control the Lipschitz
saturation of an ideal. Notice first that the multiplicity of an ideal doesn’t help, because the
multiplicity of IS is same as the multiplicity of I since they have the same integral closure.

Even if X is an isolated hypersurface singularity, J(f)D will not have finite colength, even
in the plane curve case. The co-support will be X × 0 ∪ 0 ×X ∪∆X in X ×X. However the
multiplicity of the pair offers a way around this. The module J(f)D has a simple description,
as we will see, off the origin in each of these three sets, and any integral closure condition we
wish to use is easily checked because of this structure. This suggests looking for the largest
module whose integral closure agrees with J(f)D off the origin, and using the multiplicity of the
pair as our invariant. In the notation of [4], this module is denoted H2n−3(J(f)D). This is the
integral hull of J(f)D of codimension 2n − 3, which means the integral closure of J(f)D and
H2n−3(J(f)D) agree off a set of codimension 2n − 2, ie. off (0, 0) in Xn−1 ×Xn−1 . The next
lemma identifies H2n−3(J(f)D).

Lemma 3.3. Suppose Xn−1 is an isolated hypersurface singularity, defined by f . Then

H2n−3(J(f)D) = J(f)D.

Proof. We’ll show that the integral closure of J(f)D and J(f)D agree off the origin in X ×X.
Suppose p = (x, x′) /∈ X×0∪0×X∪∆X. Then for some i, j, k, fj(x)(zi−z′i) and fk(x′)(zi−z′i)

are not zero at p. This implies that both modules have rank 2 at p, hence are equal.
Suppose p ∈ ∆X , p 6= (0, 0); then for some i, fi(x) 6= 0. This implies I∆ ⊕ I∆ is in both

modules. Further by adding elements of the form (0, fi(z) − fi(z′)) which are in I∆ ⊕ I∆ to
(fi(z), fi(z

′)), we see both modules contain (1, 1). Since both modules are contained in the
module generated by (1, 1) and I∆ ⊕ I∆, and this module is integrally closed, the result is
checked on ∆X − (0, 0).

Suppose p = (x, 0), 6= 0. Since x 6= 0, J(f)D contains (1, 0) and (0, J(f)).Thus

J(f)D = OX,x ⊕ J(f) = J(f)D.

�

The lemma suggests that it is interesting to consider the multiplicity of the pair J(f)D, J(f)D,
and we will use this invariant in the last section in the study of hyperplane sections of X. For
now we remark as a corollary of the proof of the lemma, we have for any I an ideal of finite
colength in any OdX , that H2d−1(I) = (I)D. As a corollary we have:

Corollary 3.4. Suppose I ⊂ J ⊂ I are ideals in OX,x, with X,x equidimensional, then

e(ID, ID) = e(JD, ID) if and only if ID = JD.

Proof. From the additivity of multiplicity of pairs [9] it follows that e(ID, JD) = 0 which is
equivalent to their integral closures being the same. �

Corollary 3.5. Suppose I ⊂ J ⊂ I are ideals in OX,x, with X,x equidimensional, then

e(ID, ID) = e(JD, ID) if and only if IS = JS.
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Proof. This follows from the connection between the Lipschitz saturation of an ideal and integral
closure. �

Now we add the necessary structure to deal with families of spaces.
Just as Pham-Teissier extended their original definition to a family of spaces, we can do the

same. Suppose Xd+k, 0 is an analytic space containing a smooth subset Y k, 0, and (Xd+k, p) is
a family of spaces over Y , X, Y embedded in Cn+k, 0, so that p is the projection on the last k
factors of Cn+k, 0, where Y k = 0× Ck.

Then, in the definition of the Lipschitz saturation rel Y of the local ring of Xd+k, 0, we use a
set of local coordinates on the ambient space which restrict to generators of the maximal ideals
of the fibers of X over Y . This amounts to looking at the fiber product of the normalization
of X with itself over Y , and asking that locally h ◦ p1 − h ◦ p2 is in the integral closure of the
double of the ideal generated by these coordinates.

Given an ideal sheaf I on Xd+k, 0, using the relative saturation, we can define the Lipschitz
saturation of I relative to Y . When we are working in the context of a family of spaces we will
also use IS to denote this saturation. In a similar way, we can develop an equivalent integral
closure condition using modules as before, just working on X ×Y X instead of X ×X.

In practice we will be working with ideal sheaves on a family of spaces, where the ideals
vanish on Y , and our local coordinates at points of BI(X

n+k) consist of the pullbacks of a set
of generators of mY and local coordinates on the projective space(s) in the blow-up.

It is not difficult to check that Theorem 2.3 of [7] continues to hold in this new context.
Having constructed the necessary infinitesimal objects we now develop our condition.

Setup Let Xn+k, 0 ⊂ Cn+1+k, 0 be a hypersurface, containing a smooth subset Y embedded in
Cn+1+k as 0×Ck, with pY the projection to Y . Assume Y = S(X), the singular set ofX. Suppose
F is the defining equation of X, (z, y) coordinates on Cn+1+k. Denote by fy(z) = F (z, y) the
family of functions of defined by F , and by Xy, f−1

y (0). Assume fy has an isolated singularity at
the origin. Let mY denote the ideal defining Y , and J(F )Y , the ideal generated by the partial
derivatives with respect to the y coordinates, Jz(F ), those with respect to the z coordinates.

Definition 3.6. The pair (X,Y ) satisfy the iLmY
condition at the origin if either of the two

equivalent conditions hold:
1) J(F )Y ⊂ (mY Jz(F ))S
2) (J(F )Y )D ⊂ (mY Jz(F ))D.

An analogous condition for iLmY
is J(F )Y ⊂ mY Jz(F ). This is the equivalent to the Verdier’s

condition W or the Whitney conditions.
Next we give the definition of iLA.

Definition 3.7. The pair (X,Y ) satisfy the iLA, at the origin if either of the two equivalent
conditions hold:

1) J(F )Y ⊂ (Jz(F ))S
2) (J(F )Y )D ⊂ Jz(F ))D.

The analogous condition is J(F )Y ⊂ Jz(F ). If one works on the ambient space, then this
is equivalent to the AF condition. Working on X, it is equivalent to asking that the X has
no vertical tangent plane at the origin, so this is weaker than Whitney A. However, suppose
l is a linear form on the ambient space. Let J(F )l denote the ideal generated by applying
tangent vectors in the kernel of l to F . So Jz(F ) = J(F )y in the case dim Y = 1. Working
in the one dimensional parameter case, if there exist a pencil of forms ls including y such that
J(F ) ⊂ J(F )ls then not only does Whitney A hold but the total space has no relative polar
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curve. This follows because if the dimension of the fiber of the limiting tangent hyperplanes over
the origin is not maximal then the fiber over the origin must be in the closure of the fiber over
the parameter space with y 6= 0, and all of these hyperplanes contain Y . Because the dimension
of the fiber over the origin is less than maximal this also implies the polar curve is empty. The
condition with the pencil of forms ensures that no hyperplane defined by an element of the pencil
can be a limiting tangent hyperplane, hence the pencil of hyperplanes has no intersection with
the fiber over zero, which must therefore have less than maximal dimension.

Since there are different ways in which the total space Xn+k can be made into a family of
spaces, it is natural to ask if the conditions we have defined depend on the projection to Y which
defines the family. We now show that the condition iLmY

does not depend on the projection to
Y .

Proposition 3.8. In the above set-up the following conditions are equivalent:
1) (J(F )Y )D ⊂ (mY Jz(F ))D,

2) (J(F )Y )D ⊂ (mY J(F ))D.

The analogous result for W is quite easy. The Lipschitz case is more technical. We first show:

Lemma 3.9. In the above setup if (J(F )Y )D ⊂ (mY J(F ))D, then J(F )Y ⊂ mY J(F ), hence
condition W holds for the pair (X − Y, Y ) at the origin (and hence on some Z-open subset of Y
containing the origin.)

Proof. We use the curve criterion. We can choose a curve Φ = (φ1, φ2), where φ1 maps C, 0 to 0,
and φ2 is arbitrary. Then the curve criterion for this curve becomes φ∗2(J(F )Y ) ⊂ φ∗2(mY J(F )).
Here an easy argument using Nakayama’s lemma implies that φ∗2(J(F )Y ) ⊂ φ∗2(mY Jz(F )), which
implies the W condition.

�

Now we prove our proposition.

Proof. We use the curve criterion again. Let Φ = (φ1, φ2). It is enough to prove it in the case
where Y is one dimensional, since the notation is the only part of the proof which is harder in
general. It is also clear that 1) implies 2), so we assume 2). By the given we have:(

∂F

∂y

)
D

◦ Φ =
∑

gi,j(t)

(
zi
∂F

∂zj

)
D

◦ Φ +
∑

gi,j,k(t)(zk ◦ φ1 − zk ◦ φ2)

(
0, zi

∂F

∂zj

)
◦ φ2

+
∑

hi(t)

(
zi
∂F

∂y

)
D

◦ Φ.

We now work modm1Φ∗(mY J(F )D) and we call the left side of the above equation ∗. Subtract∑
hi(t)zi ◦ φ1∗ from both sides of the above equation. This sum is in m1Φ∗(mY J(F )D), so we

get:(
∂F

∂y

)
D

◦ Φ =
∑

gi,j(t)

(
zi
∂F

∂zj

)
D

◦ Φ +
∑

gi,j,k(t)(zk ◦ φ1 − zk ◦ φ2)

(
0, zi

∂F

∂zj

)
◦ φ2

+
∑

hi(t)(zi ◦ φ2 − zi ◦ φ1)

(
0,
∂F

∂y
◦ φ2

)
.

Now we use the lemma to write ∂F
∂y ◦ φ2 as an element of φ∗2(mY Jz(F )). Making the substi-

tution into the line above shows that the terms there are 0 mod m1Φ∗(mY J(F )D), hence we
have ∂F

∂y ◦Φ is an element of (mY Jz(F ))D modm1Φ∗(mY J(F )D). Hence by Nakayama’s lemma,

Φ∗mY Jz(F ))D = Φ∗mY J(F ))D and the proposition follows. �
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While a similar result for iLA doesn’t make sense, if we ask that (J(F )Y )D is strictly depen-
dent on Jz(F ))D then an analogous result holds. (Recall that an element h ∈ OpX,x is strictly

dependent on M ⊂ OpX,x, if for each curve φ h ◦ φ ∈ m1φ
∗(M). The set of elements strictly

dependent on M are denoted M+.)

We give a geometric interpretation of these conditions at the level of the family Xn+k. We
make some preliminary constructions to do this. Denote the coordinates on Pn by Ti, for
1 ≤ i ≤ n+ 1, let Vi be the subset of Pn defined by Ti 6= 0, and let Ui denote

BJz(F )(X
n+k) ∩ (X × Vi).

At each point of Ui,
∂F
∂zi
◦ π is a local generator of the principal ideal sheaf π∗(Jz(F )). The

condition that ∂F
∂yj

be in the Lipschitz saturation of Jz(F )) means that at each point of Ui,
∂F
∂yj
∂F
∂zi

◦ π is Lipschitz rel Y with respect to the local coordinates, which are zk ◦ π, 1 ≤ k ≤ n+ 1,

and Tj/Ti, 1 ≤ j ≤ n + 1, j 6= i. Since
∂F
∂zj
∂F
∂zi

◦ π =
Tj

Ti
, this implies that

∂F
∂yj
∂F
∂zi

is Lipschitz with

respect to zk, 1 ≤ k ≤ n+ 1, and
∂F
∂zj
∂F
∂zi

, 1 ≤ j ≤ n+ 1, j 6= i on π(Ui).

This implies the existence of k vectorfields tangent to X defined on each π(Ui) of the form

~vj,i =
∂

∂yj
−

∂F
∂yj
∂F
∂zi

∂

∂zi
,

each vectorfield Lipschitz relative to Y ,with respect to zk, 1 ≤ k ≤ n+1, and
∂F
∂zj
∂F
∂zi

, 1 ≤ j ≤ n+1,

j 6= i. Since every element of Jz(X) is in the Lipschitz saturation of Jz(X) it is not true apriori
that these vectorfields are extensions of the constant fields on Y . However, if we assume the AF

condition holds for (X −Y, Y ), then the quotients
∂F
∂yj
∂F
∂zi

◦π will vanish on the exceptional divisor,

and the ~vj,i will be extensions of the constant fields on Y .
There is another useful interpretation which we can make. Recall the following definition of

distance between two linear subspaces A, B at the origin in CN , then

dist (A,B) = sup
u ∈ B⊥ − {0}
v ∈ A− {0}

|(u, v)|
‖u‖ ‖v‖

.

If p, p′ are smooth points in the same fiber y over Y in π(Ui), we claim that the distance
between the tangent spaces to X at p and p′ is commensurate with the maximum of the distance
between the tangent spaces to Xy at p and p′ and the distance between the points.

We first relate the distance defined above to a notion of distance closer to our Lipschitz
condition.

Suppose a = (a0, . . . , an), b = (b0, . . . , bn) define hyperplanes A and B in Cn+1. We will use
the supnorm on Cn+1; suppose ||a|| = ai, and ||b|| = bi, same index for both, for simplicity take
i = 0.

We can then also measure the distance between A and B by using the sup
i,i≤i≤n

||ai/a0− bi/b0||.

The ai/a0 are just the coordinates of the hyperplane A regarded as a point of P̂n. We compare
this notion of distance with the usual one.
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Lemma 3.10. Suppose a = (a0, . . . , an), b = (b0, . . . , bn) define hyperplanes A and B in Cn+1,
||a|| = a0, and ||b|| = b0. Then

dist (A,B) = sup
i,1≤i≤n

||ai/a0 − bi/b0||.

Proof. A basis for the vectors in A are given by a0ei − aie0 where ek is the k-th standard basis

vector in Cn+1. Since we are using the supnorm, the terms |(u,v)|
‖u‖‖v‖ become

|(a0ei − aie0, b̄)|
‖a0‖ ‖b0‖

= ||ai/a0 − bi/b0||.

�

Now we return to our geometric interpretation. Since the ∂F
∂yi

are in the integral closure of

Jz(F ), we may work in a system of neighborhoods Ui on X where we may assume for each p ∈ Ui
the values of the elements of J(F ) are bounded in norm by | ∂F∂zi (p)|. Then, applying the above
lemma, we see that the distance between tangent planes to X at points p1, p2 in the same Ui is
the sup over {∣∣∣∣∣

∣∣∣∣∣
∂F
∂yk

(p1)
∂F
∂zi

(p1)
−

∂F
∂yk

(p2)
∂F
∂zi

(p2)

∣∣∣∣∣
∣∣∣∣∣ ,

∣∣∣∣∣
∣∣∣∣∣
∂F
∂zj

(p1)

∂F
∂zi

(p1)
−

∂F
∂zj

(p2)

∂F
∂zi

(p2)

∣∣∣∣∣
∣∣∣∣∣
}
.

Then condition iLA implies that this is the same as the sup over{∣∣∣∣∣
∣∣∣∣∣
∂F
∂zj

(p1)

∂F
∂zi

(p1)
−

∂F
∂zj

(p2)

∂F
∂zi

(p2)

∣∣∣∣∣
∣∣∣∣∣ , ||p1 − p2||

}
,

which is the same as the maximum of the distance between the tangent spaces to Xy at p1 and
p2 and the distance between the points, p1 and p2.

We can say something similar for the iLW condition. First, since iLW implies iLA, the same
interpretation applies to the iLW condition. But more is true, and we develop some material
related to the Lipschitz saturation of the product of two ideals to explain it.

Lemma 3.11. (Product lemma) Given h,g in OX,x, p1,p2 ∈ X, then

‖(hg)(p1)− (hg)(p2)‖ ≤ ‖h(p1)‖‖g(p1)− g(p2)‖+

‖g(p2)‖‖h(p1)− h(p2)‖.

Proof. We have

‖(hg)(p1)− (hg)(p2)‖ = ‖(hg)(p1)− h(p1)g(p2) + h(p1)g(p2)− (hg)(p2)‖

= ‖h(p1)(g(p1)− g(p2)) + g(p2)(h(p1)− h(p2))‖
≤ ‖h(p1)‖‖g(p1)− g(p2)‖+ ‖g(p2)‖‖h(p1)− h(p2)‖.

�

Note that we can always choose one of the terms, say ‖g(pi)‖, to be the minimum of the
‖g(pi)‖. (You cannot, in general, minimize both h and g terms.)

We apply this lemma to the condition for h ∈ OX,x to be in the Lipschitz saturation of IJ ,
I,J two ideals of OX,x.

Suppose I = (f1, . . . , fp), J = (g1, . . . , gq). Work on the Zariski open subset Um,n of
(BIJ(X), π) in which (fmgn) ◦ π is a local generator of π∗(IJ). Local coordinates are given
by the pullback of coordinates at x, and by Ti,j where (i, j) 6= (m,n), 1 ≤ i ≤ p,1 ≤ j ≤ q, and

where Ti,j =
(figj)◦π
fmgn◦π .
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Note that

Tm,j =
(fmgj) ◦ π
fmgn ◦ π

=
gj ◦ π
gn ◦ π

, while Ti,n =
(fign) ◦ π
fign ◦ π

=
fi ◦ π
fm ◦ π

.

The next lemma shows that among all the Ti,j , on Um,n we need only consider the Tm,j and
Ti,n to define the Lipschitz saturation of IJ . As usual, πN denotes the normalization map, while
p1 and p2 are projection maps from the product of the normalization of BIJ(X) with itself.

Lemma 3.12. Let Um,n be as above, then the ideal generated by

{Tj,n ◦ πN ◦ p1 − Tj,n ◦ πN ◦ p2, Tm,i ◦ πN ◦ p1 − Tm,i ◦ πN ◦ p2},
for 1 ≤ j ≤ p, j 6= m, 1 ≤ i ≤ q, i 6= n, is a reduction of the ideal generated by

{Tj,i ◦ πN ◦ p1 − Tj,i ◦ πN ◦ p2}
at points of π−1

N (Um,n)× π−1
N (Um,n).

Proof. By the product lemma we have

‖ figj
fmgn

◦ π ◦ πN ◦ p1(z′1, z
′
2)− figj

fmgn
◦ π ◦ πN ◦ p2(z′1, z

′
2)‖

≤ ‖ fi ◦ π
fm ◦ π

◦ πN ◦ p1(z′1, z
′
2)‖‖ gj ◦ π

gn ◦ π
◦ πN ◦ p1(z′1, z

′
2)− gj ◦ π

gn ◦ π
◦ πN ◦ p2(z′1, z

′
2)‖

+‖ gj ◦ π
gn ◦ π

◦ πN ◦ p1(z′1, z
′
2)‖‖ fi ◦ π

fm ◦ π
◦ πN ◦ p1(z′1, z

′
2)− fi ◦ π

fn ◦ π
◦ πN ◦ p2(z′1, z

′
2)‖.

Now we can bound the terms ‖ fi◦πfm◦π ◦ πN ◦ p1(z′1, z
′
2)‖ and ‖ gj◦πgn◦π ◦ πN ◦ p1(z′1, z

′
2)‖ locally by

constants because the ideal IJ is principal on Um,n. The result follows from this.
�

We apply the above results to say something about the local vectorfields ~vi,j defined above.

Since ∂F
∂yj
∈ (mY Jz(F )S), we can usefully re-write ~vi,j as

~vi,j,k =
∂

∂yj
−

∂F
∂yj

zk
∂F
∂zi

zk
∂

∂zi
.

Denote the coefficient of ∂
∂zi

in ~vi,j,k by vi,j,k.

Then for pairs of points (t, p1), (t, p2) in π(Ui,k) we have:

‖vi,j,k(t, p1)− vi,j,k(t, p2)‖ ≤

∣∣∣∣∣
∣∣∣∣∣

∂F
∂yj

zk
∂F
∂zi

(t, p1)

∣∣∣∣∣
∣∣∣∣∣ ||zk(p1)− zk(p2)||

+‖zk(p2)‖

∣∣∣∣∣
∣∣∣∣∣

∂F
∂yj

zk
∂F
∂zi

(t, p1)−
∂F
∂yj

zk
∂F
∂zi

(t, p2)

∣∣∣∣∣
∣∣∣∣∣ .

Hence,
‖vi,j,k(t, p1)− vi,j,k(t, p2)‖ ≤ C‖zk(p1)− zk(p2)‖

+‖zk(p1)‖ sup

{∣∣∣∣∣
∣∣∣∣∣
∂F
∂zj
∂F
∂zi

(t, p1)−
∂F
∂zj
∂F
∂zi

(t, p2)

∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣ zjzk (p1)− zj

zk
(p2)

∣∣∣∣∣∣∣∣
}
.

Here we may assume that ‖zk(p2)‖ is the smaller of ‖zk(p1)‖, ‖zk(p2)‖. So, if the local fields are
not Lipschitz on Ui,k with respect to the distance between points, then they are Lipschitz with
respect the distance between planes or secant lines to the origin and in this case the Lipschitz
constant goes to zero as one of the points goes to the origin.
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4. Genericity Theorem

Although at present we can’t give a complete proof that the iLmY
condition is generic, we can

do both conditions at once in some of the cases. We first determine the different cases in which
it is necessary to check the conditions. These cases are the different ways in which Jz(F )D can
fail to have maximal rank.

Proposition 4.1. The co-supports of (mY Jz(F ))D or Jz(F )D on X ×Y X consist of
1) Y × (0, 0),
2) ∆(X ×Y X), and
3) (0×Y X) ∪ (X ×Y 0).

Proof. Suppose (x, x′) does not lie in one of the sets. Then, since some zi ◦ p1 and some zj ◦ p2

are not zero at (x, x′), (mY Jz(F ))D = Jz(F )D locally. Then Jz(F )D contains terms of the form
(0, ∂F∂zj ◦ p2), ( ∂F∂zj ◦ p1, 0), which implies that the rank of (mY Jz(F ))D is 2 and (x, x′) are not in

the cossupport.
�

The reader may have noted that Y × (0, 0) is a subset of both ∆(X ×Y X) and

(0×Y X) ∪ (X ×Y 0).

We will next show that generically both conditions hold at points of ∆(X ×Y X) − Y × (0, 0),
and of (0×Y X)∪ (X ×Y 0)−Y × (0, 0). Since we are working on a Z-open set of Y , and we are
working with families of isolated singularities, we may assume that the only singular point of
Xy is at (y, 0), that (X − Y, Y ) satisfies W at (y, 0). We will show that checking the conditions
at points of the form (y, 0, x), x 6= 0 amounts to checking W at (y, 0) for (X − Y, Y ) , while
checking the conditions at points of ∆(X ×Y X), x 6= 0 is trivial. Thus it will suffice to look at
components of the appropriate exceptional divisor that surject onto Y × (0, 0).

Proposition 4.2. In the set-up of this section, iLA and iLmY
hold at all points of

∆(X ×Y X)− Y × (0, 0),

and both conditions hold at all points of (0×Y X) ∪ (X ×Y 0)− Y × (0, 0) such that (X − Y, Y )
satisfies W at (y, 0).

Proof. Work at (y, x, x), x 6= 0. Then since x 6= 0, (mY Jz(F ))D = Jz(F )D locally. Since fy is

a submersion at x, and Jz(F )D contains elements of the form (0, (zi ◦ p1 − zi ◦ p2)( ∂F∂zj ◦ p2)),

((zi◦p1−zi◦p2)( ∂F∂zj ◦p1), 0), it follows that Jz(F )D contains I∆O2
X×YX,(x,x). By adding elements

of the form (0, ∂F∂y ◦p1− ∂F
∂y ◦p2) to (∂F∂y ◦p1,

∂F
∂y ◦p2) and elements of the form (0, ∂F∂zj ◦p1− ∂F

∂zj
◦p2)

to ( ∂F∂zj ◦ p1,
∂F
∂zj
◦ p2), this part of the proof is finished since ∂F

∂y is in the ideal Jz(F ) at x since

fy is a submersion.
Now work at (x, 0), x 6= 0. Since fy is a submersion at x, and x 6= 0 it follows that (mY Jz(F ))D

contains elements of the form (1, 0), so it suffices to show that ∂F
∂y is in the integral closure of

mY Jz(F )) and this is equivalent to W . This ends the second part of the proof.
�

Theorem 4.3. In the set-up of this section, there exists a Zariski open subset of U of Y such
that iLA holds for the pair (X − Y,U ∩ Y ) along Y .

Proof. We will follow the lines of the proof of the Idealistic Bertini Theorem given in [16] p591-
598. We prove that the ilA condition is generic using the module criterion. We will work
on the normalized blow-up of X ×Y X × P1 by the ideal sheaf induced from the submodule
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Jz(F )D, denoting NB(Jz(F ))D (X ×Y X × P1) by N . We need to check that on each component

of the exceptional divisor that the pullback of the element induced from (∂F∂y )D to the normalized

blowup is in the pullback of (Jz(F ))D. Denote the projection to Y by p. By the previous lemmas
we need only consider those components of the exceptional divisor which project to Y under the
map to X×Y X. Since we are working over a Zariski open subset of Y we may assume that every
such component maps surjectively onto Y . Since we are working on the normalization, we can
work at a point q of the exceptional divisor such that E is smooth at q, N is smooth at q and
the projection to Y is a submersion at q. Thus, we can choose coordinates at q, (y′, u′, x′), such

that y′ = y ◦ p, and u′ defines E locally with reduced structure. The key point is that ∂u′

∂y′ = 0.

Let πi denote the composition of π, the projection from N to X×Y X×P1 with the projection
pi to the i-th factor of X ×Y X × P1, i = 1, 2.

We have that F ◦ p1 + sF ◦ p2 is identically zero on X ×Y X × P1. Pull this back to N by π
and take the partial derivative with respect to y′ at q. We get by the chain rule:

0 =
∂F

∂y
◦ π1 + s

∂F

∂y
◦ π2 +

n∑
i=1

∂F

∂zi
◦ π1

∂zi ◦ π1

∂y′
+ s

∂F

∂zi
◦ π2

∂zi ◦ π2

∂y′
.

Notice that there is no term involving the derivative of s. This is because the coefficient of
this partial by the product rule would be zero, since F ◦ πi = 0.

Now we work to re-shape the above term to prove the theorem. Notice that since zi all vanish
along Y , zi ◦ πj all vanish along E at q. We can assume the order of vanishing of z1 ◦ πj is
minimal among {zi ◦ πj}, and that the strict transforms of z1 ◦ πj do not pass through q.

We have:

∂F

∂y
◦ π1 + s

∂F

∂y
◦ π2 = −

(
n∑
i=1

(
∂F

∂zi
◦ π1

)(
∂zi ◦ π1

∂y′

)
+

s

((
∂F

∂zi
◦ π2

)(
∂zi ◦ π1

∂y′

)
−
(
∂F

∂zi
◦ π2

)[
∂zi ◦ π1

∂y′
− ∂zi ◦ π2

∂y′

]))
.

We want to show that the terms on the right hand side in the above expression are in the ideal
generated by the pullback of the ideal sheaf on X×Y X×P1 induced by Jz(F ))D. For this we use
the curve criterion. We use a test curve to show that the order of vanishing of ∂F∂y ◦π1 +s∂F∂y ◦π2

along a component is same as the order of vanishing of the ideal (Jz(F ))D. This will imply that
∂F
∂y ◦ π1 + s∂F∂y ◦ π2 is in the ideal along the component. We can choose a curve Φ̃ such that Φ̃

is the lift of a curve Φ = (ψ, φ1, φ2), Φ : C :→ P1 ×X ×Y X. Further Φ̃(0) is a smooth point of

the component and the ambient space, Φ̃ transverse to the component so that u′ ◦ Φ̃ = t, where
t is a coordinate in the local ring of C at the origin. This implies that if an ideal is generated
by u′p, that the pullback is generated by tp. Since the pullback of the ideal (Jz(F ))D is locally

principal, we can choose Φ̃(0) so that (Jz(F ))D is generated by a power of u′.
Then we have

Φ̃∗
(
∂F

∂y
◦ π1 + s

∂F

∂y
◦ π2

)
=

−

(
n∑
i=1

(
∂F

∂zi
◦ π1 ◦ φ̃1

)(
∂zi ◦ π1

∂y′

)
◦ φ̃1 + ψ2/ψ1

((
∂F

∂zi
◦ π2

)
◦ φ̃2

(
∂zi ◦ π1

∂y′

)
◦ φ̃1

−
(
∂F

∂zi
◦ π2

)
◦ φ̃2

[
∂zi ◦ π1

∂y′
◦ φ̃1 −

∂zi ◦ π2

∂y′
φ̃2

]))
.
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The right hand side will clearly be in the ideal Φ∗(Jz(F ))D), provided the pullback of(
∂F

∂zi
◦ π2

)(
∂zi ◦ π1

∂y′
− ∂zi ◦ π2

∂y′

)
is. However, by construction, since y′ and u′ are independent coordinates, the order of

∂zi ◦ π1

∂y′
− ∂zi ◦ π2

∂y′

in u′ will be the same as the order of zi◦π1−zi◦π2. Hence the pullback of ( ∂F∂zi ◦π2)(∂zi◦π1

∂y′ −
∂zi◦π2

∂y′ )

does vanish to the desired order in t, which finishes the proof. �

We describe an application of this result. Given X an isolated hypersurface singularity we
can consider the sections of X by hyperplanes. It is natural to ask if there is a generic set of
hyperplanes for which the associated family of hyperplane sections satisfies the iLA condition.
We will show this is true after recalling the ideas necessary to make precise statements. (For
more details on this material see [2].) We first need the notion of the Grassman modification of
X, which we describe in the hyperplane case. Let En−1 denote the canonical bundle over Pn−1,
which we view as hyperplanes though the origin in Cn. Denote the projection of En−1 to Cn
by βn−1. If Xn−1 is a subset of Cn, we call X̃ = βn−1

−1(X), the Gn−1 modification of X. In
this paper we will simply refer to the Gn−1 modification as the Grassman modification of Xn−1.
Note that Pn−1 is embedded in En−1 as the zero section of En−1. This means that we can think

of 0×Pn−1 as a stratum of X̃; note that the projection to 0×Pn−1 makes X̃ a family of analytic
sets with 0× Pn−1 as the parameter space which we denote by Y . The members of this family
are just {P ∩X} as P varies through the points of Pn−1.

The set of hyperplanes which are limiting tangent planes to X at the origin form a Zariski

closed set. It is known that on the complement of this set, (X̃ − Y, Y ) are a pair of strata which
satisfy the Whitney conditions. We can now apply Theorem 4.3 to this situation.

Theorem 4.4. Suppose Xn, 0 is the germ of an analytic hypersurface in Cn, then there exists

a Zariski open subset U of Pn−1, such that condition iLA holds for the pair X̃ − U,U along U .

Proof. We can view X̃ locally as a family of hypersurfaces parameterized by Pn−1. The fiber
of the family over the plane P is just the intersection P ∩X. The existence of U follows from
4.3. �

We can use the ideas of [2] to describe these generic hyperplanes. We work in the chart Un
given by planes P with equation zn =

∑
i

aizi. Then we have local coordinates on En−1 given

by (z1, ...zn, a1, ..., an−1). In these coordinates we have

β(z1, ...zn, a1, ..., an−1) = (z1, ...zn,
∑
i

aizi).

If φ : C, 0 → X̃, P × {0}, then β ◦ φ is tangent to P at the origin. If φ : C, 0 → X, 0 is tangent

to P at 0, then φ lifts to X̃, P × {0}, and we say φ is liftable. It follows from [2], that since F

defines X, G := F ◦ β defines X̃. From the chain rule we note that

∂G

∂ai
= zi

∂F

∂zn
◦ β, Jz(G) =

(
∂F

∂zj
◦ β +

∑
i

ai
∂F

∂zn
◦ β

)
,

for 1 ≤ j ≤ n− 1.
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Corollary 4.5. Suppose Xn, 0 is the germ of an analytic hypersurface in Cn, then, for P ∈ Un,
P is a point in the Z-open set of the last theorem, if and only if zi

∂F
∂zn
◦ β ∈ (Jz(G))S for

1 ≤ i ≤ n− 1 at P, 0.

Proof. In the framework of the corollary, the condition of the corollary is exactly the iLA con-
dition. �

The corollary says that to check a plane is generic, it suffices to check that for all curves φi
i = 1, 2 on X, tangent to P at the origin, with lifts φ̃i for φi, and Φ := (φ1, φ2), Φ̃ := (φ̃1, φ̃2),
that (

zi
∂F

∂zn

)
D

◦ Φ ∈

((
∂F

∂zj

)
D

◦ Φ +

(∑
i

ai
∂F

∂zn
◦ β

)
D

◦ Φ̃

)
.

We will give a description using analytic invariants of these generic hyperplanes. For the rest
of this section we will assume that the planes we consider are not limiting tangent hyperplanes
to X, 0. This condition is equivalent to J(F )H = J(F ) in OX,0.

The invariant we will use appeared earlier in section 3. It is the multiplicity of the pair
J(X ∩H)D, J(X ∩H)D, which we denote e(J(X ∩H)D, J(X ∩H)D).

Similar invariants have been used in this setting before. In the case of ICIS singularities, to test
for whether or not a hyperplane is in the generic set of planes for which the hyperplane sections
form a Whitney equisingular family, you use the multiplicity of the pair (JM(X ∩ H),OpX),
which is e(JM(X ∩H)). The plane is generic if this multiplicity is minimal, and the minimal
number is the sum of the Milnor numbers of X ∩H, and X ∩H ∩G, where H and G are generic
hyperplanes.

The proof that the minimal value of e(J(X∩H)D, J(X ∩H)D) again identifies generic hyper-
planes will be done in the context of the multiplicity polar theorem, so we identify the modules
we will use.

We will work in X̃×Pn−1X̃ ⊂ X×Pn−1×X. The moduleN will be (β∗J(F ))D, and the module
M will be Jz(G)D. Notice that M restricted to the fiber of the family over the plane H is just

J(X ∩H)D, while N restricted to H is (J(X)|H)D; because we are assuming H is not a limiting

tangent hyperplane, we have that J(X)|H = J(X ∩H), hence N restricted to H is J(X ∩H)D,

so the multiplicity of the pair M(H), N(H) is the same as e(J(X ∩H)D, J(X ∩H)D). At this
time we do not have a geometric interpretation of this number.

Theorem 4.6. Suppose Xn−1, 0 is an isolated singularity hypersurface and U the set of hyper-
planes which are limiting tangent hyperplanes to X at 0. Then

1) e(J(X ∩H)D, J(X ∩H)D) is upper semicontinuous on U .
2) The iLA condition holds along U at a hyperplane H for which the value of

e(J(X ∩H)D, J(X ∩H)D)

is minimal.

Proof. The condition on U implies that J(X ∩H)D) is the restriction of N to the fiber. Essen-
tially since N is independent of H, N has no polar variety of the same codimension as U . The
multiplicity polar theorem then implies e(J(X ∩H)D, J(X ∩H)D) is upper semicontinuous on
U .

Suppose we are at H which gives the minimal value of the multiplicity. Since the value of the
multiplicity cannot go down, it must be constant, which implies that the polar variety of M of
the same dimension as U must be empty. The emptiness of the polar variety puts restrictions on
the size of the fiber of ProjR(M). Now we know that generically the ∂G

∂ai
are in M ; coupling this
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with the bound on the dimension of the fiber of ProjR(M), by Theorem A1 of [10], it follows
that the ∂G

∂ai
are in the integral closure of M at H as well, which finishes the proof. �
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