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REMARKS ON SEMI-SIMPLICITY OF ALEXANDER MODULES

ANATOLY LIBGOBER

Abstract. We discuss examples of smooth quasi-projective manifolds with non-reduced Alexan-

der modules, giving a non-semisimple Alexander module in the one variable case and prove a
result giving sufficient conditions for semi-simplicity.

1. Introduction

Let X be a smooth quasi-projective variety such that the fundamental group π1(X) admits a
surjection ρ : π1(X) → Z onto an infinite cyclic group. The i-th Alexander module of the pair

(X, ρ) is defined as the homology group Hi(X̃ρ,Q) with closed support of the infinite cyclic cover

X̃ρ corresponding to the kernel of ρ. This vector space, may or may not be finite-dimensional
but it is a finitely generated Q[t, t−1]-module with the module structure given by the action of
a generator t of the infinite cyclic target of ρ as the deck transformation of the cover Xρ. In
the case i = 1, the Alexander module is the abelianized kernel of ρ (tensored with Q). If the
Alexander module is a finite-dimensional Q-vector space it is a torsion Q[t, t−1]-module and its

order, well defined up to a unit of Q[t, t−1], is called the Alexander polynomial. If Hi(X̃ρ) is
infinite-dimensional, then the Q[t, t−1]-order of its Q[t, t−1]-torsion submodule is also a useful
invariant.

If X is a complement to a divisor on a smooth projective surface, some assumptions of
ampleness of irreducible components of this divisor and properties of ρ imply that the first
Alexander module is a torsion module (cf.[9] Theorem 3.3 or Theorem 1.2 below for precise
conditions). Again with certain ampleness assumptions on irreducible components of X̄ \X, the
Alexander polynomial can be calculated in terms of classes of these components in the Neron-
Severi group and the superabundances of the linear systems defined by the singularities of the
components.

In [7] it was pointed out that in the case when X is a complement to an irreducible plane
curve C ⊂ C2, having singularities with semi-simple monodromy only and transversal to the
line at infinity, one has a canonical surjection: ρ : π1(C2 \ C) → H1(C2 \ C,Z) = Z and the
Alexander module (over R) is isomorphic to a direct sum ⊕R[t, t−1]/(∆κ) (here ∆κ are the
polynomials defined in terms of local type of singularities and the number of summands given by
the superabundances of the linear systems associated with the singularities). In particular, the
first Alexander module of the complement is a semi-simple R[t, t−1]-module. The semi-simplicity
of the torsion parts of the Alexander modules with i ≥ 1 for the complements to hypersurfaces
in affine space was systematically studied in [12] and continued in [4], [10], [13]. Semi-simplicity
of the first Alexander module for general Kähler groups was shown in [1]. The Alexander
invariants of solvable and nilpotent quotients of the fundamental groups of the complements to
arrangements of hyperplanes were considered in [11].

A detailed study of the Hodge structures on the torsion parts of the Alexander modules of a
wider class of quasi-projective manifolds was carried out in [5]. The question of semi-simplicity
also was considered in this paper and it was shown that the torsion parts of the Alexander
modules are semi-simple if X admits a proper holomorphic map X → C∗ and the surjection
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ρ is the composition π1(X) → π1(C∗) = Z. [5] gives also a Hodge theoretical condition for
semi-simplicity. In this paper also the question was raised if non-semisimple Alexander modules
exist.

In this note we prove two Theorems concerning the semi-simplicity property. Theorem 1.1
considers a multi-variable analog of non-semi-simplicity, i.e. the Alexander modules Hi(X̃,C)
over the group ring C[Zr] corresponding to a surjection of π1(X) onto Zr, having an annihilator

which is not a radical ideal. A natural invariant of Hi(X̃r,C) is the characteristic subscheme of
the torus Spec C[Zr] which is the affine subscheme corresponding to the annihilator in the ring
of Laurent polynomials Spec C[Zr] of the i-th Alexander module. The corresponding reduced
subscheme is the characteristic variety (cf. [8]) and is an analog of the Alexander polynomial
in the one variable case. Calculations of characteristic varieties, not relying on presentations of
the fundamental group, are based on their relation with the homology of finite abelian covers
which use only the reduced part of the characteristic scheme (cf. [9]). Hence in the cases when
the characteristic scheme is different from the characteristic variety, the difference cannot be
detected by the Betti numbers of abelian covers. Since a module over Q[t, t−1] is semisimple
if and only if its support is reduced, the cases when characteristic schemes are different from
characteristic varieties provide a multivariable counterpart of non-semi-simplicity.

Theorem 1.1 gives examples of quasi-projective varieties which have contractible universal
covers, the 2-step nilpotent groups as their fundamental groups and have non-radical annihilator
of the Alexander modules. Construction of [3] and [2] shows that there exist even Kähler groups
with such a property. More specifically, a lattice in a (2k+1)-dimensional Heisenberg Lie group
is Kähler if and only if k ≥ 4 (cf. [3]) and the groups considered in Theorem 1.1 are of such type.
Note that in examples of Theorem 1.1 with a non-semi-simple Alexander C[t, t−1]-module, unlike
in the cases considered in [5], the surjection of the fundamental group onto Z is not induced by
a holomorphic surjection onto C∗. Existence of the latter is additional strong constraint on X.

Theorem 1.2 gives sufficient conditions for semi-simplicity of one variable Alexander modules.
This is a generalization of the results in [4] and the argument is close to the one used in the
proof of divisibility theorems for Alexander polynomials (cf. [9] for a recent account of those).
The specific statements are as follows.

Theorem 1.1. Let A be a polarized abelian variety of dimension n and ω ∈ Λ2H1(A,Z) be
a polarization. Let Xω

n be the complement to the zero section in a corresponding positive def-
inite line bundle. Then π1(X

ω
n ) is a subgroup of finite index in the Heisenberg group Hn with

presentation:

(1) {xi, yi, z|[xi, xj ] = [yi, yj ] = [xi, z] = [yi, z] = 1, [xi, yi] = z, ∀i, j,

[xi, yj ] = 1(i ̸= j)i, j = 1, .., n}
and π1(X

ω
n ) = Hn, if polarization is principal. Let ρ : Hn → Zn be the surjection with the kernel

being the normal closure of the subgroup of Hn generated by y1, .., yn, z. Then the annihilator of
the corresponding to ρ Alexander module Hi(X̃

ω
n ,C)), i ≥ 1 is m2 where m is the maximal ideal of

the identity of the torus Spec C[Zn]. In particular for n = 1 one obtains quasi-projective groups
with corresponding Alexander module being not semi-simple with the action of a generator of Z
having one 2× 2 Jordan block.

Theorem 1.2. Let X be a smooth projective variety of dimension greater than one and let
D = D1 ∪D0 be a reduced divisor on X. Assume that

(i) D0 is irreducible, smooth and ample.
(ii) D0 intersects D1 transversally (in particular only at smooth points of the latter).
(iii) One has surjection ρ : π1(X \D) → Z which takes the meridian of D0 to non-zero.
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Then Hi( ˜(X \D)ρ,C), where ˜(X \D)ρ is the cyclic cover corresponding to Kerρ, is a semisim-
ple C[t, t−1]-module for 0 ≤ i ≤ dimX − 1.

These results are proven in the next section where also illustrating examples are given. I
am grateful to L. Maxim for his comments on an earlier version of this note, to the anonymous
referee for detailed comments and the editors for pointing out several typos.

2. Proofs of the Theorems 1.1 and 1.2

2.1. Proof of Theorem 1.1. The description of π1(X
ω
n ) follows immediately from the exact

sequence of a locally trivial C∗-fibration:

(2) 0 → Z → π1(X
ω
n ) → Z2n → 0

since the class of this extension can be identified with the symplectic form corresponding to
polarization (cf. [3]; in fact sect. 5 of this paper shows that for appropriate polarization and
n ≥ 4, a generic linear section of the total space of such a bundle gives a projective surface with
fundamental group being the Heisenberg group (2); cf. [2] for another version of the argument
of projectivity of these groups).

It follows from (1) that the subgroup of Hn generated by y1, ..., yn, z is abelian and normal.
Denote by t1, ..., tn generators of the quotient corresponding to x1, .., xn. Then we have:

(3) tiyj = yj (i ̸= j), tiyi = yi + z 1 ≤ i ≤ n.

In the case when polarization is not principal, the second part in (3) is given by tiyi = yi + αiz
(an explicit form of αi can be obtained in terms of elementary divisors of the symplectic form
corresponding to polarization, using the matrix form of the Heisenberg group, cf. [3], Sect. 5).
In particular the Alexander module is generated by y1, .., yn satisfying the relations:

(4) αj(ti − 1)yi = αi(tj − 1)yj (ti − 1)yj = 0, (i ̸= j).

Therefore, the annihilator coincides with m2. Finally, it follows that the abelian cover X̃ω
n is

homotopy equivalent to a torus and hence higher Alexander modules are the exterior powers of
the first one. The claim follows.

2.2. Proof of Theorem 1.2. Note that assumptions (i),(ii),(iii) imply that the first Alexander
module is a torsion (cf. [9] Theorem 3.3 1). Let T (D0) be a small regular neighborhood of D0.
Let D′

0 be a small deformation of D0 which is a smooth member of the linear system L(D0)
and which is a smooth closed submanifold of T (D0) transversal to all components of D1 at
smooth points of the latter. It follows from the (stratified) Lefschetz hyperplane section theorem
for quasi-projective varieties that the spaces X \ (D0 ∪ D1) and D′

0 \ (D′
0 ∩ (D0 ∪ D1)) have

the same (n − 2)-homotopy type i.e. X \ (D0 ∪D1) is homotopy equivalent to a CW-complex
which is a union of a CW -complex homotopy equivalent to D′

0 \ D′
0 ∩ (D0 ∪ D1) and cells of

dimension i ≥ n − 1. Hence the infinite cyclic covers of both these spaces, corresponding to
ρ : π1(X \D) → Z and surjection ρD′

O
: π1(D

′
0 \ (D′

0 ∩ (D0 ∪D1))) → Z induced by embedding

D′
0 \ D′

0 ∩ (D0 ∪ D1) → X \ D0 ∪ D1 and ρ, also have cellular decompositions identical up to
dimension n − 2. Hence one has isomorphism of C[t, t−1]-modules up to dimension n − 2 and
surjection for i = n− 1:

(5) Hi([ ˜D′
0 \D′

0 ∩ (D0 ∪D1)]ρD0
) → Hi([ ˜X \D0 ∪D1]ρ,C))

where [̃·]ρ denotes the infinite cyclic covers corresponding to the surjection onto Z indicated by
the subscript.

1in fact the proof of semi-simplicity below is close to the one used in this reference to show this property.
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Next notice that T (D0) \ ((D0 ∪D1) ∩ T (D0)) is diffeomorphic to a locally trivial fibration

T (D0) \ ((D0 ∪D1) ∩ T (D0))
D∗

→ D0 \ (D0 ∩D1)

over D0 \ (D0 ∩ D1) having a punctured disk D∗ as a fiber. Let d = ρ(γD0) ∈ Z where
γD0

∈ π1(T (D0)\((D0∪D1)∩T (D0))) is the class meridian in the component D0. The sequence
of the fundamental groups induced by this fibration and surjections on the cyclic groups induced
by the homomorphism ρT (D0), which is the composition of the homomorphism of the fundamental
groups induced by embedding of open manifolds and the homomorphism ρ, gives the diagram:

(6)
Z → π1(T (D0) \ ((D0 ∪D1) ∩ T (D0))) → π1(D0 \ (D0 ∩D1)) → 0
↓ ρT (D0) ↓ ρ′ ↓
Z → Z → Z/dZ → 0

The homomorphism ρ′ here is induced by ρT (D0). It follows from Lemma 3.1 of [6] that the
infinite cyclic cover

[ ˜T (D0) \ ((D0 ∪D1) ∩ T (D0))]ρT (D0)

fibers over the d-fold cyclic cover of D0 \ (D0 ∩ D1) corresponding to surjection ρ′ in the last

column of the above diagram. This fibration has contractible fiber C̃∗ and the action of the deck

transformation on [ ˜T (D0) \ ((D0 ∪D1) ∩ T (D0))]ρT (D0)
factors through the action of a finite

cyclic group. Hence the Alexander modules Hi([ ˜T (D0) \ ((D0 ∪D1) ∩ T (D0))]ρT (D0)
are semi-

simple.
Finally, consider the diagram:

(7)

Hi([ ˜D′
0 \D′

0 ∩ (D0 ∪D1)]ρD′
0
) → Hi([ ˜T (D0) \ ((D0 ∪D1) ∩ T (D0))]ρT (D0)

↘ ↓
Hi([X̃ \D]ρ)

in which the homomorphism ρD′
0
: π1(D

′
0 \D′

0 ∩ (D0 ∪D1)) → Z used to construct the covering
space is the composition of the map induced by embedding and ρ and all the arrows are induced
by respective embeddings. Since the map (5) is an isomorphism for 0 ≤ i < n− 1 and surjective

for i = n − 1, it follows that the vertical map is surjective for i ≤ n − 1. Hence Hi([X̃ \D]ρ),
being the quotient of a semisimple module, in the same range of i is semisimple as well. □

3. Miscellaneous comments.

3.1. Non-semisimple Alexander modules and Heisenberg groups.

Proposition 3.1. Let ρ : G → Z be a surjection such that the corresponding C[t, t−1] Alexander
module G′/G′′⊗C has a 2×2 Jordan block corresponding to the eigenvalue 1 in a basis belonging
to the lattice (G′/G′′)/Torsion ⊂ G′/G′′ ⊗ C. Then G has as a quotient a subgroup of finite
index in the Heisenberg group

(8) {x, y, z|[x, z] = [y, z] = 1, [x, y] = z}.

Proof. Let x ∈ G be such that ρ(x) is the generator t of the multiplicative infinite cyclic group
and y1, ..., yN ∈ G′ be representatives of a basis of G′/G′′, such that the first two elements
of this basis ȳ1, ȳ2 ∈ G′/G′′ form the 2 × 2 Jordan block i.e. the action of t has the form
tȳ1 = ȳ1, tȳ2 = ȳ2 + αȳ2. Let K be the subgroup of G′ generated by representatives y3, ..., yN ,
of remaining elements of Z- basis of G′/G′′. It follows that G/K is isomorphic to the group of
3× 3 unipotent matrices over Z and hence is a subgroup of finite index in the group (8). □

.
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3.2. A group with non-semi-simple Alexander module. While this paper does not contain
examples of quasi-projective groups having nilpotent quotients with rank of the center being
greater than 1, one can construct a 2-step nilpotent group obtained as extension (2) in which
one replaces Z by a free group Zk. If one takes as cocycle in H2(Z2n,Zk) = ⊕k

1H
2(Z2n,Z)

and the collection of k integer 2-forms of rank 2, with null spaces belonging to a codimension
1 subspace (i.e. the forms ω ∧ ηi, i = 1, ..., k with ω, ηi being 1-forms with ηi being linearly
independent), it is easy to check that such a group has the Alexander module corresponding to
k Jordan blocks of size 2× 2. Selecting a basis (x1y1, ....xn, yn) in Z2n such that

ω(x1) = 1, ω(xi) = 0, i > 1, ω(yi) = 0, i ≥ 1, ηi(yi) = 1, ηi(yj) = 0, i ̸= j, η(xi) = 0, for all i

for the central extension:

(9) 0 → Zk → G → Z2n → 0

corresponding to the cocycle (ω ∧ η1, ..., ω ∧ ηk) ∈ H2(Z2n,Zk) = (Λ2(Zn))k one obtains the
group with presentation:

(10) [x1, yi] = zi, i = 1, ..., k, [x1, yj ] = 1, j > k, [xi, yj ] = 1, i ≥ 2,∀j,
[xi, xj ] = [yi, yj ] = [xi, zs] = [yi, zs] = 1,∀i, j, s.

The abelian subgroup H generated by (x2, ..., xn, y1, .., yn, z1, .., zk) is such that G/H is infinite
cyclic and is generated by the class of x1. The action of the generator of the corresponding
Alexander module is given by

(11) tyi = yi + zi, tzi = 0, tyi = 0, i > k, txi = 0

i.e. the Alexander module is isomorphic to

(12) (C[t, t−1]/(t− 1)2)k ⊕ C[t, t−1]/(t− 1)2n−k−1.

It is not clear, at the moment of this writing, if such a group is quasi-projective.

3.3. Example. A semi-simple Alexander module of a Zariski open subset of a general simply
connected smooth projective surface. This is the Alexander modules version of the example in
section 4.5 of [9]. Let X be a smooth simply connected projective surface and D0 be a smooth
ample divisor with the class [D0] ∈ H2(X,Z). Let p, q ∈ Z>0 be coprime and such that there exist
sections s1 ∈ H0(X,OX(pD0) and s2 ∈ H0(X,OX(qD0) which are smooth, transversal to each
other, and are also transversal to D0. Let D be the zero set of the section sq1+sp2 ∈ H0(X, pqD0).
It follows from [9] (1.6), that H1(X \ D ∪ D0,Z) has rank 1 with torsion group having order
l, which is the greatest common divisor of the integers ([D0], E), E ∈ H2(X,Z). Surjection of
π1(X \D ∪D0) onto Z, given by abelianization followed by taking the quotient by the torsion
subgroup allows us to define the corresponding Alexander module. D has pqD2

0 singularities
each having the local equation xp + yq = 0 at the subscheme SingD of X which is the complete
intersection s1 = s2 = 0. Calculation as in [9] section 4.6 shows that the sheaf of ideals of
quasi-adjunction for D ∪ D0 is the ideal of the zero-dimensional reduced scheme Sing(D) and
that the superabundance of the linear system H0(X,KX ⊗ (p+ q)D0 ⊗ ISing(D)) is equal to 1.
It follows from Theorem 1.2, that the ideal of reduced support of the Alexander module is the
annihilator of the Alexander module:

(13) [π′
1(X \D ∪D′)/π′′

1 (X \D ∪D′)]⊗Q = Q[t, t−1]/(
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
).

In the case when X = P2, D0 = P1, the fundamental group P2 \ D (D can be taken to be a
curve with equation (xp + yp)q +(xq + zq)p = 0) is the free product of Zp ∗Zq which implies the
isomorphism (13). It would be interesting to calculate the fundamental groups π1(X \ (D∪D0))
for other simply connected surfaces.
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3.4. Example. One variable Alexander modules of Campana-Carlson-Toledo groups. Let us
consider one variable Alexander modules of groups discussed in Theorem 1.1. The subgroup K
generated by z, yi, i = 1, .., n, x2, ..., xn is normal and π1(Xn)/K = Z. Abelianization of K is a
free abelian group of rank 2n− 1 and the action of x1 on it by conjugation for n > 1 is trivial.
Hence the Alexander module is just [Q[t, t−1]/(t − 1)]2n−1. As shown in Theorem 1.1, in the
case n = 1, one obtains a non-semisimple module Q[t, t−1]/(t− 1)2. Calculation in this case was
made in [15].
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