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RATIONAL CUSPIDAL CURVES ON DEL-PEZZO SURFACES

INDRANIL BISWAS, SHANE D’MELLO, RITWIK MUKHERJEE, AND VAMSI P. PINGALI

Abstract. We obtain an explicit formula for the number of rational cuspidal curves of a given

degree on a del-Pezzo surface that pass through an appropriate number of generic points of the
surface. This enumerative problem is expressed as an Euler class computation on the moduli

space of curves. A topological method is employed in computing the degenerate contribution
to the Euler class.

1. Introduction

The Enumerative Geometry of rational curves in P2
C is a classical question. However, a

formula for the number of degree d rational curves in P2
C passing through 3d− 1 generic points

was unknown until the early 90
′s when Ruan–Tian [25] and Kontsevich–Manin [18] obtained a

formula for it. More generally, they gave an explicit answer to the following question:

Question 1.1. Let X be a complex del-Pezzo surface, and let β ∈ H2(X; Z) be a given homology
class. What is the number of rational degree β-curves in X that pass through 〈c1(TX), β〉 − 1
generic points?

Fixing X, the number in Question 1.1 will be denoted by Nβ .
A natural generalization to the above question is to ask how many rational curves are there

of a given degree, that pass through the right number of generic points and have a specific
singularity.

The main result we obtain here is the following:

Theorem 1.2. Let X be P2 blown up at k-points with k ≤ 8, and let

β := dL−m1E1 − . . .−mkEk ∈ H2(X; Z)

be a homology class, where L denotes the homology class of a line, {Ei}ki=1 are the exceptional
divisors and mi ≥ 0. Denote

xi := ci(TX) and δβ := 〈x1, β〉 − 1 ,

where ci denotes the i-th Chern class. If Nβ−3L > 0, then the number of rational degree β-curves
in X that pass through δβ − 1 generic points and have a cusp, is given by

Cβ =
(
x2([X])− x1 · x1

β · x1

)
Nβ +

∑
β1+β2=β,
β1,β2 6=0

(
δβ − 1

δβ1

)
Nβ1Nβ2(β1 · β2)

( (β1 · x1)(β2 · x1)

2(β · x1)
− 1
)
,

(1.1)

where “·” denotes topological intersection.
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Since the numbers Nβ are known using the algorithm described in [18] and [8], the number
Cβ is computable using (1.1). We have written a C++ program that implements (1.1) and
computes Cβ for a given β. The program is available on our web page

https://www.sites.google.com/site/ritwik371/home.

We need the condition Nβ−3L > 0 in order to prove that the space of rational curves having
exactly one genuine cusp is non-empty, and also to prove a transversality result (Section 8).
However, based on the numerical evidence we also expect the formula to be valid even when

Nβ−3L = 0 . (1.2)

The condition Nβ−3L > 0 is sufficient to prove transversality. However, it may not be necessary.
For example, (1.2) is sometimes true for a trivial reason if there do not exist any cuspidal curves
in the given class β − 3L. In such a case (1.2) gives us Nβ−3L = 0 and Cβ−3L is also equal to
zero, which is consistent with the formula (although the hypothesis we imposed does not apply).

When X := P2, Pandharipande ([22]), and Ran ([23]), obtain a formula for Cβ using an
algebro-geometric method. Theorem 1.2 is consistent with their results. Furthermore, it is easy
to see by direct geometric arguments that

CdL+σ1E1+σ2E2+...+σkEk = CdL , (1.3)

where each of the σi is −1 or 0. For the sake of consistency, we verified (1.3) for several cases
using the above mentioned program. The reader is invited to use our program to verify these
assertions.

In [18], the authors, strictly speaking, give a formula to compute the genus 0 Gromov–Witten
invariants of the del-Pezzo surfaces. A priori, these numbers need not be the same as Nβ (since
the Gromov–Witten invariants are not always enumerative). It is established in [8] that the
numbers obtained in [18] are indeed enumerative, meaning they are actually equal to Nβ .

Theorem 1.2 is also true when X := P1×P1. In [17], Kock obtains a formula for Cβ using an
algebro-geometric method, which is consistent with (1.1). In order to keep the exposition here
more streamlined, we decided to omit working out this case separately. The arguments given
in Section 7 go through without any essential change; the arguments in Section 8 need to be
modified slightly to address the case of P1 × P1.

2. Overview of our method and comparison with other methods

We closely adapt the method applied by Zinger in [31] to obtain our formula for del-Pezzo
surfaces (Zinger obtains this formula when X := P2). We express our enumerative number as
the number of zeros of a section of an appropriate vector bundle (restricted to an open dense
set of an appropriate moduli space). As one typically expects, the Euler class of this vector
bundle is our desired enumerative number, plus an extra boundary contribution. Calculating
this excess boundary contribution (which is also referred to as the degenerate contribution to
the Euler class) is the most crucial part. The standard algebraic geometric method involves
taking a certain blowup of the degenerate locus and then computing the boundary contribution.
This is the method which is the subject of Section 9.1 of the famous book by Fulton [7]. The
method has been used extensively by algebraic geometers to solve a large number of enumerative
geometry questions.

In this paper, we use a different method to compute the degenerate contribution to the
Euler class, closer in spirit to the classical approach by “dynamic intersections” (cf. Chapter 11
in [7]). We perturb our section smoothly and count how many zeros are there close to the degen-
erate locus. In order to do this, we need a very careful understanding of how a neighbourhood
of the degenerate locus is described inside the whole moduli space. After that, we study the

https://www.sites.google.com/site/ritwik371/home
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behaviour of the section in a neighbourhood of the degenerate locus to calculate the multiplicity.
This is done in section 7 of our paper. The method describe is local in nature (and hence, it
is often called local excess intersection theory; the method developed by Fulton is often called
global excess intersection theory). Local intersection theory has been applied by Zinger to solve
a large number of enumerative questions; these include counting rational curves with prescribed
singularities in Pn and counting genus g curves with fixed complex structures in Pn (this has
been done in [31] and [32]).

We conclude this brief overview by mentioning that Zinger has also used local excess
intersection theory in [30] to enumerate degree d curves in P2 with up to two nodes and one
singularity (till a total codimension three). In [1] and [2], the third author and S. Basu have
applied local intersection theory (by extending the ideas in [30]) to enumerate degree d-curves in
P2 with δ ≤ 1 nodes and one more singularity of codimension χ, provided the total codimension
(δ + χ) is less than or equal to seven.

In general, the question of enumerating curves in a linear system with prescribed singu-
larities has been studied extensively by algebraic geometers; these include I. Vainsincher ([28]
and [29]), S. Kleiman and R. Piene ([14] and [15]), M. Kool, V. Shende and R. Thomas ([16]),
D. Kerner ([11], [12]), J. Li and Y. Tzeng ([19] and [27]), J. Rennemo ( [24]) and G. Bérczi ([3]).
Finally, a topological approach (very different from the approach in [30], [1] and [2]) has been
used by M. Kazarian ([10]) to enumerate curves in a linear system with up to seven singular
points (provided the total codimension of the singularities is less than or equal to seven).

We have given here a very brief overview of this subject (namely counting singular curves
in a linear system); a more detailed and extensive overview can be found in the excellent survey
article by S. Kleiman ([13]).

3. Related results and questions

The formula for Cβ (the characteristic curves for rational curves with a cusp) when the target
space X := P2 has been obtained by Pandharipande [22] and also by Ran [23]. The corresponding
formula, when the target space is P × P1 has been obtained by Kock [17]. These papers follow
an algebro geometric approach.

In [6], the authors express the divisor of cuspidal curves on surfaces in terms of other divisors.
In [22], the author shows how to compute the latter on Pn and hence on any smooth algebraic
variety. This should in principle produce our formula (1.1).

The method presented in this paper readily applies in enumerating rational cuspidal curves
on complex manifolds of dimension greater than two. Furthermore, the method also applies to
enumerating rational curves with more degenerate singularities. In [32], the author further
extends the method and obtains a formula for the number of rational curves in P2 with an E6

singularity. (In local coordinates an E6-singularity is given by the equation y3 +x4 = 0.) Using
the results obtained here, we hope that we will be able to extend the results of Zinger in [32] (for
E6 singularities) to del-Pezzo surfaces. We should also be able to extend our results for rational
cuspidal curves on higher dimensional complex manifolds (such as products of projective spaces
or Pn blown up at certain number of points).

Finally, we note that the problem of counting rational curves plays an important role
in counting genus one curves with a fixed complex structure (which is called the genus one
enumerative invariant). This is because it arises as a correction term in the corresponding genus
one Symplectic Invariant (which are the number of solutions to the perturbed ∂ equation). The
Symplectic Invariant is computable via the formula given in [25]. By extending the idea in [9],
where the author computes the correction term and thereby computes genus one enumerative
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invariant of P2, we have been able to compute the genus one enumerative invariant of a del-Pezzo
surface in [4]. Similarly, in [31], Zinger computes the genus two Enumerative invariant of P2 by
computing the correction term to the genus two Symplectic Invariant; one of the correction term
is the number of rational cuspidal curves in P2. Hence, one of the applications of the result
of this paper is that we have been able to compute the genus two enumerative invariant of a
del-Pezzo surface by computing the correction term to the genus two Symplectic Invariant; this
is done in [5].

4. Notation

Consider the rational curves on smooth complex del-Pezzo surface X representing
β ∈ H2(X, Z) and equipped with n ordered marked points. LetM0,n(X,β) denote the moduli
space of equivalence classes of such curves. In other words,

M0,n(X,β) := {(u, y1, · · · , yn) ∈ C∞(P1, X)× (P1)n | ∂u = 0, u∗[P1] = β}/PSL(2,C) .

with PSL(2,C) acting diagonally on P1 × (P1)n. For any k ≤ n, define the subspace

M0,n(X,β; p1, · · · , pk) ⊂ M0,n(X,β)

consisting of n marked points such that the i-th marked point is pi for all 1 ≤ i ≤ k, so,

M0,n(X,β; p1, · · · , pk) := {[u, y1, · · · , yn] ∈M0,n(X,β) | u(yi) = pi ∀ i = 1, · · · , k} .

We define M∗0,n(X,β) (respectively, M∗0,n(X,β; p1, · · · , pk)) to be the locus in M0,n(X,β) (re-
spectively, M0,n(X,β; p1, · · · , pk)) of curves that are not multiply covered.

We will denote M∗0,δβ (X,β; p
1
, · · · , p

δβ−1
) also by M∗.

Let M0,n(X,β) denote the stable map compactification of M∗0,n(X,β). Let

Li −→ M0,n(X,β)

be the universal tangent line bundle at the i-th marked point. More precisely, if

fC : C −→ M0,n(X,β)

is the universal curve with TfC −→ C being the relative tangent bundle for fC and

yi : M0,n(X,β) −→ C

is the section giving the i-th marked point, then Li := y∗i TfC .

Finally, let Li −→ M0,n(X,β) denote the universal tangent bundle after dropping all the
marked points, except for the ith marked point. More precisely, let

πi :M0,n(X,β) −→M0,1(X,β)

denote the forgetful map, that forgets all but the ith marked point. Let L −→M0,1(X,β) denote
the universal tangent bundle (in this case there is only one marked point). Then

Li := π∗i L −→ M0,n(X,β).

Remark 4.1. Throughout the paper, we will be using the line bundle Li as opposed to Li. In
particular, Lemma 6.1 applies to the line bundle Lδβ . If instead we considered the line bundle
Lδβ , there would be an extra boundary term in the right hand side of (6.1).
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5. Euler class computation

Let us now explain how we obtain (1.1). The method employed follows closely the method in
[31] to compute Cβ when X = P2.

Evidently, Cβ coincides with the cardinality of the following set

{[u; y1 , · · · , yδβ−1
; y

δβ
] ∈ M∗0,δβ (X,β; p1, · · · , pδβ−1

) | du|y
δβ

= 0}.

Since the above δβ − 1 points are in general position, the curve will have a genuine cusp at the
last marked point (as opposed to something more degenerate). Furthermore, the curves will not
have any other singular points (aside from the nodes which are just points of self intersections).
For any

[u; y1 , · · · , yδβ−1
; y

δβ
] ∈ M∗0,δβ (X,β; p1, · · · , pδβ−1

) ,

the differential of u at the last marked point y
δβ

produces a section ψ of the rank two vector

bundle

L∗δβ ⊗ ev∗δβTX −→ M
∗
0,δβ

(X,β) ,

where evi : M∗0,δβ (X,β) −→ X is the evaluation at the i-th marked point. This ψ is transverse

to the zero section (this is shown in Section 8). Moreover, it has a natural extension to the
compactification

M := M0,δβ (X,β; p
1
, · · · , p

δβ−1
) .

Therefore, we have

〈e(L∗δβ ⊗ ev∗δβTX) , [M]〉 = Cβ + C∂M(du|y
δβ

) , (5.1)

where C∂M(du|y
δβ

) is the contribution of the extended section to the Euler class from the bound-

ary M\M∗.
Let us now take a closer look at (5.1). First, we note that the extended section du|yδβ (over

M) vanishes only on a finite set of points of the boundary. It only vanishes when the curve splits
as a β1 curve and a β2 curve, β1, β2 6= 0, with the last marked point lying on a ghost bubble. It
is clear that the section vanishes on this configuration (since taking the derivative of a constant
map gives us zero and the map defined on the ghost bubble is a constant map). To see why the
section does not vanish on any other configuration we consider all the remaining possible cases.
Suppose the curve splits as β = β1 + β2 + . . . + βk, with k ≥ 3 and βi 6= 0 for all i. Since
δβ1

+ . . .+ δβk < δβ − 1 as k ≥ 3, such a configuration can not occur, because it will not pass
through δβ − 1 generic points. Next, suppose the curve splits as β = β1 + β2, with β1 , β2 6= 0
and the marked point lying on say the β1 component. Then the β1 curve is cuspidal. Hence it
can pass through δβ1 − 1 general points. Since δβ1 − 1 + δβ2 < δβ − 1, this configuration can not
occur. Next, we note that although the section vanishes on curves that have singularities more
degenerate than a cusp or curves that have more than one cuspidal point, no such curve will
pass through δβ − 1 general points. Finally, we also observe that although the section vanishes
on multiply covered curves, such curves will not pass through δβ − 1 generic points. Hence, the
only points on which the section vanishes are those that split as a β1 curve and a β2 curve, with
the last marked point lying on a ghost bubble.

We show in Section 7 that the extended section vanishes with multiplicity 1 on these boundary
points. Hence, we gather that

C∂M(du|y
δβ

) = 1× 1

2

∑
β1+β2=β,
β1,β2 6=0

(
δβ − 1

δβ1

)
Nβ1

Nβ2
(β1 · β2) . (5.2)
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Therefore, in order to compute Cβ , it remains to evaluate the left–hand side of (5.1). It is easy
to see that via the splitting principle,

e(L∗δβ ⊗ ev∗δβTX) = c1(L∗δβ )2 + c1(L∗δβ )ev∗δβ (x1) + ev∗δβ (x2). (5.3)

In Section 6 we show that

〈ev∗δβ (x2), [M]〉 = x2([X])Nβ , (5.4)

〈c1(L∗δβ )ev∗δβ (x1), [M]〉 = − (x1 · x1)

(β · x1)
Nβ

+
1

2(β · x1)

∑
β1+β2 = β,
β1,β2 6=0

(
δβ − 1

δβ1

)
Nβ1

Nβ2
(β1 · β2)(β1 · x1)(β2 · x1), (5.5)

〈c1(L∗δβ )2, [M]〉 = −1

2

∑
β1+β2=β,
β1,β2 6=0

(
δβ − 1

δβ1

)
Nβ1Nβ2(β1 · β2). (5.6)

Equations (5.4), (5.5) and (5.6) combined with (5.3), (5.2) and (5.1) yield (1.1).

6. Intersection of Tautological Classes

We will now prove equations (5.4), (5.5) and (5.6).

Lemma 6.1. On M, the following equality of divisors holds:

c1(L∗δβ ) =
1

(β · x1)2

(
(x1 · x1)H− 2(β · x1)ev∗δβ (x1) +

∑
β1+β2=β,
β1,β2 6=0

Bβ1,β2
(β2 · x1)2

)
, (6.1)

where H is the locus satisfying the extra condition that the curve passes through a given point,
Bβ1,β2 denotes the boundary stratum corresponding to the splitting into a degree β1 curve and
degree β2 curve with the last marked point lying on the degree β1 component.

Proof. The proof is similar to the one given in [9]. Let µ1 , µ2 ∈ X be two generic pseudocycles

in X that represent the class x1. Let M̃ be a cover of M with two additional marked points
with the last two marked points lying on µ1 and µ2 respectively. More precisely,

M̃ := ev−1δβ+1(µ1) ∩ ev−1δβ+2(µ2) ⊂M0,δβ+2(X,β) .

Note that the projection π : M̃ −→ M that forgets the last two marked points is a (β · x1)2–
to–one map.

We now construct a meromorphic section

φ : M̃ −→ L∗δβ
given by

φ([u; y1 , · · · , yδβ−1
; y

δβ
; y

δβ+1
, y

δβ+2
]) :=

(y
δβ+1
− y

δβ+2
)dy

δβ

(y
δβ
− y

δβ+1
)(y

δβ
− y

δβ+2
)
. (6.2)

The right–hand side of (6.2) involves an abuse of notation: it is to be interpreted in an affine
coordinate chart and then extended as a meromorphic section on the whole of P1. Note that on
(P1)3, the holomorphic line bundle

η := q∗1KP1 ⊗O(P1)3(∆12 + ∆13 −∆23)
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is trivial, where q1 : (P1)3 −→ P1 is the projection to the first factor and ∆jk ⊂ (P1)3 is the
divisor consisting of all points (zi , z2 , z3) such that zj = zk. The diagonal action of PSL(2,C)
on (P1)3 lifts to η preserving its trivialization. The section φ in (6.2) is given by this trivialization
of η.

Since c1(L∗δβ ) is the zero divisor minus the pole divisor of φ, we gather that

c1(L∗δβ ) = {y
δβ+1

= y
δβ+2
} − {y

δβ
= y

δβ+1
} − {y

δβ
= y

δβ+2
} .

When projected down to M, the divisor {y
δβ+1

= y
δβ+2
} becomes (x1 · x1)H + (β2 · x1)2Bβ1,β2

,

while both the divisors {y
δβ

= y
δβ+1
} and {y

δβ
= y

δβ+2
} become (β · x1)ev∗δβ (x1). Since M̃ is a

(β · x1)2–to–one cover of M, we obtain (6.1). �

We are now ready to prove (5.4), (5.5) and (5.6).

Proof of (5.4). Let s : X −→ TX be a smooth section transverse to the zero set. The number of
points at which it vanishes (counted with a sign) is x2([X]). Note that a section s : X −→ TX
induces a section ev∗δβs of the pullback ev∗δβTX −→ M. The zero set of ev∗δβs is a degree β

curve through the points p1 , · · · , pδβ−1
and one of the zeros of s. Let us denote one of the zeros

of s to be q. Let Cq be one of the curves through p1 , · · · , pδβ−1
and q. If q is a positive zero of

s, then Cq is a positive zero of ev∗δβs; the reverse is true if q is a negative zero of s. Hence, the

number of zeros of ev∗δβs counted with a sign is x2([X])Nβ , which proves (5.4). �

Proof of (5.5). It is easy to see that

〈ev∗δβ (x1)H, [M]〉 = (β · x1)Nβ ,

〈ev∗δβ (x1)2, [M]〉 = (x1 · x1)Nβ and∑
β1+β2=β,
β1,β2 6=0

〈ev∗δβ (x1)Bβ1,β2
, [M]〉 =

∑
β1+β2=β,
β1,β2 6=0

(
δβ − 1

δβ1

)
Nβ1

Nβ2
(β1 · β2)(β1 · x1)

=
1

2

∑
β1+β2=β,
β1,β2 6=0

(
δβ − 1

δβ1

)
Nβ1Nβ2(β1 · β2)(β · x1). (6.3)

Equations (6.3) and (6.1) together imply (5.5). �

Proof of (5.6). First of all, we note that

〈c1(L∗δβ )H, [M]〉 = −2Nβ . (6.4)

Indeed, this follows immediately from (6.1).
We will now show that

〈c1(L∗δβ )Bβ1,β2 , [M]〉 = −
(
δβ − 1

δβ1

)
Nβ1

Nβ2
(β1 · β2) . (6.5)

For this, let Bβ1,β2(pi1 , · · · , piδβ1 ) denote the component of Bβ1,β2 where the β1 curve passes

through pi1 , · · · , piδβ1 . Now define the map

π : Bβ1,β2(pi1 , · · · , piδβ1 ) −→ M0,δβ1+1(X,β1; pi1 , · · · , piδβ1 ) (6.6)

which is the projection onto the β1 component. This map π is Nβ2
(β1 · β2)–to–one. Let

L̃i1,··· ,iδβ1 −→ M0,δβ1+1(X,β1; pi1 , · · · , piδβ1 )
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be the universal tangent bundle line at the last marked point. By (6.4),

〈c1(L̃∗i1,··· ,iδβ1 ), [M0,δβ1+1(X,β1; pi1 , · · · , piδβ1 )]〉 = −2Nβ1
. (6.7)

Note that we replaced β by β1 in (6.4) to obtain the above equation; that is permitted since
(6.4) holds for all β.

Let

{y ∈ G}
denote the divisor inside the space Bβ1,β2

that corresponds to the marked point lying on a ghost
bubble. More precisely, the elements of {y ∈ G} comprise of maps form a wedge of three spheres
into X that is degree β1 on the first component, degree β2 on the third component and constant
on the middle component, with the marked point lying on the middle component. As stated in
[9] (equation 2.10, Page 29), we have the following equality of divisors,

c1(L̃∗i1,··· ,iδβ1 )
∣∣∣
Bβ1,β2

= π∗c1(L̃∗i1,··· ,iδβ1 ) + |{y ∈ G}|.

Hence,

〈c1(L∗δβ )Bβ1,β2
, [M]〉

=
∑

(i1,··· ,iδβ1 )⊂{1,2,··· ,δβ−1}

〈π∗c1(L̃∗i1,··· ,iδβ1 ), [M0,δβ1+1(X,β1; pi1 , · · · , piδβ1 )]〉+ |{yδβ ∈ G}|

= −2Nβ1

(
δβ − 1

δβ1

)
Nδβ2 (β1 · β2) +

(
δβ − 1

δβ1

)
Nδβ1Nδβ2 (β1 · β2)

= −
(
δβ − 1

δβ1

)
Nβ1Nβ2(β1 · β2), (6.8)

which proves (6.5). Equations (6.5), (6.3), (5.5) and (6.1) imply that

〈c1(L∗δβ )2, [M]〉 = − 1

(β · x1)2

∑
β1+β2=β,
β1,β2 6=0

(
δβ − 1

δβ1

)
Nβ1

Nβ2
(β1 · β2)

(
(β1 · x1)(β2 · x1) + (β2 · x1)2

)

= −1

2

∑
β1+β2=β,
β1,β2 6=0

(
δβ − 1

δβ1

)
Nβ1Nβ2(β1 · β2).

This completes the proof. �

7. Degenerate contribution to the Euler class

We start this section by recapitulating a few facts about moduli spaces of curves on del-Pezzo
surfaces. As before, let X be a del-Pezzo surface and β ∈ H2(X,Z) a given homology class. Since
X is algebraic, it embeds inside Pn for some n; fix such an embedding. A map u : P1 −→ X
also determines a map from P1 to Pn obtained by composing with the inclusion map. Let us
say that a degree β map into X determines a degree d map into Pn. Given β, this d is uniquely
determined. We note that two distinct β can determine the same degree d. This yields an
inclusion

M∗0,k(X,β) ⊂ M∗0,k(Pn, d) . (7.1)

It is well known that M∗0,k(Pn, d) is a smooth complex manifold of the expected dimension. It

is also known that M∗0,k(X,β) is a smooth manifold of the expected dimension. It also follows

from the results of [26] that M0,0(X,β) is an irreducible variety of the expected dimension.
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For any u : P1 −→ X representing a point of M∗0,k(X,β), let û : P1 −→ Pn be its

composition with the embedding of X in Pn. We have TuM∗0,k(X,β) = H0(P1, u∗NX/P1) and

TûM∗0,k(Pn, d) = H0(P1, û∗NPn/P1), where NX/P1 and NPn/P1 are the normal bundles. Since
the homomorphism

H0(P1, u∗NX/P1) −→ H0(P1, û∗NPn/P1)

induced by the differential of the embedding X ↪→ Pn is injective, the inclusion map in (7.1) is
an immersion. Hence, we conclude that M∗0,k(X,β) is a submanifold of M∗0,k(Pn, d).

We are now ready to state our neighborhood construction. Before that let us recapitulate a
standard of notation. We will be denoting an element of Pn as

[Z0, Z1, · · · , Zn],

where Zi are not all zero. The square bracket [ ] is to remind us that we are looking at an
equivalence class of n+ 1 tuples. In other words, if λ is a non-zero complex number, then

[Z0, Z1, · · · , Zn] = [λZ0, λZ1, · · · , λZn] ∈ Pn.

Let us also explain one piece of terminology we will be using frequently. Suppose Y is
a k-dimensional submanifold of an m-dimensional manifold X. Let p be a point in Y and
let (x1(p), x2(p), · · · , xm(p)) be a coordinate chart for X around the point p. Since Y is a
submanifold of X there exist i1, i2, · · · , ik such that xi1(p), · · · , xik(p) determines a coordinate
chart for Y . We will call these coordinates xi1(p), · · · , xik(p) the free coordinates. What this
means is the following: suppose (xt1(p), · · · , xtm(p)) is a point that lies in Y and is close to
(x1(p), x2(p), · · · , xm(p)). If we know the coordinates xi1(t), · · · , xik(t) then we can solve for the
remaining coordinates in terms of the free coordinates. We will be using this observation quite
frequently henceforth.

7.1. Neighborhood Construction. Let vA : P1 −→ X and vB : P1 −→ X be two holomor-
phic curves of degree β1 and β2 respectively, such that

vA([1, 0]) = vB([0, 1])

(we consider P1 as equivalence classes of points of C2 \ {0}). Furthermore, assume that vA and
vB are not multiply covered. Let β := β1 + β2. We will describe a procedure to construct a
degree β curve that lies near the degree β bubble map determined by vA and vB.

Since X is projective, it embeds inside Pn for some n. Suppose vA and vB are explicitly given
as

vA([X,Y ]) := [A0(X,Y ), · · · ,An(X,Y )] and vB([X,Y ]) := [B0(X,Y ), · · · ,Bn(X,Y )]

where Aµ(X,Y ) and Bν(X,Y ) are homogeneous polynomials of degrees d1 and d2. Let Aµ
i

and Bνj be the coefficient of Xi in Aµ(X,Y ) and Bν(X,Y ) respectively. By composing with

appropriate Möbius transformations (that fix [1, 0] ∈ P1 and [0, 1] ∈ P1 respectively), we can
set three of the Aµ

i and three of the Bνj to be some specific constant. Now define

Aµ
t (X,Y ) :=

d1∑
i=0

(Aµ
i + tµi )XiY d1−i and Bνs (X,Y ) :=

d2∑
j=0

(Bνj + sνj )XjY d2−j ,

where tµi and sνj are small complex numbers. After composing with an automorphism of Pn if

necessary, we may assume that Aµ(0, 1),Bµ(1, 0) 6= 0 ∀ µ. Set the three of the tµi and sνj to be
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zero (the ones that correspond to the six coefficients that were fixed). Next, given an ε that is
small, define

Rµε,t,s(X,Y ) := Aµ
t (X,Y )Y d2 +

Aµ
t (1, 0)

Bµs (0, 1)
Bµs (ε2X,Y )Xd1 −Aµ

t (1, 0)Xd1Y d2 ,

J µε,t,s(X,Y ) :=
Bµs (0, 1)Rµε,t,s(X, ε2Y )

Aµ
t (1, 0)ε2d2

.

If the polynomials Rµε,t,s induce a well-defined map into Pn, then denote uRε,t,s : P1 −→ Pn
to be the degree d := d1 + d2 map defined by these polynomials. Note that for generic (ε, t, s),
the polynomials Rµε,t,s do induce a well-defined map (i.e., all the coordinates are not zero). Next,

we observe that uRε,t,s does not necessarily map into X. In order for the curve to lie in X, only

δβ1
+ 1 of the tµi and δβ2

+ 1 of the sνj are free. Denote the free variables by tµi and sνj and the

remaining ones by t̂µi and ŝνj respectively. Let us denote the corresponding polynomials to be R̂
and Ĵ respectively, and let

uR̂ε,t,s : P1 −→ Pn

be the corresponding degree d map. By definition, now uR̂ε,t,s lies in X.
Next, let

{pi := [a0i , a
1
i , · · · , ani ]}δβ1i=1

⋃
{qj := [b0j , b

2
1, · · · , bnj ]}δβ2j=1

be a collection of δβ − 1 generic points in X. Furthermore, let

{λi := [xai , y
a
i ]}δβ1i=1

⋃
{γj := [xbj , y

b
j ]}

δβ2
j=1

be a collection of δβ − 1 points in P1 such that

vA([xai , y
a
i ]) = [a0i , a

1
i , · · · , ani ] ∀ i = 1, · · · , δβ1 and

vB([xbj , y
b
j ]) = [b0j , b

1
j , · · · , bnj ] ∀ j = 1, · · · , δβ2

.

This gives us a set of 2δβ equations

Aµ(xai , y
a
i )a0i − a

µ
i A0(xai , y

a
i ) = 0, ∀ µ = µ1, µ2 and i = 1, · · · , δβ1

,

Bν(xbj , y
b
j)b

0
j − bνjB0(xbj , y

b
j) = 0, ∀ ν = ν1, ν2 and j = 1, · · · , δβ2

,

Aµ(1, 0)B0(0, 1)− Bµ(0, 1)A0(1, 0) = 0, ∀ µ = µ̃1, µ̃2, (7.2)

for some µi, νi and µ̃i ∈ {0, 1, 2, · · · , n}. Without loss of generality, we set yai = 1 for all
i = 1, · · · , δβ1 and set xbj = 1 for all j = 1, · · · , δβ2 . Since δβ1 +1 of the Aµ

i are free and δβ2 +1

of the Bνj are free, it follows that the number of the free unknowns Aµ
i , Bνj , xai and ybj is 2δβ .

Note that the evaluation map

ev : M∗0,δβ1 (X,β1)×M∗0,δβ2 (X,β2) −→ Xδβ1−1 ×Xδβ2−1 ×X2.

is transverse to (p1, · · · , pδβ1−1, q1, · · · , qδβ2−1)×∆X if the points (p1, · · · , pδβ1−1, q1, · · · , qδβ2−1)

are generic. In other words, for a generic choice of these δβ − 1 points, the equations (7.2)
simultaneously vanish transversely at the given value.
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Lemma 7.1. Let ε be a given small nonzero complex number. Then there exists a unique triple
(t(ε), s(ε), θ(ε)) that is small and solves the following set of equations:

a0i R̂
µ
ε,t,s(x

a
i + θai , 1)− aµi R̂

0
ε,t,s(x

a
i + θai , 1) = 0, ∀ µ = µ1, µ2 and i = 1, · · · , δβ1

,

b0i Ĵ νε,t,s(1, ybj + θbj)− bνi Ĵ 0
ε,t,s(1, y

b
j) = 0, ∀ ν = ν1, ν2 and j = 1, · · · , δβ2 ,

Aµ
t (1, 0)B0

s(0, 1)− Bµs (0, 1)A1
t (1, 0) = 0, ∀ µ = µ̃1, µ̃2. (7.3)

Proof. The equation (7.2) has a transverse solution while equation (7.3) has approximately the
same linearization as (7.2) (i.e., to zero-th order in ε, the linearizations are the same). The
lemma now follows from the implicit function theorem. �

Corollary 7.2. Given a nonzero ε that is small, let t(ε), s(ε) and θ(ε) be the unique solution

as given by Lemma 7.1. If ε1 6= ε2 then the curves uR̂εi,t(ε1),s(εi) (i = 1 , 2) both pass through

p1, · · · , pδβ1−1, q1, · · · , qδβ2−1 and they intersect transversally. In particular, the two curves are
distinct.

Proof. Follows immediately from Lemma 7.1. �

Remark 7.3. Note that if the δβ − 1 points are generic, the map uR̂ε,t(ε),s(ε) is well-defined and

not multiply covered.

Lemma 7.4. Given a nonzero ε that is small, let t(ε), s(ε) and θ(ε) be the unique solution as
given by Lemma 7.1, and let ϕε be the Möbius transformation given by

ϕε([X,Y ]) := [X, εY ] .

Let m be some fixed complex number different from 0 and let αz := [1,m+ z] ∈ P1.1 Let v be a
bubble map with δβ marked points that is defined as follows: it is determined by the maps vA and
vB; the first δβ1

marked points lie on the A-bubble and are required to pass through the points
p1 to pδβ1 ; the next δβ2

marked points lie on the B-bubble and are required to pass through q1 to

qδβ2 and the last marked point α (which is free) lies on a ghost bubble connecting the A-bubble

and the B-bubble. Let Br(0) be an open ball of radius r around the origin in C. Then, the map

Φ : (Br(0)− 0)× Br(0) −→ M∗0,δβ (X,β; p1, · · · , pδβ1 , q1, · · · , qδβ2 )

given by

Φ(ε, z) := [uR̂ε,t(ε),s(ε) ◦ ϕε; ϕ
−1
ε ◦ λ1(θ(ε)), · · · , ϕ−1ε ◦ λδβ1−1(θ(ε));

ϕ−1ε ◦ γ1(θ(ε)), · · · , ϕ−1ε ◦ γδβ2−1(θ(ε));αz]

is a bijective map onto an open neighborhood of v.

Proof. First let us show that Φ(ε, z) extends continuously to {0}×Br(0) in the Gromov topology.
Let (εn, zn) be a sequence that converges to (0, 0). By Theorem 4.6.1 and Definition 5.2.1 in
[20], we conclude that Φ(εn, zn) converges in Gromov topology to [v]. Elsewhere Φ is obviously
continuous.

Next, we observe that Corollary 7.2 combined with the fact that αz is first order in z, implies
that Φ(ε, z) is injective. It remains to show that Φ(ε, z) surjects onto an open neighborhood of
[v]. First, define

π : M0,δβ (X,β; p1, · · · , pδβ1 , q1, · · · , qδβ2 ) −→ M0,δβ−1(X,β; p1, · · · , pδβ1 , q1, · · · , qδβ2 )

1The reader can set m := 1, but it is instructive to point out that for our arguments to hold it doesn’t matter

what m is as long as it is not 0. Basically we want the point αz to be away from [1, 0] and [0, 1].
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to be the map that forgets the last marked point. Also define the following map

Ψ : (Br(0)− 0) −→ M∗0,δβ−1(X,β; p1, · · · , pδβ1 , q1, · · · , qδβ2 ) , ε 7−→ π ◦ Φ(ε, z).

Note that π([v]) is the bubble map determined by vA and vB, with the δβ − 1 marked points
distributed accordingly on the domain, but with no free marked point. In particular there is
no ghost bubble. Now, by Theorem 10.1.2 and the arguments presented on Page 384 and 385
in [20], we conclude that there exists a smooth surjection from an open ball in R2 to an open
neighborhood of π([v]) in

M∗0,δβ−1(X,β; p1, · · · , pδβ1 , q1, · · · , qδβ2 ).

Hence an open neighborhood of π([v]) is one copy of C (i.e., it has just one branch). Since Ψ (like
Φ) also extends as a continuous injection, it has to be a surjection onto an open neighborhood
of 0 by invariance of domain. Finally, we need to show that Φ is surjective. First we note that if

[ũε, λ̃(ε), γ̃(ε), α̃z] Gromov converges to [v] then [ũε, λ̃(ε), γ̃(ε)] Gromov Converges to π([v]). By
the surjectivity of Ψ, we conclude that

[ũε, λ̃(ε), γ̃(ε)] = Ψ(ε′)

for some ε′. Finally, we observe that if [Ψ(ε′), α̃z] converges to [v] then α̃z = [1,m+ z]. Hence,
Φ is a surjection onto an open neighborhood of [v]. �

Remark 7.5. In the above proof some care is needed to use Theorem 10.1.2 in [20]. In [20],
the Gluing Theorem (i.e., Theorem 10.1.2) holds when we are allowed to vary almost complex
structure; however the authors explicitly state that their Theorems do hold for a fixed (almost)
complex structure provided we restrict ourselves to non multiply covered curves. Hence, for our
arguments to go through, it is essential that the maps vA and vB are non-multiply covered.
In fact, if vA or vB were multiply covered, then our assertion that the normal neighborhood
has a single branch is false. There are examples of multiply covered curves in the boundary
of M0,0(X,β) whose normal neighborhood has more than one branch when X is a del-Pezzo
surface. However, since the δβ − 1 points are generic, multiply covered curves do not arise and
hence do not play a role in our computations.

7.2. Multiplicity Computation. We are now ready to compute the multiplicity. Since the
map Φ defined in Lemma 7.4 is a bijection, it suffices to count the number of solutions to the
set of equations

duR̂ε ◦ ϕε|αz = ν

for a small perturbation ν. Here uR̂ε,t(ε),s(ε) is abbreviated as uR̂ε . Write this equation in local

coordinates. Set w := Y
X . Assuming that the zeroth and the first coordinates in Pn are free and

the n-th coordinate is non zero, the map uR̂ε ◦ϕε in local coordinates is given by F0(ε, w),F1(ε, w)
where Fµ are defined to be

Fµ(ε, w) :=
Aµ(1, εw) + Aµ(1,0)

Bµ(0,1)
Bµ(ε,w)
wd2

−Aµ(1, 0)

An(1, εw) + An(1,0)
Bn(0,1)

Bn(ε,w)
wd2

−An(1, 0)
, µ = 0, 1.

Let

Gµ(ε, w) :=
∂Fµ(ε, w)

∂w
, µ = 0, 1.
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It is now easy to see that

Gµ := −Aµ
0

An
0

( 1

Bµd2
− An

1

An
0Bnd2

)
ε+ H(ε, w)ε2, µ = 0, 1, (7.4)

where H(ε, w) is holomorphic function near (0,m). (Recall that we have taken m to be a fixed
nonzero complex number.) Since Gµ(ε, w) is well-defined it follows that An

0 and Bnd2 are non-zero.
Note that G0(0, w) = 0 and G1(0, w) = 0. We need to find the order to which this vanishing
takes place near the point (0,m). We now make a change of coordinates near (0,m) given by

ε̃ := G0(ε, w) and w̃ := w. (7.5)

If

−A0
0

An
0

( 1

B0
d2

− An
1

An
0Bnd2

)
6= 0, (7.6)

then (7.5) defines a change of coordinates near (0,m) (see (7.4)). Let us justify why we can
assume (7.6) holds. First of all we note that

vA([0, 1]) = [A0
0,A

1
0,A

2
0, · · · ,An

0 ] and vB([1, 0]) = [B0
d2 ,B

1
d2 ,B

2
d2 , · · · ,B

n
d2 ].

Consider the following C2 inside Cn+1, namely:

L := (∗, ∗, 0, · · · , 0) ⊂ Cn+1.

We will now consider automorphisms of Pn induced from an automorphism of Cn+1 that acts
non trivially on L and acts as identity on

(0, 0, ∗, · · · , ∗) ⊂ Cn+1.

We claim that we can find such an automorphism moving vA([0, 1]) and vB([1, 0]) to two points
such that

A0
0,A

1
0 6= 0 and

( 1

B0
d2

− An
1

An
0Bnd2

)
,
( 1

B1
d2

− An
1

An
0Bnd2

)
6= 0. (7.7)

To see why this is so, we will consider three cases. Suppose B0
d2
6= An0 B

n
d2

An1
and B1

d2
6= An0 B

n
d2

An1
.

Then we take an automorphism that fixes B0
d2

and B1
d2

and takes both A0
0 and A1

0 to something

non zero. Next, if B0
d2

=
An0 B

n
d2

An1
, but B1

d2
6= An0 B

n
d2

An1
, then we take an automorphism of Cn+1

that takes B0
d2

to 2B0
d2

, takes B1
d2

to B1
d2

and takes both A0
0 and A1

0 to something non zero.

Similar argument holds if B0
d2
6= An0 B

n
d2

An1
, but B1

d2
=

An0 B
n
d2

An1
. Finally, suppose B0

d2
=

An0 B
n
d2

An1
and

B1
d2

=
An0 B

n
d2

An1
. Then we take an automorphism of Cn+1 that takes B0

d2
and B1

d2
to 2B0

d2
and

2B1
d2

and both A0
0 and A1

0 to something non zero. That covers all the cases.
Equation (7.7) implies that (7.6) holds; in addition, it also implies that

−A0
0

An
0

( 1

B1
d2

− An
1

An
0Bnd2

)
6= 0, (7.8)

holds. Note that since our automorphism only acts on L, the initial assumptions we made about
the zeroth and first coordinate being free and the nth coordinate being non zero, is still valid.
Let

G̃µ(ε̃, w̃) := Gµ(ε, w), µ = 0, 1.

Hence

G0(ε̃, w̃) := ε̃ and G1(ε̃, w̃) := ε̃K(ε̃, w̃),
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for some function K(ε̃, w̃). It is easy to see that since (7.6) and (7.8) hold, K(0,m) 6= 0 if
m 6= 0. Next, let ν0(ε̃, w) and ν1(ε̃, w) be two holomorphic perturbations (they are defined only
in a neighborhood of (0,m)), whose Taylor expansion near (0,m) is given by

ν0(ε̃, w) := a00 + a10ε̃+ a01(w −m) + . . . and

ν1(ε̃, w) := b00 + b10ε̃+ b01(w −m) + . . . (7.9)

By saying that ν0 and ν1 are perturbations, we mean that the the constant terms a00 and b00 in
the Taylor expansion are all small. Now, we need to solve for

ε̃ = ν0(ε̃, w) and (7.10)

ε̃K(ε̃, w̃) = ν1(ε̃, w). (7.11)

Using (7.11) and (7.9), we conclude that

ε̃ =
b00

K(0,m)
+ O(w −m). (7.12)

Using (7.12), (7.10) and (7.9), we conclude that

w −m =

b00(1−a10)
K(0,m) − a00

a10
+ O((w −m)2). (7.13)

Equation (7.13) implies that if the perturbation ν is generic then there exists a unique solution
w in a sufficiently small neighborhood of m. Since the νi are chosen to be holomorphic, it will
be counted with a positive sign. Hence the multiplicity is one.

8. Proof of transversality and general position arguments

It remains to show that the section ψ induced by taking the derivative at a marked point is
transverse to the zero set, and that there exists a rational curve in (X,β) that has exactly one
genuine cusp and is an immersion otherwise. We prove the latter first. In what follows whenever
we count nodes we do so along with their multiplicities.

Proposition 8.1. Let X be the blowup of P2 at k generic points qi (with exceptional divisors

Ei) and let β := dL−
∑
i

miEi be a homology class such that Nβ−3L > 0. Then, there exists a

non-multiply covered rational curve in the class β having exactly one genuine cusp; furthermore,
the curve is an immersion everywhere else.

Proof. Since Nβ−3L > 0, there exists an immersion v : P1 −→ X representing the class β − 3L
(cf. Theorem 4.1, [8]). Let c represent the homology class of a genuine cuspidal cubic in X;
i.e. the homology class of c is 3L. Choose the cubic to intersect v transversally at 3(d − 3)
non-singular points. We will construct a cuspidal curve in the class (β−3L)+3L by considering
the bubble map formed by vA = v and vB = c where we may assume without loss of generality
that vA([1 : 0]) = vB([0 : 1]). Now we are in the setting of Section 7. Using the same notation

as in that section, consider the map uR̂ε,t,s (whose image is by construction is required to lie
in X). If ε is small enough then it is easy to see that the number of nodes of this perturbed

degree d curve is 3(d− 3)− 1 more than the number for vA (which is
(
d−4
2

)
− t with t depending

only on mi) because we “resolve” a node corresponding to the bubble point (which is the point
vA([1 : 0]) = vB([0, 1])).
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Let vB have its cusp at the point [1 : z]. If we require uĴε,t,s to have a cusp at [1 : y] then this

implies (assuming that the coordinate Xµ1

X0 and Xµ2

X0 are free in X) that(
d

(
uµ1

u0

)
, d

(
uµ2

u0

))
= (0, 0)

⇒
(
Q1(y)

Q0(y)
,
Q2(y)

Q0(y)

)
= (0, 0), (8.1)

where Qi are polynomials whose coefficients depend rationally on ε, t, s and Q1, Q2 have a com-
mon root z when ε = 0 = s. Since the variety defined by Q1, Q2 (treated as a function of
ε, y, s) is non-empty near 0, z, 0, there exists a small enough (y − z, ε, s) such that ε 6= 0 so that
du(y) = 0.

In summary, the perturbed map has one cusp and 3(d− 3)− 1 +
(
d−4
2

)
− t nodes. By genus

considerations the maximum number of nodes/cusps that a rational curve of class β have is(
d−1
2

)
− t. Since that maximum number has been attained, the cusp has to be a genuine one

(since anything worse than a cusp would contribute more than 1 to the genus). �

Using a similar construction as in Proposition 8.1 we prove that cuspidal curves form a
submanifold by constructing a genuine cuspidal curve at which transversality holds.

Lemma 8.2. Let ψ : M∗0,δβ−1(X,β; p1, p2, . . . , pδβ−1) −→ L∗1 ⊗ ev∗1TX be the section induced

by taking the derivative at the marked point, i.e.,

ψ([u; z]) := du|z .

If Nβ−3L > 0, then ψ is transverse to the zero section

Proof. We will actually construct a (genuine) cuspidal curve in (X,β) such that the section
ψ : M∗0,1(X,β) −→ L∗1 ⊗ ev∗1TX (i.e., X with one marked point) is transverse at this curve.
This means that curves at which transversality fails form a proper subvariety and therefore, by
the requirement of passing through δβ − 1 generic points we may conclude that transversality
holds for all such cuspidal curves.

Certainly we may find a cuspidal cubic vA whose homology class is 3L for which transver-
sality holds. We claim that gluing vA with an immersion representing β − 3L (just as in the
proof of Proposition 8.1) produces a genuine cuspidal curve for which the section ψ is trans-
verse to the zero section. Indeed, suppose that (vA1(τ), z1(τ)) and (vA2(τ), z2(τ) are two paths
in M∗0,1(X, 3L) such that they pass through vA at τ = 0, and that the tangent vectors to
dvAi(τ)(zi(τ)) are linearly independent at τ = 0 (this is true because we assumed transversality

for vA). Then consider the perturbed families of maps uR̂1,ε,t,s,τ and uR̂2,ε,t,s,τ . It is easy to see
that if ε is small enough then for this perturbed family of maps dui,τ (zi(τ) + y − zi(0)) have
linearly independent tangent vectors at τ = 0 where y is the location of the cusp of the perturbed
map when τ = 0. (Note that y depends on ε, t, s.) �
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