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SIMPLE DYNAMICS AND INTEGRABILITY FOR SINGULARITIES OF

HOLOMORPHIC FOLIATIONS IN DIMENSION TWO

BRUNO SCÁRDUA

Abstract. In this paper we study the dynamics of a holomorphic vector field near a singular
point in dimension two. We consider those for which the set of separatrices is finite and the

orbits are closed off this analytic set. We assume that none of the singularities arising in

the reduction of the foliation has a zero eigenvalue. Under these hypotheses we prove that
one of the following cases occurs: (i) there is a holomorphic first integral, (ii) the induced

foliation is a pull-back of a hyperbolic linear singularity, (iii) there is a formal Liouvillian first
integral. For a germ with closed leaves off the set of separatrices we prove that the existence

of a holomorphic first integral is equivalent to the existence of some closed leaf arbitrarily

close to the singularity. For this we do not need to assume any non-degeneracy hypothesis on
the reduction of singularities. We also study some examples illustrating our results and we

prove a characterization of pull-backs of hyperbolic singularities in terms of the dynamics of

the leaves off the set of separatrices.

1. Introduction and main results

In this paper we resume the subject of dynamics versus integrability for a singularity of
holomorphic vector field in dimension two (see [9, 27]). Some references in this subject are
results of H. Poincaré, G. Darboux ([13]) (for polynomial vector fields in the complex plane) and
more recently [16].

A modern starting point is the following theorem of Mattei-Moussu ([16]): A germ of a
holomorphic vector field at the origin of C2 admits a holomorphic first integral if, and only if, it
has only finitely many leaves accumulating at the singularity and all other leaves are closed. Also
notable is the point of view adopted in [1] where the authors suppose the existence of an uniform
bound for the volume of the orbits of the vector field. A holomorphic vector field X defined in
a neighborhood U ⊂ C2 of the origin 0 ∈ C2, with an isolated singularity at the origin, defines a
germ of holomorphic foliation with a singularity at the origin, and conversely. In this paper we
shall adopt the foliation terminology. We shall refer to a germ of a holomorphic foliation F as
induced such a pair (X,U) where X is a holomorphic vector field defined a neighborhood U of the
origin 0 ∈ C2, singular at the origin X(0) = 0. Recall that a separatrix is an invariant irreducible
analytic curve containing the singularity. Throughout this paper we will only consider germs of
foliations with a finite number of separatrices, called non-dicritical singularities. In this case,
we shall say that a leaf of F (i.e., an orbit of (X,U) for U small enough) is closed off the set of
separatrices if either it is a separatrix, or it is not a separatrix but accumulates only at the union
of separatrices. In few words, it accumulates at no leaf which is not contained in a separatrix. We
then characterize those germs of foliations, under the additional hypothesis that they belong to
the class of generalized curves, meaning that the reduction of singularities does not exhibit final
singularities with a null eigenvalue. Before stating our first result we shall state a few notions.
Recall that a germ of a singular holomorphic foliation F at the origin 0 ∈ C2 is defined by a germ
of a holomorphic one-form ω at the origin. We shall assume that sing(ω) = {0}. A holomorphic
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first integral for F is a germ of a (non-constant) holomorphic function O2 3 f : (C2, 0)→ (C, 0)
such that ω ∧ df = 0. In terms of Saito-De Rham division lemma, this is equivalent to say that
ω = gdf for some germ g ∈ O2, provided that we take f ∈ O2 as a reduced germ. The function
g is necessarily a unit. Thus, if we write η = dg

g then we have a germ of a closed holomorphic

one-form such that dω = η ∧ ω. In general, the germ F admits a Liouvillian first integral if
there is a closed meromorphic one-form germ η such that dω = η ∧ ω. Such a form η is called a
generalized integrating factor for ω. In this case we say that the first integral is the Liouvillian
function F defined by the differential algebraic equation dF = ω

exp
∫
η

. This is all discussed in

[31, 28]. We shall now introduce a slightly more general notion:

Definition 1.1. We shall say that F admits a formal Liouvillian first integral F̂ if there is a
formal generalized integrating factor η̂ which is a formal closed meromorphic one-form such that
(∗) dω = η̂ ∧ ω.

We may rewrite (*) as d( ω
exp

∫
η̂

) = 0, so that the formal Liouvillian first integral is defined by

dF̂ = ω
exp

∫
η̂

. By a formal meromorphic one-form we mean a formal expression η̂ = Âdx+ B̂dy

where Â, B̂ are quotient of formal functions Â = â1/â2, B̂ = b̂1/b̂2, âj , b̂j ∈ Ô2 ([12]). With
these notions we can state:

Theorem 1.2. Let F be a germ of a non-dicritical generalized curve at 0 ∈ C2. Assume that
the leaves of F are closed off the set of separatrices. Then we have three possibilities:

(1) F admits a holomorphic first integral.
(2) F is a holomorphic pull-back of a hyperbolic (linearizable) singularity.
(3) F admits a formal Liouvillian first integral.

Possibility (3) really occurs, indeed, there is a number of examples which correspond to this
last situation. We shall refer to these foliations as of formal Liouvillian type. Some information
about these foliations is given in § 5. Indeed, the formal one-form η̂ is actually convergent except
in the so called exceptional case, which we will detail later on.

The foliation is already in case (2) if some singularity in the reduction of the singularities of
the foliation is a non-resonant singularity. More generally, we are in case (2) if there is some
non-resonant map in the virtual holonomy group of any separatrix of F . Indeed, from the proof
we give for Theorem 1.2 we obtain:

Theorem 1.3. For a germ of a generalized curve holomorphic foliation F at the origin 0 ∈ C2

assume that the following conditions are true:

(1) There is only a finite number of separatrices and all leaves are closed off the set of
separatrices.

(2) Some separatrix has a holonomy map which is not a resonant map.

Then F is the pull-back of a hyperbolic singularity.

We stress that the second hypothesis means that there is some separatrix of F whose local

holonomy is of the form f(z) = e2π
√
−1λz + ak+1z

k+1 + ..., where λ ∈ C \ Q. We may assume,
instead of (2), the weaker condition that the virtual holonomy of some separatrix contains some
non-resonant map.

The hypotheses in Theorems 1.2 and 1.3 depend on the concept of reduction of singularities,
detailed in Section 2. In short, F is a generalized curve if its reduction of singularities only
produces singularities with non-zero eigenvalues. It is non-dicritical if there are only finitely
many separatrices. The necessity of the generalized curve hypothesis in Theorems 1.2 and 1.3 is
discussed in Examples 5.3 and 5.4.
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We may conclude that we are in case (1) if arbitrarily close to the union of the separatrices
we can find some closed leaf. Indeed, for the next result we do not need to assume that the
singularity is a generalized curve:

Theorem 1.4. Let F be a germ of a non-dicritical foliation at 0 ∈ C2. Assume that the leaves
of F are closed off the set of separatrices and there is a closed leaf arbitrarily close to the origin.
Then F admits a holomorphic first integral.

Outline of the proofs:
The proofs are based on a product of two points:

• A description of subgroups of germs of one-dimensional complex diffeomorphisms with
closed orbits off the fixed point: these groups are finite, abelian linearizable generated
by a hyperbolic map and a periodic (rational) rotation, or solvable discrete (cf. Propo-
sition 4.2).

• A description of the singularities in the reduction of singularities of F by the blowing-up
process.

We apply the above to the holonomy groups arising in the reduction of singularities of F and
to some enriched groups called virtual holonomy groups. The possible combinations of these
larger groups are also studied in order to prove that they are all solvable of a same type. For
this we consider the connection between two such groups associated to adjacent components
of the exceptional divisor of the reduction of singularities. This connection is given by the so
called Dulac correspondence in suitable cases. When there is a closed leaf arbitrarily close to the
singular point it is proven that all these groups have a closed orbit and then are finite. This is
the case that correspond to the holomorphic first integral (cf. [16], [9]). It is also proven that
if some of these virtual holonomy groups contains a map whose linear part is not periodic, then
it must be hyperbolic and all these groups are abelian generated by a hyperbolic map and a
rational rotation. This case corresponds to (2) in Theorem 1.2 via techniques from [5]. Finally,
in the remaining case all the singularities in the reduction process are resonant as well as all the
holonomies are solvable. In this case, by techniques from [26] or [21] we are able to construct a
formal Liouvillian first integral. This construction is detailed in the Appendix § 9.

Acknowledgements: I want to acknowledge valuable conversations with Professor César Ca-
macho, which co-authored most of the results in this paper. I am very much indebted to the
referee, for his/her constructive comments, careful reading, valuable suggestions and various
hints, that have greatly improved this article. This work was conceived during a visit to the
Graduate School of Mathematical Sciences at The University of Tokyo. I wish to express my
gratitude to Professor Taro Asuke for his support and warm hospitality.

2. Reduction of singularities in dimension two ([30])

Fix now a germ of holomorphic foliation with a singularity at the origin 0 ∈ C2. Choose a
representative F(U) for the germ F , defined in an open neighborhood U of the origin, such that
0 is the only singularity of F(U) in U . The Theorem of reduction of singularities of Seidenberg

([30]) asserts the existence of a proper holomorphic map σ : Ũ → U which is a finite composition
of quadratic blowing-up’s, starting with a blowing-up at the origin, such that the pull-back
foliation F̃ := σ∗F of F by σ satisfies:

(1) The exceptional divisor E(F) = σ−1(0) ⊂ Ũ can be written as E(F) =
⋃m
j=1Dj , where

each irreducible component Dj is diffeomorphic to an embedded projective line CP (1)
introduced as a divisor of the successive blowing-up’s ([7]).
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(2) singF̃ ⊂ E is a finite set, and any singularity p̃ ∈ singF̃ is irreducible i.e., belongs to one
of the following categories:
(a) xdy − λydx + h.o.t. = 0 and λ is not a positive rational number, i.e. λ /∈ Q+

(non-degenerate singularity),
(b) yp+1dx− [x(1+λyp)+h.o.t.] dy = 0, p ≥ 1. This case is called a saddle-node ([18]).

A singularity is a generalized curve if its reduction of singularities produces only non-degenerate
(i.e., no saddle-node) singularities ([6]). We call the lifted foliation F̃ the desingularization or

reduction of singularities of F . The foliation is non-dicritical iff E(F) is invariant by F̃ . Any
two components Di and Dj , i 6= j, of the exceptional divisor, intersect (transversely) at at most
one point, which is called a corner. There are no triple intersection points.

3. Holonomy and virtual holonomy groups

Let now F be a holomorphic foliation with (isolated) singularities on a complex surface M
(we have in mind here, the result of a reduction of singularities process). Denote by sing(F) the
singular set of F . Given a leaf L0 of F we choose any base point p ∈ L0 ⊂ M \ sing(F) and a
transverse disc Σp bM to F centered at p. The holonomy group of the leaf L0 with respect to
the disc Σp and to the base point p is image of the representation Hol : π1(L0,p)→ Diff(Σp,p)
obtained by lifting closed paths in L0 with base point p, to paths in the leaves of F , starting
at points z ∈ Σp, by means of a transverse fibration to F containing the disc Σp ([4]). Given
a point z ∈ Σp we denote the leaf through z by Lz. Given a closed path γ ∈ π1(L0, p) we
denote by γ̃z its lift to the leaf Lz and starting (the lifted path) at the point z. Then the
image of the corresponding holonomy map is h[γ](z) = γ̃z(1), i.e., the final point of the lifted
path γ̃z. This defines a diffeomorphism germ map h[γ] : (Σp, p) → (Σp, p) and also a group
homomorphism Hol : π1(L0,p) → Diff(Σp,p). The image Hol(F ,L0,Σp,p) ⊂ Diff(Σp,p) of
such homomorphism is called the holonomy group of the leaf L0 with respect to Σp and p. By
considering any parametrization z : (Σp, p) → (D, 0) we may identify (in a non-canonical way)
the holonomy group with a subgroup of Diff(C, 0). It is clear from the construction that the
maps in the holonomy group preserve the leaves of the foliation. Nevertheless, this property can
be shared by a larger group that may therefore contain more information about the foliation in
a neighborhood of the leaf. The virtual holonomy group of the leaf with respect to the transverse
section Σp and base point p is defined as ([5], [8])

Holvirt(F ,Σp,p) = {f ∈ Diff(Σp,p)
∣∣Lz = Lf(z),∀z ∈ (Σp,p)}.

The virtual holonomy group contains the holonomy group and consists of the map germs that
preserve the leaves of the foliation.

Fix now a germ of holomorphic foliation with a singularity at the origin 0 ∈ C2, with a
representative F(U) as above. Let Γ be a separatrix of F . By Newton-Puiseaux parametrization
theorem, Γ\{0} is biholomorphic to a punctured disc D∗ = D\{0}. In particular, we may choose
a loop γ ∈ Γ \ {0} generating the (local) fundamental group π1(Γ \ {0}). The corresponding
holonomy map hγ is defined in terms of a germ of complex diffeomorphism at the origin of a local
disc Σ transverse to F and centered at a non-singular point q ∈ Γ\{0}. This map is well-defined
up to conjugacy by germs of holomorphic diffeomorphisms, and is generically referred to as local
holonomy of the separatrix Γ. The connection between the dynamics of the leaves and the local
holonomy is stated as follows:

Lemma 3.1. Let F be a germ of a holomorphic foliation at the origin 0 ∈ C2. Assume that F
has only a finite number of separatrices and that there is a neighborhood V of the origin such
that on V each leaf of the foliation is closed off the set of separatrices. Let Γ ⊂ V be a separatrix
of F

∣∣
V

, p ∈ Γ \ {0} and Σp a small disc transverse to the foliation and centered at p.
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Then:

(1) The orbits of the local holonomy of Γ and of the virtual holonomy group of Γ are closed
off the origin.

(2) A leaf that accumulates at Γ properly and is a closed leaf in V , induces for the virtual

holonomy group Holvirt(F ,Σp,p) a pseudo-orbit which is closed.

In what follows we consider the following situation: F is a foliation as in Theorem 1.2. We
perform the reduction of singularities for F obtaining:

(1) A proper map σ : Ũ → U which is a finite composition of quadratic blow-ups.

(2) A foliation F̃ = σ∗(F) with only irreducible singularities of non-degenerate type.

(3) An invariant exceptional divisor E(F) = σ−1(0) =
r⋃
j=1

Dj .

Lemma 3.2. Let q = Di ∩Dj be a (non-degenerate) corner singularity. Given small transverse
discs Σj and Σi with Σj ∩Dj = {qj} and Σi ∩Di = {qi}, nonsingular points close enough to q,

then we have: any local leaf of F̃ that accumulates properly at the origin of Σi also accumulates
properly at the origin of Σj.

A combination of Lemmas 3.1 and 3.2 actually shows that:

Proposition 3.3. Let F be as in Theorem 1.2. Then, all virtual holonomy groups Holvirt(F̃ ,Dj)
of the components of Dj ⊂ E(F) are groups with closed orbits off the origin. If moreover F
has a closed leaf arbitrarily close to the origin, then each virtual holonomy group Holvirt(F̃ ,Dj)
exhibits a closed pseudo-orbit arbitrarily close to the origin.

4. Groups of complex diffeomorphisms

Let Diff(C, 0) denote the group of germs at the origin 0 ∈ C of holomorphic diffeomorphisms.
It is a well-known result that a a finite group of germs of complex diffeomorphisms is analytically
conjugate to a cyclic group generated by a rational rotation. We shall now study the connection
between our dynamical hypothesis and the classification of the possible holonomy groups arising
in the reduction of singularities. We start with the case of a sole irreducible singularity. This is
done in what follows (cf. Lemma 6.1).

4.1. Non-resonant maps and Pérez-Marco results. A germ of a complex diffeomorphism

f at the origin 0 ∈ C writes f(z) = e2π
√
−1λz + ak+1z

k+1 + .... The linear part f ′(0) = e2π
√
−1λ

does not depend on the coordinate system. We shall say that the germ f ∈ Diff(C, 0) is resonant
if λ ∈ Q∗. If λ /∈ R then |f ′(0)| 6= 1 and the germ is hyperbolic. In the hyperbolic case the
diffeomorphism is analytically linearizable, i.e., conjugated to its linear part by a germ of a map
([2]). In particular, its dynamics is one of an attractor or of a repeller. If |f ′(0)| = 1, then we

have f ′(0) = e2π
√
−1θ for some θ ∈ R. If f ′(0) is a root of the unity (i.e., if λ ∈ Q) then f is called

resonant and the dynamics of f is well-known ([2, 3]). In particular, if f is not linearizable, the
orbits are closed off the origin, but no orbit is closed. If f ′(0) is not a root of the unity then we
have λ ∈ R \Q. In this case we shall say that the diffeomorphism if non-resonant. Assume that
the map is not analytically linearizable. Given a representative defined in an open connected

subset 0 ∈ U ⊂ C the stable set of f in U is defined by K(U, f) =
∞⋂
j=0

f−j(U) According to Pérez-

Marco [22, 23])). It is compact, connected and not reduced to {0}. Any point of K(U, f) \ {0}
is recurrent (that is, a limit point of its orbit). Moreover, there is an orbit in K(U, f) which

∗It is common to refer to a map as a non-resonant map in case λ ∈ R \ Q. This may cause some confusion in

our current framework. That is why we only define the resonant maps. All other maps are non-resonant for us.
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accumulates at the origin and no non-trivial orbit of f converges to the origin. Such a map f
will also be referred to in this paper as a Pérez-Marco map germ.

4.2. Groups with closed orbits off the origin. We shall now study the case of groups
modeling the holonomy and virtual holonomy groups appearing in the reduction of singularities.
The following definition will be useful.

Definition 4.1. A group G ⊂ Diff(C, 0) of germs of holomorphic diffeomorphisms will be called
resonant if each map g ∈ G is a resonant germ. This is equivalent to the fact that G has a set
of generators consisting only of resonant maps.

Denote by ξ ⊂ C the subset of roots of the unity. Our main result is:

Proposition 4.2. Let G ⊂ Diff(C, 0) be a finitely generated subgroup such that pseudo-orbits
are closed off the origin in any small neighborhood of the origin 0 ∈ C.

Then we have the following possibilities:

(1) G is a finite cyclic group, generated by a rational rotation.
(2) G is abelian analytically linearizable generated by a periodic rotation and a hyperbolic

map.
(3) G is resonant, either abelian or solvable non-abelian. In the non-abelian case G is

formally conjugate to a subgroup of {(z 7→ az

(1+bzk)
1
k

) ; a ∈ ξ, b ∈ C}, for some k ∈ N.

In this case the subgroup G1 ⊂ G of maps tangent to the identity is discrete of the form
(z 7→ z

(1+βzk)
1
k

) ; β ∈ C, where all the β belong to a set of type {n1β1 +n2β2;n1, n2 ∈ Z}
for some β1, β2 ∈ C.

In particular, if G contains some non-resonant map, then it is as in (2).

Proof. By Nakai density theorem, the group G must be solvable. In particular, G is abelian or
it is formally conjugate to a subgroup of the group Hk = {(z 7→ az

(1+bzk)
1
k

) ; a 6= 0, b ∈ C}, for

some k ∈ N ([10], [15]). Notice that Hk is a finite ramified covering of the group of homographies
H1 by a map z 7→ zk ([10]). If G is finite then G is as in (1) as it is well-known. Assume that
G contains some hyperbolic diffeomorphism, say a map f ∈ G whose multiplier is of the form

f ′(0) = e2π
√
−1α where α ∈ C \ R. In this case we claim that G is abelian. Indeed, assume that

G is not abelian. Then G contains some nontrivial commutator and therefore some nontrivial
flat element g ∈ G, g = z + cz` + h.o.t. for some c 6= 0. By what we have observed above
there is a homography fixing the origin T (z) = λz

1+µz such that (f(z))k = T (zk). From this we

get f ′(0) = λ
1
k . Since f is hyperbolic we have that 1 6= λ = T ′(0). Therefore T is conjugated

to a linear map by another homography. Consequently, we may assume that f(z) = f ′(0).z
and g(z) = z

(1+βzk)
1
k

. By a ramified covering map (ramified change of coordinates) Z = 1
zk

we

consider the subgroup corresponding to 〈f, g〉 and which is generated by a homothety (Z 7→ µZ),
with |µ| 6= 1, and a translation (Z 7→ Z + β). It is well known that such a group has no orbit
closed off the origin. The same then holds for the group G that contains the subgroup generated
by f, g above, contradiction.

The above shows that in case G contains a hyperbolic map, it must be abelian, without
flat elements. Since it contains a hyperbolic (analytically linearizable) map, the group G is
analytically linearizable, so that it embeds as a subgroup of the multiplicative group C∗ = C\{0}.
Again, because G has orbits closed off the origin, G must then be generated by a hyperbolic
map and a rational rotation (see the proof of Lemma 8 in [5] for a similar situation). The group
G is then as in (2).
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Now for the final part of the proposition, we may therefore proceed assuming that G contains
no hyperbolic map. We claim:

Claim 4.3. The group G contains no non-resonant map f ∈ G, i.e., there is no map f ∈ G
with multiplier f ′(0) = e2π

√
−1θ where θ ∈ R \Q.

proof of the Claim. Assume by contradiction that there is f ∈ G a nonresonant map. If f is
analytically linearizable then no orbit is closed off the origin, indeed such orbits are dense on
circles centered at the origin in some linearizing coordinates. Thus this case is excluded. Assume
therefore that f ∈ G is a Pérez-Marco map. In this case by Pérez-Marco result in Section 4.1
there is a pseudo-orbit which is not closed off the origin, contradiction. This case is also excluded
then. �

Assume now that G is not abelian. Let us now conclude that the group is as in (3). Every
map in the group G is resonant. We embed G ↪→ Hk = {(z 7→ αz

(1+βzk)
1
k

) ; α 6= 0, β ∈ C}. This

embedding is analytic unless the group is exceptional, in which case it already has the desired
form (cf. [10] page 460 Theorem 1, see also Example 5.7). Assume then that the embedding
is analytic. Given any map g ∈ G we write g(z) = az

(1+bzk)
1
k
∈ G. Since g is resonant we have

a ∈ ξ. Since G is solvable, the subgroup G1 ⊂ G of flat elements, is abelian and analytically
conjugated to a group of the form (z 7→ z

(1+βzk)1/k
) ; β ∈ C. In particular, G1 acts like a group

of translations in the line C. Since the orbits of G are closed orbits off the origin, we conclude
that G1 must be discrete so that all the β belong to a set of type {n1β1 + n2β2;n1, n2 ∈ Z} for
some β1, β2 ∈ C. This shows that G is as in (3). �

From the proof of Proposition 4.2 we actually get:

Corollary 4.4. Let G ⊂ Diff(C, 0) be a (not necessarily finitely generated) subgroup such that
pseudo-orbits are closed off the origin in any small neighborhood of the origin 0 ∈ C. Then:

(1) Any finitely generated subgroup H ⊂ G with a non-trivial closed pseudo-orbit is finite.
(2) If the group G contains a map which is not a resonant map then G is abelian linearizable

generated by a hyperbolic attractor and a periodic rotation.

Proof. We apply Proposition 4.2. If a subgroup H ⊂ G contains a non-trivial closed pseudo-orbit
then it cannot contain any flat element (i.e., any element tangent to the identity). In particular,
H is abelian and its resonant maps are periodic. Moreover, there are no non-resonant maps: a
non-resonant map f ∈ H is of the form f(z) = e2πiλz+ ak+1z

k+1 + . . . with λ 6∈ Q. If λ ∈ C \R
then f is hyperbolic and linearizable. This map cannot have a finite orbit off the origin. If
λ ∈ R \Q then by the proof of Proposition 4.2 we know that f cannot have all its orbits closed
off the origin. We conclude that H is abelian consisting only of periodic maps. If H is finitely
generated then it is finite. This proves the first part of the lemma. Let us now assume that G
contains some map f ∈ G which is non-resonant. This map is necessarily hyperbolic as we have
seen above. But then G is abelian by Proposition 4.2 because in all other cases the group G is
resonant. Applying the result of this same proposition we conclude that G is generated by g and
some rational rotation. �

5. Examples

In this section we perform a construction and give some examples related to our main results.
We also discuss some possible extensions and a related question.

Example 5.1. We shall now construct an example of a fully-resonant foliation F with closed
leaves off the origin, non-dicritical and a generalized curve, but without a holomorphic first
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integral†. Fixed a ∈ C \ {0} we consider the subgroup G ⊂ H2 of maps of the form z 7→ ξz√
1+naz2

where n ∈ Z and ξ4 = 1. The group G has discrete pseudo-orbits off the origin, indeed, it is
generated by the periodic maps f(z) = iz√

1+az2
and g(z) = iz, where i2 = −1. The group G is

finitely generated by periodic maps (f has order 4 and g has order 2), but it has infinite order
because g ◦ f(z) = −z√

1+az2
.

The map f is conjugate to the local holonomy map of the separatrix (y = 0) of a linearizable
saddle-type singularity qf with a holomorphic first integral, say of the form xdy + 4ydx = 0.
Similarly g is conjugate to the holonomy of a separatrix (y = 0) of a linearizable saddle singularity
qg with holomorphic first integral, of the form xdy + 2ydx = 0. Finally, the map h = (g ◦ f)−1

is conjugate to the holonomy of a separatrix (y = 0) of a non-linearizable resonant saddle-type

singularity qh of the form ωk,` = kxdy + `y(1 +
√
−1

2π x`yk)dx = 0 where ` = 1 and k = 2.

According to [14] we can construct a germ of a holomorphic foliation F at the origin 0 ∈ C2,
having three separatrices contained in lines, and which can be reduced with a single blowing-up
at the origin. The blow-up foliation F̃(1) then has exactly three singularities in the invariant

projective line E(F)(1), and the holonomy group of the leaf L0 = E(1)\sing(F̃(1)) is conjugated
to the group generated by f, g and h = (g ◦ f)−1, which is the group G. The singularities of

F̃(1) are locally conjugated to qf , qg and qh with the above mentioned separatrices contained in
the exceptional divisor. All the dynamics of the foliation F is then described by its projective
holonomy, i.e., by the holonomy of the leaf L0 of the blow-up foliation F̃(1). In particular, F
has closed leaves off the set of separatrices. Nevertheless, because group G is not abelian, F is
not given by a closed meromorphic one-form. The foliation admits a Liouvillian first integral.
Indeed, the group G embeds into H2, F is non-dicritical reduced with a single blow-up and it
is a generalized curve ([29] Chapter I, §5, pages 185-188 or [21]). This is also proved as follows:
There is a system of coordinate charts {Uj , (xj , yj)}j∈J covering a neighborhood of L0 in the

blow-up C̃2
0, such that:

• E(F)(1) ∩ Uj = L0 ∩ Uj ⊂ {yj = 0}.
• On each open subset Uj the blow-up foliation F̃(1) is given by dyj = 0.
• If Ui ∩Uj 6= ∅ then Ui ∩Uj is connected and in this intersection we have yj = φij(yi) for

some map φij ∈ H2.

Then we can write on each Uj the lifted one-form ω̃ = π∗(ω) as ω̃
∣∣
Uj

= gjdyj for some meromor-

phic function gj on Uj . Then we define η̃ on each Uj by η̃
∣∣
Uj

= 2
dyj
yj

+
dgj
gj

. The extension of η̃

to the singularities qf , qg and qh is then proved as in [8] or else [26]. This shows the existence of
a closed meromorphic one-form η̃ in a neighborhood of the projective line E(F)(1) in the space

C̃2
0. This form satisfies dω̃ = η̃∧ ω̃. Projecting this one-form into a one-form η in a neighborhood

of the origin 0 ∈ C2 we get a generalized integrating factor for ω. Thus F admits a Liouvillian
first integral. Another (much more general) way of constructing the form η is given in [21] and
it is based on the notion of symmetry for the group G.

Notice that in Example 5.1 above, one of the singularities has a non-periodic holonomy. This
seems to be an unavoidable situation if one looks for groups which are not finite, but with closed
pseudo-orbits off the origin as projective holonomy groups. This fact together with Theorem 1.3
in [27] and Theorem 1.1 in [9], suggests the following question:

Question 5.2. Given a germ of a foliation F at 0 ∈ C2 such that:

(1) F is a non-dicritical generalized curve.
(2) The leaves of F are closed off the separatrices.

†I am grateful to the anonymous referee for showing me Example 5.1.
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(3) Each separatrix has a periodic local holonomy map.

Does F admit a holomorphic first integral?

Example 5.3. This example suggests the possibility of extending the conclusion of Theorem 1.2
for singularities which are not generalized curves. We consider a germ of a saddle-node singularity
F , given by xdy−yk+1dx+ . . . = 0 at 0 ∈ C2. According to [18] there is a formal diffeomorphism

φ̂ ∈ D̂iff(C2, 0) such that φ∗(F) is given by Sk,a : x(1+ayk)dy−yk+1dx = 0, for some a ∈ C. The
formal model Sk,a admits the Liouvillian first integral given by the generalized integrating factor
η = d log(xyk+1). In particular, the saddle-node F admits a formal Liouvillian first integral.
An example with closed leaves off the set of separatrices is given by ω = xdy − y2dx = 0 at the

origin 0 ∈ C2. Integration of Ω = 1
xy2ω gives the first integral f = xe

−1
y . The leaves are closed

off the strong separatrix (y = 0).

Example 5.4. This example is related to Question 5.2 above formulated. We construct a germ
of a foliation F at 0 ∈ C2 such that:

(1) F is non-dicritical.
(2) The leaves of F are closed off the separatrices.
(3) Each separatrix has a periodic local holonomy map.
(4) F does not admit a holomorphic first integral.

Nevertheless:

(4) F is not a generalized curve.

We consider the subgroup G ⊂ Diff(C, 0) generated by f(z) = z
1−z and g(z) = −z. This group

is solvable, finite discrete pseudo-orbits off the origin. Indeed, it leaves invariant the function
ϕ(z) = cos( 2π

z ). We show that this group corresponds to the holonomy group of the projective

line of the blowing-up of a non-dicritical singularity germ F at the origin 0 ∈ C2. Indeed, we
first consider the map h = f ◦ g, i.e., h(z) = −z

1+z . This is a periodic map since h ◦ h = Id. Thus,
we have f ◦ g ◦ h = Id. Moreover, each diffeomorphism above corresponds to the holonomy of a
germ of irreducible singularity as follows:

• f is conjugate to the map z 7→ z
1+2πz , which is the holonomy map of the strong separatrix

(y = 0) of the saddle-node qf : xdy − y2dx = 0, evaluated at the transverse disc
Σ : (x = 1).

• g(z) = −z is the holonomy of the separatrix (y = 0) of the singularity with holomorphic
first integral qg : xy2.

• h is also the holonomy of a separatrix of a singularity with first integral qh : xy2.

Then, according to [14] we can construct a germ of a holomorphic foliation at the origin
0 ∈ C2, having three separatrices, and which can be reduced with a single blowing-up at the
origin. The foliation F̃(1) then has exactly three singularities in the invariant projective line

E(F)(1), and the holonomy group of the leaf L0 = E(F)(1) \ sing(F̃(1)) is conjugated to the

group generated by f, g and h, which is the group G. The singularities of F̃(1) are locally
conjugated to qf , qg and qh. In particular, the saddle-node has its strong manifold contained in
the projective line E(F)(1) and the separatrix associated to this singularity at 0 is the central
manifold, which has trivial holonomy map. The foliation F then has closed leaves off the set of
separatrices, and periodic holonomy for each of its separatrices. Nevertheless, it does not admit
a holomorphic first integral (it is not a generalized curve).

Example 5.5 (resonant singularities cf. [17]). According to Martinet-Ramis ([17]) a resonant
non-linearizable singularity is formally isomorphic to an unique equation

ωp/q,k,λ := p(1 + (λ− 1)uk)ydx+ q(1 + λuk)xdy,
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where p, q, k ∈ N, λ ∈ C and u := xpyq. Moreover p/q, k, λ are the formal invariants of the
equation. By introducing integral numbers n,m ∈ Z such that mp − nq = 1 we can rewrite
ωp/q,k,λ = (1+(λ−mp)uk)(pydx+ qxdy)+pquk(nydx+mxdy). This last expression admits the

integrating factor hp/q,k,λ = pqxyuk, this means that the one-form 1
hp/q,k,λ

ωp/q,k,λ := Ωp/q,k,λ

is closed and meromorphic, with poles of order kp + 1 in (x = 0) and kq + 1 in (y = 0). In
particular we can state:

Claim 5.6. There is a single formal meromorphic closed one-form η with simple poles in (y = 0)
such that dωp/q,k,λ = η ∧ ωp/q,k,λ. This form is η = dhp/q,k,λ/hp/q,k,λ.

Proof. Indeed, since Ωp/q,k,λ is closed we conclude that η0 := dhp/q,k,λ/hp/q,k,λ satisfies the
equation dωp/q,k,λ = η ∧ ωp/q,k,λ. Now assume that ω is a closed meromorphic formal one-form
as in the statement. We have η − η0 = g.Ωp/q,k,λ for some meromorphic function g such that
dg ∧ Ωp/q,k,λ = 0. If g is not constant then Ωp/q,k,λ admits a formal meromorphic first integral.
This is not possible, because it does not admit a holomorphic first integral (see for instance
[16]). Therefore g must be constant. Because both η and η0 have simple poles, this implies that
gΩp/q,k,λ has simple poles, therefore g = 0. �

Example 5.7 (exceptional case). According to [10] a subgroup G ⊂ Diff(C, 0) is called ex-
ceptional if it is formally conjugated to a group Gξ,k, 0 < k ∈ N, ξ ∈ C, generated by the

maps fξ : z 7→ ξz and gk : z 7→ z

(1−kzk)
1
k

, with ξk = −1 and (1)
1
k = 1. In particular an

exceptional group is a solvable non-abelian group, formally conjugated to a discrete subgroup
of Hk = {(z 7→ az

(1+bzk)
1
k

) ; a 6= 0, b ∈ C}. A non-exceptional group is formally rigid (cf. [10]

Theorem 1 page 460)‡. Moreover we have:

Any non-abelian solvable subgroup G ⊂ Diff(C, 0) is formally conjugated to a subgroup of some
Hk, and this conjugation is analytic if G is not exceptional ([10],[15]).

Thus, in our Proposition 4.2 the only possibility for the group G to be not analytically
conjugated to a subgroup of some Hk is that either G is abelian, or G is exceptional, i.e.,
formally equivalent to some Gξ,k. In the exceptional case the group leaves invariant the formal

function φ̂(z) = cos( 2π
zk

). We now extend the notion of exceptionality to germs of foliations:

Definition 5.8. A germ of a non-dicritical generalized curve F at 0 ∈ C2 will be called solvable
exceptional if every virtual holonomy group in the reduction of singularities of F is solvable
(possibly abelian), and at least one virtual holonomy is solvable exceptional.

Concrete examples of non-formally rigid exceptional groups are found in [10] and [19], asso-
ciated to certain cusp singularities. By a result due to Pérez-Marco and Yoccoz [24] any germ
of a complex diffeomorphism f ∈ Diff(C, 0) is conjugate to the local holonomy of a separatrix
associated to a germ of a non-degenerate holomorphic foliation F(f) : xdy − λydx + . . . = 0,
having two transverse separatrices. This completes previous results from Martinet-Ramis [17],
by solving the “non-resonant” case. Adding to this the (local) synthesis result in [14] we conclude
that:

Given an exceptional subgroup Gexc ∼= Gξ,k there is a germ of a foliation F(Gexc) at 0 ∈ C2

such that:

• F is a non-dicritical generalized curve, admitting a reduction with a single blow-up, and
the exceptional divisor is an invariant projective line E(F) ∼= P1.

‡The group G is formally rigid if given any formal conjugation with another group G′ there is an analytic

conjugation.
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• F exhibits three separatrices, all in general position.
• The (reduced) foliation F̃ = F̃(1) exhibits three singularities, all non-degenerate, say

sing(F̃) = {p̃1, p̃2, p̃3}.
• The holonomy of the leaf L0 = E(F) \ {p̃1, p̃2, p̃3} is conjugate to the group Gexc.

To the list of properties above we can add:

• Assume thatGexc is not formally rigid, more precisely, assume that the formal embedding
Gexc ⊂ Hk cannot be analytic. Then the virtual holonomy Hvirt := Holvirt(F̃ ,L0) of the

leaf L0 of F̃ is conjugate to Gexc.

Indeed, Hvirt contains Gexc and it is also solvable with closed orbits off the origin. If Hvirt

contains properly Gexc then Hvirt is not exceptional, therefore it admits an analytic embedding
into some Hk. This embedding gives an analytic embedding of Gexc on Hk.

Thus, under the above non-formal rigidity condition we can state:

• The virtual holonomy of the leaf L0 = E(F)\{p̃1, p̃2, p̃3} is conjugate to the group Gexc.

Using the above and material in the Appendix § 9 we can state:

Proposition 5.9. Let F be a germ of a solvable exceptional foliation at 0 ∈ C2. Then F admits
a formal first integral of Liouvillian type Φ̂. This first integral admits a transversely formal
development along the separatrices of F . Given a separatrix Γ and a transverse disc Σ to F
and Γ, the restriction Φ̂

∣∣
Γ

can be written as cos( 2π
xk

) in suitable formal coordinates x, for some
k ∈ N.

6. The irreducible case

Let us consider a germ of a holomorphic foliation F at the origin 0 ∈ C2, a germ of an
irreducible non-degenerate singularity. In suitable local coordinates we can write F as given by

x(1 +A(x, y))dy − λy(1 +B(x, y))dx = 0,

for some holomorphic A(x, y), B(x, y) with 0 6= λ ∈ C\Q+, A(0, 0) = B(0, 0) = 0. In the normal
form above, the separatrices are the coordinate axes. Let us denote by f the holonomy map (its
class up to holomorphic conjugacy) of the separatrix (y = 0). From the correspondence between
the leaves of F and the orbits of f ([16, 17, 24]) and according to the well-known properties
of f discussed in § 4.1 (see also [2, 3]) we conclude that the foliation F exhibits the following
characteristics:

Lemma 6.1. Let F be a germ of an irreducible non-degenerate singularity at the origin 0 ∈ C2

as above. We have:

(1) In the hyperbolic case and in the resonant non-linearizable case, λ ∈ Q−, all leaves of F
are closed off the set of separatrices, no leaf is closed.

(2) In the non-resonant (Siegel or Poincaré) case, λ ∈ R\Q, F has always some leaves which
are recurrent. Moreover, no leaf converges only to the set of separatrices, therefore if a
leaf is closed off the set of separatrices then it is already a closed leaf.

Proof. If the singularity is in the Poincaré domain then, since it is not a resonance (because
λ, 1/λ /∈ N) it is analytically linearizable. We may therefore choose local coordinates (x, y) on
(C2, 0) such that the germ writes as xdy − λydx = 0. The holonomy of one of the coordinate
axes with respect to a small disc Σ : {x = a} is given by h(y) = exp(2π

√
−1λ)y. Suppose that

λ is irrational then the map h is an irrational rotation, and the leaves (not contained in the set
of separatrices) are recurrent, therefore not closed off the set of separatrices.

�
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7. Fully resonant singularities

The following notion is useful in our framework.

Definition 7.1 (fully resonant). A germ of a generalized curve F at the origin 0 ∈ C2 will be
called fully resonant if every singularity arising in the reduction of singularities is a resonant
singularity.

Lemma 7.2. Let F be a germ of a non-dicritical generalized curve in a neighborhood of the
origin 0 ∈ C2. Suppose that for some representative FU of F defined in a neighborhood U of the
origin, all leaves are closed off the set of separatrices. Then we have two possibilities:
(i) F is a fully-resonant generalized curve.
(ii) The reduction of singularities of F exhibits some hyperbolic singularity, all the final singu-
larities are linearizable. Moreover, given any separatrix Γ through the origin, and a transverse
disc Σ meeting Γ at a point q 6= 0, the virtual holonomy group Holvirt(F ,Σ, q) contains a hyper-
bolic map. In particular, it is an abelian linearizable group generated by a hyperbolic map and a
periodic map.

Proof. We proceed by induction on the number r ∈ {0, 1, 2, ...} of blowing-ups in the reduction
of singularities for the germ F .
Case 1. (r = 0). In this case the singularity is already irreducible. The result follows from
Lemma 6.1.
Case 2 (Induction step). Assume that the result is proved for foliation germs that admit a
reduction of singularities with a number of blowing-ups less greater than or equal to r. Suppose
that the fixed germ F admits a reduction of singularities consisting of r+1 blowing-ups. Then we
perform a first blow-up σ1 : Ũ(1) → U at the origin and obtain a lifted foliation F̃(1) = σ∗1(F)
with (first) exceptional divisor E(F)(1) = σ−1

1 (0) consisting of a single embedded invariant

projective line in Ũ(1) (by hypothesis the exceptional divisor is invariant by F̃(1)). Given

a leaf L of F in U we denote by L̃(1) the lifting L̃(1) = σ−1
1 (L) of L to Ũ(1) by the map

σ1 : Ũ(1) → U . Now, if a leaf L of F in U is closed in U \ sep(F ,U), then its lift L̃(1) is

closed in Ũ(1) \ sep(F̃(1), Ũ(1)) (notice that for each singularity p̃ ∈ sing(F̃(1)) ⊂ E(1) the set

of local separatrices of F̃(1) through p̃ is formed by E(F)(1) union the local branches through

p̃, of the strict transform by σ(1) of sep(F ,U)). Given a singularity p̃ ∈ sing(F̃(1)) ⊂ E(1) of

F̃(1), since the blow-up map is proper, we can conclude that for any small enough neighborhood

W̃p̃ of p̃ in Ũ(1), a leaf L̃0 of the restriction F̃(1)
∣∣
W̃p̃

is closed in W̃p̃ \ sep(F̃(1), p̃) provided

that it projects into a piece of leaf σ1(L̃0) which is contained in a leaf L of F that is closed in
U \ sep(F ,U). Furthermore, since the blow-up map defines a biholomorphism between C2 \ {0}
and the complement of the exceptional divisor C̃2

0 \ E(1), we conclude that:

The leaves of F̃(1)
∣∣
W̃p̃

are closed off the set of local separatrices of F̃(1) through p̃. Thus, by

the induction hypothesis, each singularity p̃ ∈ sing(F̃(1)) in the first blow-up is fully-resonant or
its reduction of singularities exhibits some hyperbolic singularity, all the final singularities are
linearizable. Moreover, given any separatrix Γ̃p̃ through this singularity, and a transverse disc

Σ̃p̃ meeting Γ̃p̃ at a point p̃ 6= q̃ = Σ̃p̃ ∩Γp̃, the virtual holonomy group Holvirt(F̃(1),Σp̃, q̃) is an
abelian linearizable group generated by a hyperbolic map and a periodic map.

We have then two possibilities:
(a) All singularities in the first blow-up are fully-resonant. In this case, the original singularity
is fully-resonant.

(b) Some singularity p̃ ∈ sing(F̃(1)) in the first blow-up is not fully-resonant.
We shall consider this second possibility:
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Claim 7.3. Given a singularity p̃1 ∈ sing(F̃(1)) ⊂ E(1) its reduction of singularities only pro-
duces linearizable singularities. Moreover, given any separatrix Γp̃1 through p̃1, and a transverse

disc Σ meeting Γp̃1 at a point p̃1 6= q̃1 = Σ∩Γp̃1 , the virtual holonomy group Holvirt(F̃(1),Σ, q̃1)
is an abelian linearizable group generated by a hyperbolic map and a periodic map.

Proof. At first sight it may seem that this is a straightforward consequence of the Induction
hypothesis. Nevertheless, it is not clear that we are dealing with a singularity which is not
fully-resonant. Let us see how to study the case p̃1 is fully resonant. Since E(F)(1) is invariant,
the hyperbolic element in the virtual holonomy of the separatrix through p̃ contained in E(F)(1)
induces a hyperbolic element on the virtual holonomy of the separatrix through p̃1 contained in
the exceptional divisor E(F)(1). This is done as follows. Given two points q̃ and q̃1, close to p̃
and p̃1 respectively, and transverse discs Σ and Σ1 meeting E(F)(1) at these points respectively,

we can choose a simple path α : [0, 1] → E(1) \ sing(F̃(1)) from q̃ to q̃1. The holonomy map

hα : (Σ, q̃)→ (Σ1, q̃1) associated to the path α (recall that E(F)(1)\sing(F̃(1)) is a leaf of F̃(1)),
induces a natural morphism for the virtual holonomy groups

α∗ : Holvirt(F̃(1),Σ1, q̃1)→ Holvirt(F̃(1),Σ, q̃),

by α∗ : h 7→ h−1
α ◦ h ◦ hα. Since hα−1 = (hα)−1 in terms of holonomy maps, we conclude

that the above morphism is actually an isomorphism between the virtual holonomy groups.
Thus the virtual holonomy group Holvirt(F̃(1)p̃1

,E(F)(1),Σp̃1
, p̃1) contains a hyperbolic map.

Now we can use the Dulac correspondence in order to “pass” this hyperbolic map from the
above virtual holonomy (of the separatrix contained in E(F)(1)) to the virtual holonomy of

any separatrix of F̃p̃1 (see the Appendix § 9). Indeed, because Holvirt(F̃(1)p̃1
,E(F)(1),Σq̃1

, q̃1)
contains a hyperbolic element, according to Proposition 4.2 it must be linearizable, generated by
this hyperbolic map and a periodic map. This already implies that all local holonomies arising
in the reduction of singularities of q̃ are linearizable, therefore the corresponding singularities
are linearizable. Because the singularities are linearizable, the Dulac map allows to pass the
hyperbolic attractor from E(F)(1) to any separatrix through q̃, proving in this way that any
separatrix through q̃ contains a hyperbolic attractor in its virtual holonomy group§. Thus, also
the virtual holonomy group associated to the separatrix Γ̃ of F̃(1) through p̃1 contains some
hyperbolic map. �

Now consider any separatrix Γ of F through the origin. Since the projective line E(F)(1) in

the first blow-up is invariant, the lift Γ̃ is the separatrix of some singularity p̃ of F̃(1). If F is
not fully-resonant, then by the above, we conclude that the virtual holonomy group associated
to this separatrix Γ̃ contains a hyperbolic map. Recall that the blow-up is a diffeomorphism off
the origin and off the exceptional divisor, so that the maps in the virtual holonomy of Γ̃ induce
maps in the disc Σ transverse to Γ in C2, but which are defined only in the punctured disc, i.e.,
off the origin. Nevertheless, since these projected maps are one-to-one, the classical Riemann
extension theorem for bounded holomorphic maps shows that indeed such maps induce germs of
diffeomorphisms defined in the disc Σ. These diffeomorphisms are the virtual holonomy maps of
the separatrix Γ of F̃(1) evaluated at the transverse section Σ. Hence, by projecting the maps

in Holvirt(F̃(1),Σ, q̃) we obtain hyperbolic maps in this virtual holonomy group as stated. Now
the Induction Principle applies to finish the proof of the lemma. �

§The details of the construction of the Dulac map and the “passage” of (virtual) holonomy maps to virtual

holonomy maps on adjacent components are are found in the Appendix § 9 and extensively explained in [8] and

in [25] §2.3, pages 371 to 374.
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8. Germs of foliations with closed leaves off the set of separatrices

In this section we prove Theorems 1.2, 1.3 and 1.4. We rely on Lemma 7.2 and on Lemmas 8.1
and 8.9 below.

Lemma 8.1. Let F be a foliation germ as in Theorem 1.2. Then the following are equivalent:

(1) F admits a holomorphic first integral in some neighborhood of the origin.
(2) F is fully-resonant, has a closed leaf arbitrarily close to the origin and all singularities

in the reduction of singularities are linearizable.

Proof. Since (1) implies (2) is well-known (cf.[16],[27]), we prove the converse. Assume then that
F (is as in Theorem 1.2 and moreover) has a closed leaf arbitrarily close to the origin and that
all final singularities in the reduction process are resonant and linearizable. We must prove that
F admits a holomorphic first integral.

We proceed by induction on the number r ∈ {0, 1, 2, ...} of blow-ups in the reduction of
singularities for the germ F .
Case 1. (r = 0). In this case the singularity is already irreducible and resonant linearizable.
Since it is resonant, it admits a holomorphic first integral.
Case 2. (r − 1 =⇒ r). Assume that the result is proved for foliation germs that admit a
reduction of singularities with a number of blow-ups smaller than r. Suppose that the fixed
germ F admits a reduction of singularities consisting of r blow-ups. Let U be a small connected
neighborhood of the origin where the leaves of F are closed off the set of separatrices. We also
assume that for U arbitrarily small the foliation F exhibits a closed leaf in U . Then we proceed
as in the proof of Lemma 7.2 from where we import the notation. Thus we perform a first blow-
up σ1 : Ũ(1)→ U at the origin and obtain a lifted foliation F̃(1) = σ∗1(F) with (first) exceptional

divisor E(F)(1) = σ−1
1 (0) consisting of a single embedded invariant projective line in Ũ(1) (by

hypothesis the exceptional divisor is invariant by F̃(1)). Given a leaf L of F in U we denote by

L̃(1) the lifting L̃(1) = σ−1
1 (L) of L to Ũ(1) by the map σ1 : Ũ(1)→ U . Now, if a leaf L of F in

U is closed in U \ sep(F ,U), then its lift L̃(1) is closed in Ũ(1) \ sep(F̃(1), Ũ(1)) (notice that for

each singularity p̃ ∈ sing(F̃(1)) ⊂ E(1) the set of local separatrices of F̃(1) through p̃ is formed
by E(F)(1) union the local branches through p̃, of the strict transform by σ(1) of sep(F ,U)).

Given a singularity p̃ ∈ sing(F̃) ⊂ E of F̃ , since the blow-up map is proper, we can conclude

that for any small enough neighborhood W̃p̃ of p̃ in Ũ , a leaf L̃0 of the restriction F̃
∣∣
W̃p̃

is closed

in W̃p̃ provided that it projects into a piece of leaf π(L̃0) which is contained in a leaf L of F that

is closed in U . Similarly, a leaf L̃0 is closed in W̃p̃ \E provided that it projects into a piece of leaf

π(L̃0) which is contained in a leaf L of F that is closed in U \ {0}. By the Induction hypothesis,

each singularity p̃ ∈ sing(F̃) admits a holomorphic first integral say f̃p̃ defined in W̃p̃ if this

last is small enough. Now we analyze the holonomy of the leaf L0 := E(F) \ sing(F̃). Choose
a regular point q̃ ∈ E0 and a small transverse disc Σ to L0 centered at q̃. The corresponding
holonomy group representation will be denoted by H := Hol(F̃ ,Σ, q̃) ⊂ Diff(Σ, q̃). We know
that this group is finitely generated and by the invariance of E(F) and the above argumentation
and Lemma 3.1, we know that actually, the orbits of the holonomy group H of the exceptional
divisor are closed off the origin, one of which is closed. Applying Corollary 4.4 we conclude
that the holonomy group is finite. Since the virtual holonomy group preserves the leaves of the
foliation, the arguments above already show that the orbits of the virtual holonomy group Hvirt

are closed off the origin, one of which is closed. The problem is we still do not know that the
virtual holonomy group is finitely generated. Nevertheless, from Corollary 4.4 we obtain:

Claim 8.2. Any finitely generated subgroup H of the virtual holonomy group Hvirt is a finite
group.
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Let us then proceed as follows: given the singularities {p̃1, ..., p̃m} = sing(F̃) ⊂ E, by induction
hypothesis each singularity admits a local holomorphic first integral. Thus, there are small discs
Dj ⊂ E, centered at the p̃j and such that in a neighborhood Vj of p̃j in the blow-up space

C̃2
0 , of product type Vj = Dj × Dε, we have a holomorphic first integral gj : Vj → C, with

gj(p̃j) = 0. Fix now a point p̃0 ∈ E \ sing(F̃). Since E(F) has the topology of the 2-sphere,
we may choose a simply-connected domain Aj ⊂ E such that Aj ∩ {p̃0, p̃1, ..., p̃m} = {p̃0, p̃j},
for every j = 1, ...,m. Since Aj is simply-connected, we may extend the local holomorphic first

integral gj to a holomorphic first integral g̃j for F̃ in a neighborhood Uj of Dj ∪ Aj , we may
assume that Uj contains Vj . We observe that g̃j can be chosen to be primitive, i.e., it has
connected fibers, therefore it cannot be written as g̃j = hn, for some holomorphic function h
with n ≥ 2. Now, given a local transverse section Σ0 centered at p̃0 and contained in Uj , we
may introduce the invariance group of the restriction g0

j := g̃j
∣∣
Σ0

as the group

Inv(g0
j ) := {f ∈ Diff(Σ0, p̃0), g0

j ◦ f = g0
j }.

In other words, the invariance group of g0
j is the group of germs of maps that preserve the

fibers of g0
j . Clearly Inv(g0

j ) is a finite (resonant) group ([16] Proposition 1.1. page 475). Let

us now denote by Inv(F̃ ,Σ0) ⊂ Diff(Σ0, p̃0) the subgroup generated by the invariance groups

Inv(g0
j ), j = 1, ...,m. We call Inv(F̃ ,Σ0) the global invariance group of F̃ with respect to (Σ0, p̃0).

Then, from the above we immediately obtain:

Claim 8.3. Inv(F̃ ,Σ0) is a finite group.

Proof. Indeed, first notice that Inv(F̃ ,Σ0) is finitely generated (by periodic maps). Since

Inv(F̃ ,Σ0) preserves the leaves of F̃ (recall that g̃j was chosen to be primitive) we have that

Inv(F̃ ,Σ0) ⊂ Holvirt(F̃ ,Σ0, p̃0) and therefore by Corollary 4.4 Inv(F̃ ,Σ0) is a finite group. �

Notice that this global invariance group contains in a natural way the local invariance groups
of the local first integrals gj . Therefore, as observed in [16], once we have proved that the global

invariance group Inv(F̃ ,Σ0) is finite, together with the fact that the singularities in E(F) exhibit

local holomorphic first integrals, we conclude as in [16] that the foliation F̃ and therefore the
foliation F has a holomorphic first integral.

�

As a consequence of the proof of the above lemma we have:

Lemma 8.4. Let F be a foliation germ as in Theorem 1.2. Assume that F has a closed leaf
arbitrarily close to the origin. Then F admits a holomorphic first integral in some neighborhood
of the origin.

Proof. The proof is based on Lemma 8.1 above and in the following claims:

Claim 8.5. The foliation F is fully-resonant.

Proof. Indeed, this is a consequence of the fact that any singularity in the reduction of singu-
larities is such that the local induced foliation has closed leaves off the set of local separatrices
and of Lemma 6.1. �

Claim 8.6. Each virtual holonomy group in the reduction of singularities of F exhibits a closed
pseudo-orbit arbitrarily close to the origin.

Proof. This is a consequence of (what we have observed in the proof of) Proposition 3.3. �
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Then, we conclude, as in the proof of Lemma 8.1, that each local holonomy map of a separatrix
of a singularity in the reduction of singularities of F , is a finite periodic map. This implies that all
the singularities of the reduction of F are linearizable (and resonant). Applying now Lemma 8.1
we conclude. �

Lemma 8.7. Let F be a foliation germ as in Theorem 1.2. Assume that some separatrix Γ of
F contains some hyperbolic map in its virtual holonomy group. Then F is given by a closed
meromorphic one-form with simple poles.

Proof. We proceed by induction on the number r ∈ {0, 1, 2, ...} of blowing-ups in the reduction
of singularities for the germ F .
Case 1. (r = 0). In this case the singularity is already irreducible. Since it is not a saddle-node
it can be written as xdy − λydx+ . . . = 0 for some λ ∈ C \Q+. We claim:

Claim 8.8. The singularity is not a resonant singularity, i.e., λ 6∈ Q.

Proof of the Claim. Assume that we have λ = −n/m ∈ Q− for some n,m ∈ N with< n,m >= 1.
In this case we have two possibilities.

(1) The singularity is analytically linearizable. In this case we can write nxdy + mydx = 0.
Then we have a holomorphic first integral f = xmyn and any virtual holonomy map must
preserve the fibers of f . This implies that any virtual holonomy map is actually a finite periodic
map. This case is therefore excluded.

(2) The singularity is not analytically linearizable. As we have seen in Example 5.5, by [17]
the foliation is formally isomorphic to an unique equation

ωp/q,k,λ := p(1 + (λ− 1)uk)ydx+ q(1 + λuk)xdy,

where p, q, k ∈ N, λ ∈ C and u := xpyq and mp− nq = 1. We can rewrite

ωp/q,k,λ = (1 + (λ−mp)uk)(pydx+ qxdy) + pquk(nydx+mxdy).

This last expression admits the integrating factor hp/q,k,λ = pqxyuk, this means that the one-

form 1
hp/q,k,λ

ωp/q,k,λ := Ωp/q,k,λ is closed and meromorphic, with poles of order kp+ 1 in (x = 0)

and kq + 1 in (y = 0). Now, if there is a hyperbolic map in the virtual holonomy of one of the
separatrices (given by the axes) then this map clearly forces the closed meromorphic one-form
to have simple poles along that separatrix, which is not the case, contradiction.

�

Because the singularity is non-resonant we have λ ∈ C \Q. We claim that this singularity is
a hyperbolic singularity, i.e., λ ∈ C \ R. Indeed, if λ ∈ R \Q then we have two possibilities.

(i) The singularity is analytically linearizable. In this case we may assume that it is of the
form xdy − λydx = 0. Then, the leaves are not closed off the origin, because a typical leaf has
as closure the three-dimensional manifold given by |y||x|−λ = c for some c > 0.

(ii) The singularity is not analytically linearizable. In this case we must have λ ∈ R− and the
foliation is in the so called Siegel domain. In particular, there exactly are two separatrices and
we may assume that it is of the form xdy − λy(1 + A(x, y))dx = for some A(x, y) holomorphic
with A(0, 0) = 0. Such a singularity has a local holonomy map for the separatrix (y = 0) of the
form f(y) = exp(2πλ)y + . . .. In particular, such a holonomy map is not a resonant map. By
Lemma 6.1 or also by the considerations in the proof of Proposition 4.2 we know that the only
possibility compatible with the fact that the leaves of F are closed off the origin, is that f is a
hyperbolic map, i.e., λ ∈ C \ R.
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We conclude that the singularity is hyperbolic and that any separatrix has a hyperbolic
holonomy map. The singularity is linearizable as xdy − λydx = 0 in suitable local coordinates.
In these coordinates the foliation is given by the closed one-form Ωλ = dy

y − λ
dx
x .

Case 2 (Induction step). Assume that the result is proved for foliation germs that admit a
reduction of singularities with a number of blowing-ups less greater than or equal to r. Suppose
that the fixed germ F admits a reduction of singularities consisting of r+1 blowing-ups. Then we
perform a first blow-up σ1 : Ũ(1) → U at the origin and obtain a lifted foliation F̃(1) = σ∗1(F)
with (first) exceptional divisor E(F)(1) = σ−1

1 (0) consisting of a single embedded invariant

projective line in Ũ(1) (by hypothesis the exceptional divisor is invariant by F̃(1)). Given a leaf

L of F in U we denote by L̃(1) the lifting L̃(1) = σ−1
1 (L) of L to Ũ(1) by the map σ1 : Ũ(1)→ U .

By hypothesis F has some separatrix Γ containing a hyperbolic map in its virtual holonomy.

Let then p̃ ∈ sing(F̃(1)) be a singularity exhibiting some separatrix Γ̃p̃ = σ−1
1 (Γ \ {0}) not

contained in the projective line E(F)(1) and having a hyperbolic map in its virtual holonomy.

By the Induction hypothesis the germ F̃(1)p̃ induced by F̃(1) at p̃, is given by a simple poles

closed meromorphic one-form say Ω̃p̃. Since Ẽ(1) is invariant, it contains a separatrix of the

germ F̃(1)p̃. Because of the form Ω̃p̃, all the separatrices of F̃(1)p̃ contain hyperbolic maps

in their virtual holonomy groups. Therefore, the separatrix of F̃(1)p̃ contained in E(F)(1),
contains a hyperbolic map for its virtual holonomy group. Thanks to the invariance of E(F)(1)

for F̃(1) this implies that each singularity q̃ of F̃(1) in E(F)(1) contains a hyperbolic map in
the virtual holonomy of the corresponding separatrix contained in E(F)(1). Then, again by

Induction hypothesis, each singularity q̃ ∈ E(1) ∩ sing(F̃(1)) is given by a closed meromorphic

one-form Ω̃q̃ having simple poles. Now we focus on the leaf L0 = E(1) \ sing(F̃(1)) and on its

virtual holonomy group, which we shall denote simply by Holvirt(F̃(1),L0). This leaf contains
therefore hyperbolic maps in its virtual holonomy group. In view of Proposition 4.2 the group
Holvirt(F̃(1),L0) is abelian linearizable. Using this and the well-known techniques from [5] we

can construct a simple poles closed meromorphic one-form Ω̃ in a neighborhood of E(F)(1),

which defines F̃(1). Projecting this one-form onto a neighborhood of the origin 0 ∈ C2, we
obtain a closed meromorphic one-form Ω with simple poles, defining F . The lemma is proved
by Induction. �

Lemma 8.9. Let F be a foliation germ as in Theorem 1.2. Assume that F is not fully resonant.
Then:

(1) Each separatrix contains some hyperbolic map in its virtual holonomy group.
(2) F is given by a closed meromorphic one form with simple poles.

Proof. This is essentially a direct consequence of the lemma above. The idea is the following.
Since F is not fully-resonant, it contains some singularity which is not resonant. As in the proof
of Lemma 8.7, this singularity must be hyperbolic. The local holonomies of the separatrices of
this singularity then are hyperbolic maps, which induce hyperbolic maps on the virtual holonomy
of each separatrix of the foliation. By Lemma 8.7 we conclude. �

Lemma 8.10. Let F be a foliation germ as in Theorem 1.2. Assume that F is fully resonant.
Then F admits a formal Liouvillian first integral.

Proof. First we recall that all the virtual holonomy groups in the reduction of F are groups
with closed orbits off the origin. Then, according to Proposition 4.2 these groups are solvable.
Moreover, by hypothesis, there are no saddle-nodes in the reduction of singularities and all the
projective lines are invariant. Then, as already mentioned in Example 5.1, using the techniques
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from [26], [8] or the more general techniques from [21] we can construct a formal generalized
integrating factor for F . We give the detailed proof in the Appendix § 9. �

Proof of Theorem 1.2. Let F be a germ of a non-dicritical generalized curve at 0 ∈ C2. Assume
that the leaves of F are closed off the set of separatrices. By hypothesis, there is a neighborhood
U of the origin where the leaves are all closed off the set of separatrices. According to Lemma 8.9
we have only two possibilities:

(1) F is fully resonant.
(2) F is contains some hyperbolic singularity in its reduction of singularities and:

(a) Each separatrix contains some hyperbolic map in its virtual holonomy group.
(b) F is given by a closed meromorphic one form with simple poles.

We study the different possibilities:

Possibility 1. The singularity is fully-resonant. In this case, by Lemma 8.10 F admits a formal
Liouvillian first integral.

Possibility 2. The singularity is a generalized curve which is not fully-resonant. Moreover, we
have:

(1) F is given by a closed formal meromorphic one form with simple poles,
(2) Given any separatrix Γ through the origin, and a transverse disc Σ meeting Γ at a

point q 6= 0, the virtual holonomy group Holvirt(F ,Σ, q) is an abelian linearizable group
generated by a hyperbolic map and a periodic map.

As in [5] (page 440, paragraph after the proof Lemma 8) we can conclude that F is indeed a
holomorphic pull-back of a linear hyperbolic singularity xdy − λydx = 0, λ ∈ C \ R. This ends
the proof of Theorem 1.2. �

Proof of Theorem 1.3. According to Lemma 8.7 F is given by a closed meromorphic one-form
with simple poles. The rest of the proof goes as in final part of the above proof of Theorem 1.2.

�

Proof of Theorem 1.4. If we already know that F is a generalized curve then this is just the
result of Lemma 8.4. Let us then prove that this is the case. Recall that, by hypothesis F is
non-dicritical, its leaves are closed off the set of separatrices and F has a leaf which is closed on
each small neighborhood of the origin. Assume that there is a saddle-node in the reduction of
singularities of F . Then the strong manifold of this saddle-node exhibits a non-trivial holonomy
tangent to the identity, say of the form z 7→ z + ak+1z

k+1 + . . . for some ak+1 6= 0, k ∈ N. This
map has no closed orbit. Because the exceptional divisor is invariant and connected, and thanks
to Lemma 3.2, any given closed leaf must approach a saddle-node singularity by at least one
of its separatrices. If it approaches by the strong separatrix then we have a contradiction with
the above holonomy map dynamics. Therefore, the closed leaf must approach the saddle-node
through the central separatrix. Nevertheless, thanks to the local description of the saddle-node,
it is well-known that any leaf not contained in a separatrix and that accumulates properly at
the central separatrix also accumulates properly at the strong separatrix. Therefore, again, we
have a contradiction. This shows that the existence of a saddle-node is not possible under the
additional hypothesis of existence of a closed leaf sufficiently close to the original singularity.
Thus F is indeed a generalized curve. �

9. Appendix: Construction of generalized integrating factors

We shall now detail the construction of the formal generalized integrating factor indicated in
the proof of Lemma 8.10. We shall adopt the notation of that section. We shall also denote
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by Hj (respectively, by Hvirt
j ) the holonomy group (respectively, the virtual holonomy group)

of the component Dj of the divisor E(F), j = 1, ..., r, which is by hypothesis invariant. We
also denote by D∗j = Dj \ sing(F). The virtual holonomy group Hvirt

j has closed pseudo-
orbits off the origin. This group is therefore solvable in the terms of Proposition 4.2. Fixed
a regular point qj ∈ Dj − sing(F̃) ∩ Dj , a small transverse disk Σj ∼= D, Σj ∩ Dj = {qj}
we have holonomy and virtual holonomy identifications Hol(F̃ ,Dj,Σj) ∼= Hj ⊂ Diff(C, 0) and

Holvirt(F̃ ,Dj,Σj) ∼= Hvirt
j ⊂ Diff(C, 0). We recall the following result from groups of germs of

complex diffeomorphisms in dimension one ([10], [21]):

Lemma 9.1. Let H ⊂ Diff(C, 0) be a subgroup. Then:

(1) H is abelian ⇔ there exists a formal vector field ξ in one complex variable which is

H-invariant, i.e., g ∗ ξ̂ = ξ̂, ∀ g ∈ H.

(2) H is solvable ⇔ there is a formal vector field ξ̂ in one complex variable which is H-

projectively invariant, i.e., for each g ∈ H we have g ∗ ξ̂ = cg · ξ̂ for some cg ∈ C∗.

As a consequence we have the following possibilities for Hvirt
j :

(a) Hj is abelian ⇒ there exists a formal vector field ξ̂j in one complex variable yj ∈ Σj ,

yj(Σj) = D, yj(qj) = 0, ξ̂j writes in some formal coordinates ξ̂j(ẑ) =
ẑk+1

1 + aẑk
d

dẑ
such

that: (a*) g ∗ ξ̂j = ξ̂j , ∀ g ∈ Hj ,

(b) Hj is solvable non abelian ⇒ there exists a formal vector field ξ̂j such that: (b*)

g ∗ ξ̂j = cj · ξ̂j , cg ∈ C∗, ∀ g ∈ Hj and cg 6= 1 for some g ∈ Hj . The vector field ξ̂j writes

in some formal coordinate ẑ as ξ̂j(ẑ) = ẑk+1 d

dẑ
.

Definition 9.2 (normalizing coordinates). Let H ⊂ Diff(C, 0) be solvable and ξ̂ a projectively

invariant as in Lemma 9.1 above. The vector field ξ̂j writes in some formal coordinate ẑ as

ξ̂j(ẑ) =
ẑk+1

1 + aẑk
d

dẑ
. Such coordinates are called normalizing coordinates for the group G.

Let ω be a holomorphic one-form defining F in a neighborhood U ⊂ C2 of the origin. Denote
by ω̃ the lift of ω by the reduction of singularities for F , i.e., ω̃ = σ∗(ω) where σ : Ũ → U is the
morphism described in Section 2.

Lemma 9.3. There exists a transversely formal 1-form η̂j defined over D∗j such that dω̃ = η̂j∧ω̃,
dη̂j = 0, η̂j has simple poles along D∗j and along (ω̃)∞ ∪ (ω̃)0 .

Moreover, if C ⊂ (ω̃)∞ ∪ (ω̃)0 is an irreducible component with C ∩ Dj 6= ∅, then either
ResCη̂j = −ord((ω̃)∞,C), or ResCη̂j = ord(ω̃)0.

Proof. First we assume that Hj is abelian. We consider ξ̂j as in (a) above. Condition (a*)

allows as to extend ξ̂j as a transversely formal global section τ̂j of the sheaf Ŝim(F , D∗j ) of

transversely formal symmetries associated to F̃ , over the open curve D∗j . Indeed, this is just the

usual holonomy extension of ξ̂ as a constant vector field along the plaques of F near D∗j . Then

ĥj = ω̃(τ̂j) is a transversely formal function defined overD∗j and which satisfies dω̃ =
dĥj

ĥj
∧ω̃ [21],

so that we take η̂j =
dĥj

ĥj
. This 1-form clearly satisfies the required properties.
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Now we assume that Hj is solvable non abelian. We consider ξ̂j as in (b). Condition (b*) allows

the construction of a section τ̂j of the quotient sheaf Ŝim(F , D∗j )/C∗ . Thus
d(ω̃(τ̂j))

ω̃(τ̂j)
= η̂j is

well-defined over D∗j and has the required properties [21]. �

Now we prove that η̂j constructed in Lemma 9.3, extends to the singularities in Dj ∩ sing(F̃).

Let then qo ∈ singF̃ ∩ Dj be a singularity. If it is a corner, say qo = Di ∩ Dj is a corner then
it has two separatrices, contained in Di and Dj . Since qo is not a saddle-node we have three
distinct cases to consider:
(1) qo admits a formal first integral. In this case by [16] qo admits a holomorphic first integral
so that ω̃ admits a holomorphic integrating factor around qo and qo is analytically linearizable.
(2) qo is non-resonant of the form xdy − λydx + h.o.t. = 0, λ /∈ Q: In this case the local
holonomy around qo is a non-periodic linear part so that Hj is analytically normalizable and we

may assume that (ξ̂j and therefore) η̂j is convergent.
(3) qo is resonant not formally linearizable: In this case qo admits the so called Martinet-
Ramis formal normal forms [17]. In particular the 1-form ω̃ admits a formal integrating factor

ĥ defined at qo ; that is, (*) d

(
ω̃

ĥ

)
= 0 and ĥ is a formal series at qo . This equation (*)

exhibits resommation properties for ĥ so that by a Briot-Bouquet type argument [17],[18] ĥ can

be written ĥ(x, y) =
+∞∑
j=0

aj(x)yj , where (x, y) ∈ U is a local coordinate centered at qo , such that

Dj ∩U = {y = 0}, Di ∩U = {x = 0}, aj(x) is a holomorphic function converging in a small disk
Dqo ⊂ Dj centered at qo , not depending on j ∈ N.

Thus, in any of the three cases above, we conclude that there exists a transversely formal 1-
form η̂qo defined over a small disk qo ∈ Dqo ⊂ Dj and with simple poles along the separatrices (so
along Di and Dj), such that dη̂qo = 0 and dω̃ = η̂qo ∧ ω̃. The difference η̂j − η̂qo writes therefore

as η̂j − η̂qo = ĥ · ω̃ for some transversely formal integrating factor ĥ for ω̃ (i.e., d(ĥ · ω̃) = 0)
defined over the punctured disc D∗qo = Dqo \ {qo} .

Now we consider these three cases separately.
Case (1): There exists a local chart (x, y) ∈ U , x(qo) = y(qo) = 0 such that

ω̃(x, y) = g(x, y)(nxdy +mydx)

for some n,m ∈ N∗ and some holomorphic g ∈ O2 . We consider the 1-form

η̂qo =
dg

g
+
d(xy)

xy
=
dg

g
+
dx

x
+
dy

y
,

which is meromorphic in U . Let also ωo = n
dy

y
+
dx

x
. Then we have η̂j− η̂qo = ĥ · ω̃ = (ĥxyg)ωo

and since d(ĥ · ω̃) = 0 = dωo it follows that d(ĥxyg)∧ωo = 0, that is, f̂ = ĥxyg is a transversely

formal first integral for F̃ over D∗qo . Since fo = xmyn is already a primitive first integral for

F̃ around qo (if we choose 〈n,m〉 = 1) it follows that f̂ = l̂(fo) for some one variable formal

expression, that is, f̂ = l̂(xmyn) and since f̂ is defined as a transversely formal expression over
D∗qo which contains points of the form (x, 0), x 6= 0 and since xmyn = 0 at these points, it follows

that l̂ is a formal series on the disk D ⊂ C and therefore f̂ extends as a transversely formal first

integral along Dqo . It follows that (ĥ and therefore) η̂j extends as a transversely formal object
to Dqo .
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Case (2): There exists a formal linearization for F̃ at qo,

ω̃(x, y) = g(x, y)(xdy − λy(1 + b(x, y))dx),

b ∈ O2 /∈ g, λ ∈ C\Q, b(0, 0) = 0, (x, y) is a holomorphic chart and we can find a formal

chart (x, Ŷ ) at qo , with Ŷ (x, y) =
+∞∑
j=1

aj(x)yj , aj(x) holomorphic in Dqo , ∀ j, such that,

ω̃(x, Ŷ ) = Ĝ(x, Ŷ ) · (xdŶ − λŶ dx) is linearized. We define η̂qo = dĜ

Ĝ
+ d(xŶ )

xŶ
= dĜ

Ĝ
+ dx

x + dŶ

Ŷ

and ω̂o =
dŶ

Ŷ
− λdxx .

Therefore we may write η̂j − η̂qo = (ĥ · x · Y · Ĝ) · ω̂0 and d(ĥ · x · Ŷ · Ĝ) ∧ ω̂0 = 0. We

put f̂ := ĥx · Ŷ · Ĝ and write f̂ =
+∞∑
j=0

fj(x)yj where fj(x) is holomorphic in D∗qo , ∀ j. Then

df̂ ∧ ω̂0 = 0 gives (∗) xf̂x + λŶ · f̂Ŷ = 0 over D∗qo ; where by definition (notice that ∂Ŷ
∂x and

∂Ŷ
∂y are invertible elements of the ring of formal power series):

f̂x :=
∂f̂

∂x
=

+∞∑
j=0

f ′j(x)yj , f̂y :=
∂f̂

∂y
=

+∞∑
j=1

jfj(x)yj−1 f̂Ŷ := f̂x

(
∂Ŷ

∂x

)−1

+ f̂y

(
∂Ŷ

∂y

)−1

and

∂Ŷ

∂x
:=

+∞∑
j=1

a′j(x)yj ,
∂Ŷ

∂y
:=

+∞∑
j=1

jaj(x)yj−1.

Thus by (*) we conclude that f̂x = 0, f̂Ŷ = 0⇒ f̂x = 0, f̂y = 0⇒ f̂ = fo is a constant and

therefore f̂ extends naturally to Dqo . This shows that (ĥ and therefore) η̂j extends to Dqo .
Case (3): In this case we have local holomorphic coordinates (x, y) ∈ U centered at qo , such
that ω̃(x, y) = g(x, y)[nxdy + my(1 + b(x, y))dx] where n,m ∈ N∗, 〈n,m〉 = 1, g, b ∈ O2 ,
b(0, 0) = 0 [17]. According to [17] and also from what we have observed above we may choose a

formal coordinate system (x, Ŷ ) at q0 , Ŷ =
+∞∑
j=1

aj(x)yj , aj ∈ O(Dqo) ∀ j, such that if λ = n/m

then
ω̃(x, Ŷ ) = Ĝ(x, Ŷ )[n(1 + (λ− 1)(xmŶ n)k)xdŶ +m(1 + λ(xmŶ m)k)Ŷ dx].

In this case we define

η̂qo = d log[Ĝ(x, Ŷ ) · xm+1Ŷ m+1] =
dĜ

Ĝ
+ (m+ 1)

dx

x
+ (n+ 1)

dŶ

Ŷ

and

ω̂o =
ω̃

Ĝxn+1Ŷ n+1
= −d

(
Ŷ

xmŶ n

)
+ (xmŶ n)k−1

[
n(λ− 1)

dŶ

Ŷ
+ λ.m

dx

x

]
.

Since λ = n/m it is a straightforward calculation to show that dω̂o = 0 and therefore if

f̂ = h · Ĝxm+1Ŷ n+1,

then dv̂ ∧ ω̂o = 0. As in the case above, the fact that ω̂o admits no first integral outside one

separatrix implies that f̂ is constant and therefore η̂ extends to Dqo . But we remark that η̂− η̂qo
has simple poles along Dqo ⊂ Dj and ω̂o has poles of order n + 1 ≥ 2 along Dqo , so that
η̂ − η̂qo = const.. ω̂o ⇒ const.. = 0 and therefore we have in fact concluded that if qo is of
type (3) then η̂j extends as η̂j = η̂qo to qo .
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Summarizing the above discussion we obtain:

Proposition 9.4. Given any component Dj ⊂ E(F) there exists a transversely formal general-
ized integrating factor η̂j for ω̃ defined over Dj which also satisfies: the formal polar set (η̂j)∞
has order one.

Now it remains to show how to construct the forms η̂j in a compatible way, i.e., such that if
Di ∩Dj = {q} then both forms bind up into a transversely form defined in Di ∪Dj . For this we
need the solvability of the virtual holonomy group Hvirt

j , not only of the holonomy group Hj .
The idea is basically the following: Take a component Di ⊂ E(F) that meets Dj at a corner
singularity q = Di ∩Dj . We may assume that q is resonant so that we are in Case 1 or 3 of the
above argumentation. The difference α̂ij := η̂i − η̂j is a formal closed meromorphic one-form
at q such that α̂ij ∧ ω̃ = 0. Moreover, α̂ij is zero or it has only simple poles. Thus, we may

assume that we are just in Case 1 of the above argumentation, i.e., that F̃ has a holomorphic
first integral at q. In this case the so called Dulac correspondence is defined as follows:

Choose a small neighborhood Ũ of q, where we take small transverse sections Σj to Dj and
Σi to Di. Denote by F(Σj) the collection of subsets E ⊂ Σj such that E is contained in some

leaf of F̃
∣∣
Ũ

. Define F(Σi) in a similar way. Roughly speaking, the Dulac correspondence is
a multivalued correspondence Dq : Σj → Σi, which is obtained by tracing the local leaves of

F̃
∣∣
Ũ

. Given any x ∈ Σj the set of intersections of the local leaf of F̃
∣∣
Ũ

that contains x, with

the transverse section Σj , is denoted by Lx ∩Σj ∈ F(Σj). The correspondence Dq associates to
any point z ∈ Lx ∩ Σj , the subset Dq(z) ⊂ Lx ∩ Σi ∈ F(Σi), usually defined by the some local

normal form of F̃ in Ũ .
Given an element h ∈ Holvirt(F̃ ,Dj,Σj), we associate h with a collection of elements

{hD} ⊂ Diff(Σi, qi) ⊂ Holvirt(F̃ ,Di,Σi),

each of which satisfies the following relation

hD ◦ Dq = Dq ◦ h ,
called the adjunction equation. We remark that the adjunction equation is not exactly an
equation, but rather an equality of sets or correspondences. More precisely, given any element
h ∈ Holvirt(F̃ ,Dj,Σj), each diffeomorphism hD ∈ Holvirt(F̃ ,Di,Σi) must satisfy, for every x ∈ Σi,
the equality of sets hD(Dq(x)) = Dq(h(x)), where Dq(x) ⊂ Lx ∩ Σi and Dq(h(x)) ⊂ Lx ∩ Σj
are subsets as above. This adjunction is adequately defined for the special case of singularities
{q} = Di ∩Dj we are considering as we shall see in what follows. There are local holomorphic

coordinates (x, y) ∈ Ũ such that Di ∩ Ũ = {x = 0}, Dj ∩ Ũ = {y = 0}, and such that F̃
∣∣
Ũ

is given in the normal form as nxdy + mydx = 0 and q : x = y = 0, where n/m ∈ Q+ and
〈n,m〉 = 1. We fix the local transverse sections as Σj = {x = 1} and Σi = {y = 1}, such
that Σi ∩ Di = qi 6= q and Σj ∩ Dj = qj 6= q. The local leaves of the foliation are given by
xmyn = const. The Dulac correspondence is the correspondence obtained by following these
leaves

Dq : Σj → Σi, Dq(x) = {xm/n}.
from a local transverse section Σj to Dj to another transverse section Σi to Di. Let be given
a map f in the virtual holonomy Hvirt

i of Di. We search for a well-defined map fDq ∈ Hvirt
j in

the virtual holonomy of Dj , such that it satisfies the “ adjunction equation” fDq ◦ Dq = Dq ◦ f.
The fact that we can construct both η̂i and η̂j in a compatible way, i.e., such that η̂i and

η̂j agree as formal objects at q is a consequence of the following: (1) η̂i and η̂j are constructed
in a compatible way (agreeing) with the virtual holonomy groups Hvirt

i and Hvirt
j respectively.

(2) these virtual holonomy groups are related by the Dulac correspondence. Indeed, we can
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embed the virtual holonomy group of Dj into the virtual holonomy group of Di. Thus, the
solvability of the group Hvirt

i means that, in a certain sense, both virtual holonomy groups
are solvable and simultaneously written in formal normalizing coordinates. In particular, we
can already choose the form η̂i in such a way that it agrees with η̂j as formal objects at q.
The details of this construction and compatibility conditions are thoroughly discussed in [21].
There the author mentions the so called zone holomorphe, zone logarithmique,.... To such a
zone, denoted by Z, the author associates a holonomy pseudo-group Hol(Z, fZ) which measures
the obstruction to the integration of the foliation in a neighborhood of the zone Z. The main
point is that under our hypothesis, both components Di and Dj are accumulated by analytic
leaves and therefore both exhibit solvable virtual holonomy groups. On the other hand, any
generalized holonomy Hol(Z, fZ) constructed in [21] is contained in the virtual holonomy. This
implies that the conditions of [21] are automatically satisfied by Proposition 3.3. Now we can
finish the argumentation just by observing that from the above discussion we already conclude
from Proposition 3.3 that the forms η̂j can be constructed in a compatible way, resulting into a

global transversely formal one-form ˜̂η along the divisor D =
⋃
j

Dj . Blowing down this one-form

we obtain a transversely formal generalized integrating factor η̂ for ω in a neighborhood of the
origin 0 ∈ C2.

Sketch of the proof of Proposition 5.9. We perform the reduction of singularities of the foliation
F . The first step is:

Claim 9.5. All the virtual holonomy groups are exceptional, isomorphic.

The next step is:

Claim 9.6. There is a transversely formal function Φ̂j defined along D∗j = Dj \ sing(F̃), with
the property below: Given any point q ∈ D∗j and a transverse disc Σq with ΣD̃ ∩Dj = {q}, we
choose a formal normalizing coordinate x̂q ∈ Σq, centered at q, for the virtual holonomy group

Holvirt(F̃ ,Dj,Σq), q). Then we have Φ̂j
∣∣
Σq

(x̂q) = cos( 2π

x̂
kj
q

).

In the case Holvirt(F̃ ,Dj,Σq, q) is exceptional we define Φ̂j
∣∣
Σq

as Φ̂j(x̂q) = cos( 2π

x̂
kj
q

). Then:

Claim 9.7. The function Φ̂j extends to each singularity p ∈ Dj ∩ sing(F̃), the result is a

transversely formal Liouvillian function along Dj which is a first integral for F̃ .

Proceeding as in the proof of Proposition 9.4 we obtain:

Claim 9.8. Given any corner p = Di ∩Dj there is a constant cij ∈ C such that at p we have

Φ̂i = cijΦ̂j as formal objects.

Since the exceptional divisor E(F) contains no cycles we may choose a globally defined

transversely formal function Φ̂ along E(F) by suitable choices of constants cj ∈ C and setting

Φ̂ = cjΦ̂j whenever it makes sense. Blowing down Φ̂ we obtain the desired formal Liouvillian
first integral. This completes the proof of Lemma 8.10. �
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469–523.

[17] J. Martinet and J-P. Ramis: Classification analytique des équations différentielles non linéaires resonnants
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