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ON REAL ANTI-BICANONICAL CURVES WITH ONE DOUBLE POINT

ON THE 4-TH REAL HIRZEBRUCH SURFACE

SACHIKO SAITO

Abstract. We list up all the candidates for the real isotopy types of real anti-bicanonical
curves with one real nondegenerate double point on the 4-th real Hirzebruch surface RF4 by

enumerating the connected components of the moduli space of real 2-elementary K3 surfaces

of type (S, θ) ∼= ((3, 1, 1),−id). We also list up all the candidates for the non-increasing
simplest degenerations of real nonsingular anti-bicanonical curves on RF4. We find an in-

teresting correspondence between the real isotopy types of real anti-bicanonical curves with
one real nondegenerate double point on RF4 and the non-increasing simplest degenerations

of real nonsingular anti-bicanonical curves on RF4. This correspondence is very similar to

the one provided by the rigid isotopic classification of real sextic curves on RP2 with one real
nondegenerate double point by I. Itenberg.

1. Introduction

This paper is a continuation of [10] and [11]. In [10] the moduli spaces of “(DR)-nondegenerate”
real K3 surfaces with non-symplectic holomorphic involutions (namely, real 2-elementary K3 sur-
faces) are formulated and it is shown that the connected components of such a moduli space
are in one to one correspondence with the isometry classes of integral involutions of the K3
lattice of certain type (see Theorem 2.11 below and [10] for more precise statements). As its ap-
plications, we obtain the real isotopic classifications (more precisely, deformation classifications)
of real nonsingular sextic curves on the real projective plane RP2, real nonsingular curves of
bidegree (4, 4) on the real P1×P1 (hyperboloid, ellipsoid), and real nonsingular anti-bicanonical
curves on the real Hirzebruch surfaces RFm (m = 1, 4). Here the m-th Hirzebruch surface
Fm (m ≥ 0) means the ruled surface over P1 having an exceptional section s with s2 = −m. F4

has 2 real structures (anti-holomorphic involutions). The real part of F4 is homeomorphic to the
2-dimensional torus or the empty set. On the other hand, F3 has a unique real structure and its
real part is homeomorphic to the Klein’s bottle (see [2]).

We say a complex curveA on a real Hirzebruch surface is real if its anti-holomorphic involution
can be restricted to the curve A. We say two real curves RA, RA′ on a real nonsingular surface
RB are real isotopic if there exists a continuous map Φ : RB × [0, 1] → RB (a “real isotopy
from RA to RA′”) such that Φt := Φ( , t) : RB → RB is a homeomorphism for any t ∈ [0, 1],
Φ0 = idRB , and Φ1(RA) = RA′. Moreover, two real curves RA, RA′ in a fixed class on a real
nonsingular surface RB are rigidly isotopic if there exists a real isotopy Φ : RB × [0, 1]→ RB
from RA to RA′ such that Φt(RA) is contained in the same class for any t ∈ [0, 1].

Using the same method as above, we obtain the real isotopic classifications of real nonsingular
anti-bicanonical curves on the real Hirzebruch surfaces RF2 and RF3 (see also Theorem 2.13 and
Remark 2.26 of this paper) in [11]. Especially, all the connected components of the moduli
space of real 2-elementary K3 surfaces of type (S, θ) ∼= ((3, 1, 1),−id), which are defined below,
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are enumerated in [11]. Here we should remark that any real 2-elementary K3 surfaces of type
(S, θ) ∼= ((3, 1, 1),−id) are (DR)-nondegenerate in the sense of [10].

Any 2-elementary K3 surface (X, τ) of type S ∼= (3, 1, 1) has an elliptic fibration and a unique
reducible fiber E + F , where the curves E and F are defined in [11] (see also Subsection 2.2
of this paper). There are two types of F , which are reducible and irreducible. Let A be the
fixed point set (curve) of τ on X, and π : X → Y := X/τ be the quotient map. A intersects
π(E) at a single point. If we contract the curve π(E) on Y to a point, then we get the 3-th
Hirzebruch surface F3, and the image of the curve A is a real nonsingular anti-bicanonical curve
on F3. This enables us to enumerate up (see [11]) all the real isotopy types of real nonsingular
anti-bicanonical curves on RF3.

However, on the other hand, if we contract the curve π(F ) on Y to a point, then we get the
4-th Hirzebruch surface F4, and the image of the curve A is real anti-bicanonical and has one
real double point. Even though a real 2-elementary K3 surface of type (S, θ) ∼= ((3, 1, 1),−id)
is always (DR)-nondegenerate, the double point is possibly degenerate, namely, a real cusp
point. Thus, the main difficulty of the real isotopic classification of real anti-bicanonical curves
on F4 with one real double point is that the connected components (equivalently, the isometry
classes of integral involutions of the K3 lattice) of the moduli space ([10]) of real 2-elementary
K3 surfaces of type (S, θ) ∼= ((3, 1, 1),−id) cannot distinguish degenerate and nondegenerate
double points, equivalently, reducible F and irreducible F . Hence, the connected components
cannot distinguish the topological types (node, cusp, or isolated point) of the real double points
(Remark 2.25). This problem was left to the readers in [11] (see Remark 8).

Thus, the aim of this paper is: Classify the real isotopy types of real anti-bicanonical curves
with one real nondegenerate double point on RF4.

First we list up all the candidates for the real isotopy types of real anti-bicanonical curves with
one real nondegenerate double point on RF4 (Theorem 2.24) using some well-known topological
interpretations ([10], [11]) of some arithmetic invariants of integral involutions of the K3 lattice.

Unfortunately, the realizability of each real isotopy type listed in Theorem 2.24 has not been
resolved in this paper. We only know that at least one of real isotopy types with nondegenerate
double points can be realized for each isometry class (see Remark 2.25).

In order to distinguish the real isotopy types, we should remove real 2-elementary K3 surfaces
which yield anti-bicanonical curves with degenerate double points on RF4 from the moduli space
(period domain) in the sense of [10]. We follow Itenberg’s argument ([4],[5],[6]) for the rigid
isotopic classification of real sextic curves on RP2 with one nondegenerate double point. Lemma
4.6 provides a sufficient condition for the double point to be non-degenerate.

Moreover, according to his papers [4] and [5], real curves of degree 6 on RP2 with one nondegen-
erate double point are obtained by “non-increasing simplest degenerations” of real nonsingular
curves of degree 6 on RP2. Hence, we next list up the candidates for the non-increasing simplest
degenerations of real nonsingular anti-bicanonical curves on RF4 (Theorem 3.4).

Then, we find an obvious interesting correspondence between the real isotopy types of curves
with one real nondegenerate double point on RF4 (Theorem 2.24) and the non-increasing simplest
degenerations of nonsingular curves on RF4 (Theorem 3.4). See Remark 3.5. We also get some
similar properties (Lemma 3.7) to the degenerations of real nonsingular curves of degree 6 on
RP2.

In the final section 4, we review and confirm the periods of marked real 2-elementary K3
surfaces ((X, τ, ϕ), α) of type (S, θ) satisfying α ◦ ϕ∗ ◦ α−1 = ψ for a fixed integral involution
ψ, and give some further problems which are inspired by the argument in [4] and [5].
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2. Real 2-elementary K3 surfaces of type (S, θ) ∼= ((3, 1, 1),−id)

2.1. Real 2-elementary K3 surfaces.

Definition 2.1 (Real 2-elementary K3 surface). A triple (X, τ, ϕ) is called a real K3 surface
with non-symplectic (holomorphic) involution (or real 2-elementary K3 surface) if
(1) (X, τ) is a K3 surface X with a non-symplectic holomorphic involution τ , i.e., “2-elementary
K3 surface” ([8]).
(2) ϕ is an anti-holomorphic involution on X.
(3) ϕ ◦ τ = τ ◦ ϕ

Note that any K3 surface with a non-symplectic holomorphic involution is algebraic.
For a real K3 surface with non-symplectic involution (X, τ, ϕ), we call ϕ̃ := τ ◦ ϕ = ϕ ◦ τ the

related (anti-holomorphic) involution of ϕ ([10]). The triple (X, τ, τ ◦ ϕ) is also a real K3
surface with non-symplectic involution.

For a 2-elementary K3 surface (X, τ), we denote by H2+(X,Z) the fixed part of

τ∗ : H2(X,Z)→ H2(X,Z).

Note that H2+(X,Z) ⊂ N(X), where N(X) is the Picard lattice of X.
We fix an even unimodular lattice LK3 of signature (3, 19). The isometry class of such lattices

is unique (the K3 lattice).
Let α : H2(X,Z)→ LK3 be an isometry (marking). If we temporary set S := α(H2+(X,Z)),

then S is a primitive (,i.e., LK3/S is free,) hyperbolic (i.e., S is of signature (1, rankS − 1))
2-elementary (i.e., S∗/S ∼= (Z/2Z)a for some nonnegative integer a) sublattice of LK3.

Now let S (⊂ LK3) be a primitive hyperbolic 2-elementary sublattice of the K3 lattice LK3.

Definition 2.2. We set r(S) := rankS. The non-negative integer a(S) is defined by the
equality

S∗/S ∼= (Z/2Z)a(S).

We define

δ(S) :=

{
0 if z · σ(z) ≡ 0 mod 2 (∀z ∈ LK3)
1 otherwise,

where we define σ : LK3 → LK3 to be the unique integral involution whose fixed part is S.

It is known that the triplet

(r(S), a(S), δ(S))

determines the isometry class of the lattice S ([8]).
If S and S′ are primitive hyperbolic 2-elementary sublattices of the K3 lattice LK3, and S

is isometric to S′; then there exists an automorphism f of LK3 such that f(S′) = S ([1], [7]).
Hence, if (X, τ) and (X ′, τ ′) are two 2-elementary K3 surfaces, α : H2(X,Z) → LK3 is an
isometry, and H2+(X,Z) is isometric to H2+(X ′,Z); then there exists an isometry (marking)
α′ : H2(X ′,Z) → LK3 such that α′(H2+(X ′,Z)) = α(H2+(X,Z)). Thus, only the isometry
class of H2+(X,Z) is essential for 2-elementary K3 surfaces (X, τ). Henceforth, we often fix
an isometry class, equivalently, the invariants (r(S), a(S), δ(S)) instead of fixing a particular
sublattice.
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We quote the following formulation from [10]. We additionally fix a half-cone V +(S) of the
cone V (S) := {x ∈ S ⊗ R | x2 > 0}. We also fix a fundamental chamber M ⊂ V +(S) for the
group W (−2)(S) generated by reflections in all elements with square (−2) in S. This is equivalent
to fixing a fundamental subdivision

∆(S) = ∆(S)+ ∪ −∆(S)+

of all elements with square −2 in S. M and ∆(S)+ define each other by the condition

M ·∆(S)+ ≥ 0.

Let (X, τ) be a 2-elementary K3 surface, and α : H2(X,Z) → LK3 be a marking such that
α(H2+(X,Z)) = S. We always assume that α−1R (V +(S)) contains a hyperplane section of X
and the set α−1(∆(S)+) contains only classes of effective curves of X.

Now let θ be an integral involution of S.

Definition 2.3 (the action of ϕ on H2+(X,Z)). A real 2-elementary K3 surface (X, τ, ϕ) is
called that of type (S, θ) if there exists an isometry (marking)

α : H2(X,Z) ∼= LK3

such that α(H2+(X,Z)) = S and the following diagram commutes:

H2+(X,Z)
α−−−−→ S

ϕ∗

y yθ
H2+(X,Z)

α−−−−→ S.

Definition 2.4 (marked real 2-elementary K3 surfaces). A pair ((X, τ, ϕ), α) of a real 2-
elementary K3 surface (X, τ, ϕ) of type (S, θ) and an isometry (marking) α : H2(X,Z) ∼= LK3

such that

• α(H2+(X,Z)) = S,

• α ◦ ϕ∗ = θ ◦ α on H2+(X,Z),

• α−1R (V +(S)) contains a hyperplane section of X and

• the set α−1(∆(S)+) contains only classes of effective curves of X

is called a marked real 2-elementary K3 surface of type (S, θ).

Note that we have θ(V +(S)) = −V +(S) and θ(∆(S)+) = −∆(S)+ for a marked real 2-
elementary K3 surface of type (S, θ).

Definition 2.5 (Integral involution ψ of LK3 of type (S, θ)). Let S be a hyperbolic 2-elementary
sublattice of LK3, θ : S → S be an integral involution of the lattice S, and ψ : LK3 → LK3 be
an integral involution of the lattice LK3 such that the following diagram commutes:

S ⊂ LK3

θ ↓ ↓ ψ
S ⊂ LK3.

We say such a pair (LK3, ψ) (or ψ) an integral involution of LK3 of type (S, θ).
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Let ((X, τ, ϕ), α) be a marked real 2-elementary K3 surface of type (S, θ). If we set

ψ := α ◦ ϕ∗ ◦ α−1 : LK3 → LK3,

then we have ψ(S) = S, and ψ(x) = θ(x) for every x ∈ S because α−1(x) ∈ H2+(X,Z). Hence,
(LK3, ψ) is an integral involution of LK3 of type (S, θ).

Definition 2.6 (the associated integral involution). We call the integral involution ψ of LK3 of
type (S, θ) the associated integral involution of LK3 with a marked real 2-elementary K3
surface ((X, τ, ϕ), α) of type (S, θ) if the following diagram commutes:

H2(X,Z)
α−−−−→ LK3

ϕ∗

y yψ
H2(X,Z)

α−−−−→ LK3.

Note that the fixed part LψK3 of ψ is hyperbolic for any associated integral involution of LK3.

Definition 2.7 ((DR)-nondegenerate, [10]). x ∈ N(X)⊗R is nef if x 6= 0 and x ·C ≥ 0 for any
effective curve on X. We say that a 2-elementary K3 surface (X, τ) of type S is (D)-degenerate
if there exists h ∈M such that h is not nef. This is equivalent to the existence of an exceptional
curve (i.e., irreducible and having negative self-intersection) with square −2 on the quotient
surface Y := X/τ . This is also equivalent to have an element δ ∈ N(X) with δ2 = −2 such that
δ = (δ1 + δ2)/2 where δ1 ∈ S, δ2 ∈ S⊥N(X) and δ21 = δ22 = −4.

A real 2-elementary K3 surface (X, τ, ϕ) of type (S, θ) is (DR)-degenerate if there exists a
real element h ∈ S− ∩M which is not nef, where we set S± := {x ∈ S | θ(x) = ±x}. This is
equivalent to have an element δ ∈ N(X) with δ2 = −2 such that δ = (δ1 + δ2)/2 where δ1 ∈ S,
δ2 ∈ S⊥N(X) and δ21 = δ22 = −4, and δ1 must be orthogonal to an element h ∈ S− ∩ int(M) with

h2 > 0. Here int(M) denote the interior part of M, i. e., the polyhedron M without its faces.

Let ∆(S,L)(−4) be the set of all elements δ1 in S such that δ21 = −4 and there exists δ2 ∈ S⊥L
such that (δ2)2 = −4 and δ = (δ1 + δ2)/2 ∈ L. Let W (−4)(S,L) ⊂ O(S) be the group generated
by reflections in all roots from ∆(S,L)(−4), and W (−4)(S,L)M be the stabilizer subgroup ofM in
W (−4)(S,L). Let G be the subgroup generated by reflections sδ1 in all elements δ1 ∈ ∆(S,L)(−4)

which are contained either in S+ or in S− and satisfy sδ1(M) =M. (Then G is a subgroup of
W (−4)(S,L)M. )

Definition 2.8 (Isometries with respect to the group G). Let (LK3, ψ1) and (LK3, ψ2) be two
integral involutions of LK3 of type (S, θ). An isometry with respect to the group G from
(LK3, ψ1) to (LK3, ψ2) means an isometry f : LK3 → LK3 such that f(S) = S, f |S ∈ G, and
the following diagram commutes:

LK3
f−−−−→ LK3yψ1 ψ2

y
LK3

f−−−−→ LK3.

In the above definition, remark that θ ◦ f |S = f |S ◦ θ on S, hence, f |S is at least an automor-
phism of (S, θ). However, we require the condition “f |S ∈ G”.

Definition 2.9. We say two integral involutions (LK3, ψ1) and (LK3, ψ2) of type (S, θ) are
isometric with respect to the group G if there exists an isometry with respect to the group
G from (LK3, ψ1) to (LK3, ψ2).
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By an automorphism of an integral involution (LK3, ψ) of type (S, θ) with respect to the
group G we mean an isometry with respect to the group G from (LK3, ψ) to itself. Namely, an
isometry f : LK3 → LK3 which satisfies that

ψ ◦ f = f ◦ ψ, f(S) = S and f |S ∈ G.

Definition 2.10 (analytically isomorphic with respect to G). Two marked real 2-elementary
K3 surfaces ((X, τ, ϕ), α) and ((X ′, τ ′, ϕ′), α′) of type (S, θ) are analytically isomorphic
with respect to the group G if there exists an analytic isomorphism f : X → X ′ such that
f ◦ τ = τ ′ ◦ f , f ◦ ϕ = ϕ′ ◦ f and α′ ◦ f∗ ◦ α−1|S ∈ G.

By considering their associated integral involutions, we get a natural map from the moduli
space of marked real 2-elementary K3 surfaces of type (S, θ) to the set of isometry classes with

respect to G of integral involutions of LK3 of type (S, θ) such that the fixed part LψK3 of ψ is
hyperbolic.

Theorem 2.11 ([10]). The natural map above gives a bijective correspondence between the
connected components of the moduli space of (DR)-nondegenerate marked real 2-elementary K3
surfaces of type (S, θ) and the set of isometry classes with respect to G of integral involutions of

LK3 of type (S, θ) such that the fixed part LψK3 of ψ is hyperbolic.

2.2. Elliptic fibrations of 2-elementary K3 surfaces of type S ∼= (3, 1, 1). We quote some
basic facts from [1]. Let (X, τ) be a 2-elementary K3 surface of type S with invariants

(r(S), a(S), δ(S)) = (3, 1, 1),

and A := Xτ be the fixed point set (curve) of τ . Then we have

A = A0 ∪A1 (disjoint union),

where A0 is a nonsingular rational curve (∼= P1) with A2
0 = −2 and A1 is a nonsingular curve of

genus 9. (X, τ) has a structure of an elliptic pencil |E + F | with its section A0 and the unique
reducible fiber E + F having the following properties below:

(i): E is an irreducible nonsingular rational curve with E2 = −2 and E ·A0 = 1.
(ii): E ·F = 2, F 2 = −2, F ·A0 = 0, and F is either an irreducible nonsingular rational

curve (type IIa), or the union of two irreducible nonsingular rational curves F ′ and F ′′

which are conjugate by τ and F ′ · F ′′ = 1 (type IIb) (that is, the reducible fiber E + F

corresponds to the extended root system Ã1 or Ã2). We have (F ′)2 = (F ′′)2 = −2. See
also §2.4 of [1].

(iii): The classes [A0], [E] and [F ] generate the lattice H2+(X,Z) (∼= S). Moreover,
A1 · E = 1, A1 · F = 2. The Gram matrix of the lattice H2+(X,Z) with respect to
the basis [E], [F ] and [A0] is as follows:

[E] [F ] [A0]
[E] −2
[F ] 2 −2
[A0] 1 0 −2

We next consider the quotient complex surface Y := X/τ and let π : X → Y be the quotient
map. Then, A, considered in Y , is contained in | − 2KY | (an anti-bicanonical curve on Y ).

We define the curves:

e := π(E) and f := π(F ).
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If F is the union of two nonsingular rational curves F ′ and F ′′ which are conjugate by τ and
F ′ · F ′′ = 1, then

f = π(F ) = π(F ′ ∪ F ′′) = π(F ′) = π(F ′′).

We use the same symbols A0 and A1 for their images in Y by π. Then, the Picard group
Pic(Y ) of Y is generated by the classes [e], [f ] and [A0]. The Gram matrix of Pic(Y ) with respect
to the basis [e], [f ] and [A0] is as follows:

[e] [f ] [A0]
[e] −1
[f ] 1 −1

[A0] 1 0 −4

For A1, we have

A1 · e = 1 and A1 · f = 2.

We have:
(1) F is a nonsingular rational curve if and only if A1 intersects f in two distinct points.
(2) F is a union of two nonsingular rational curves if and only if A1 touches f .

Remark 2.12 ([11]). For any real 2-elementary K3 surface (X, τ, ϕ) of type (S, θ) with S ∼= (3, 1, 1),
we have θ = −id and G = {id}, where id stands for the identity map on S.

2.3. Enumeration of the connected components of the moduli space. For any 2-elementary
K3 surface (X, τ) of type S ∼= (3, 1, 1), all exceptional curves on Y are exactly the curves e, f
and A0. Hence, (X, τ) is (D)-nondegenerate and any real 2-elementary K3 surface (X, τ, ϕ) of
type (S, θ) ∼= ((3, 1, 1),−id) is (DR)-nondegenerate (see Definition 2.7). By Theorem 2.11, we
have:

Theorem 2.13 ([11]CTheorem 1). The connected components of the moduli space (in the sense
of [10]) of marked real 2-elementary K3 surfaces ((X, τ, ϕ), α) of type (S, θ) ∼= ((3, 1, 1),−id)
are in bijective correspondence with the isometry classes of integral involutions of LK3 of type
(S, θ) ∼= ((3, 1, 1),−id) with respect to G = {id}.

The complete isometry invariants of integral involutions ψ of LK3 of type (S, θ) ∼= ((3, 1, 1),−id)
are the data

(2.1) (r(ψ), a(ψ), δψS , H(ψ)).

See [10], Subsection 2.3 (after the equation (2.20)) for the definition of the invariant δψS
and H(ψ). Remark that H(ψ) is a subgroup of the discriminant group S−/2S− = S/2S =
Z/2Z(α([F ])). Hence, H(ψ) = 0 or isomorphic to Z/2Z.

All realizable data (2.1) are enumerated in [11]. We have 12 data of “Type 0” (⇒ H(ψ) = 0),
12 data of “Type Ia” , 39 data of “Type Ib” with H(ψ) = 0, and 39 data of “Type Ib” with
H(ψ) ∼= Z/2Z. See also Table 1 for H(ψ) = 0 case and Table 2 for H(ψ) ∼= Z/2Z case, where
0 or 1 in each cell stands for the value of δψS .

Thus we have exactly 102 connected components of the moduli of real 2-elementary K3
surfaces of type (S, θ) ∼= ((3, 1, 1),−id). By [10], we find how invariants of an involution ψ and
those of its “related integral involution” σ◦ψ are calculated from each other. Here σ : LK3 → LK3

is defined to be the integral involution of LK3 whose fixed part is S. Identifying related pairs of
anti-holomorphic involutions on each K3 surface, we have exactly 51 connected components.
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9 1
8 1 0, 1
7 1 1 1
6 1 1 0, 1 1
5 1 1 1 1 1
4 1 0, 1 1 0, 1 1 0, 1
3 1 1 1 1 1 1 1
2 0, 1 1 0 1 0, 1 1 0 1
1 1 1 1 1 1
0 0 0 0

a(ψ) / r(ψ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Table 1. All the data (r(ψ), a(ψ), δψS) for H(ψ) = 0.

10 1
9 0, 1 1
8 1 1 1
7 1 0, 1 1 1
6 1 1 1 1 1
5 0, 1 1 0, 1 1 0, 1 1
4 1 1 1 1 1 1 1
3 1 0 1 0, 1 1 0 1 0, 1
2 1 1 1 1 1
1 0 0 0

a(ψ) / r(ψ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Table 2. All the data (r(ψ), a(ψ), δψS) for H(ψ) ∼= Z/2Z.

2.4. The regions A+ and A− in the real part Y (R) of Y . Let (X, τ, ϕ) be a real 2-elementary
K3 surface of type (S, θ) ∼= ((3, 1, 1),−id). We use the notation in Subsection 2.2. Let Xϕ(R)
denote the real part of (X,ϕ), i.e., the fixed point set of ϕ, and let Y (R) be the real part of the
quotient surface Y with the real structure ϕmod τ .

The real part

RA = RA0 ∪ RA1

of the branch curve A divides Y (R) into two regions 1 A+ and A−.
Either A+ or A− is doubly covered by the real part Xϕ(R), and the other by the real part

Xϕ̃(R), where we set ϕ̃ := τ ◦ ϕ. Since Xϕ(R) is always non-empty ([11], p.27), Y (R), A+, and
A− are also non-empty. Regions A± could have several connected components.

We distinguish two regions A+ and A− as follows.

Definition 2.14 (The regions A+ and A−). For a real 2-elementary K3 surface (X, τ, ϕ) of type
(S, θ) ∼= ((3, 1, 1),−id), we define the regions A+ and A− (⊂ Y (R)) as follows:{

A+ := π(Xϕ(R)) if H(ψ) ∼= Z/2Z,
A− := π(Xϕ(R)) if H(ψ) = 0.

1These two regions are called “positive curves” in [10].
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Note that if H(ψ) ∼= Z/2Z, then H(σ ◦ ψ) = 0.
An important topological characterization of the invariant H(ψ) is as follows.

Lemma 2.15 ([10]). Suppose that the curve F is irreducible. Then we have H(ψ) ∼= Z/2Z if
and only if [Fϕ(R)] = 0 in H1(Xϕ(R);Z/2Z), where we set Fϕ(R) := Xϕ(R) ∩ F .

2.5. Real anti-bicanonical curves with one real double point on RF4. We now contract
the exceptional curve f = π(F ) to a point. We get a blow up bl : Y → F4, where F4 is the 4-th
Hirzebruch surface.

We set

s := bl(A0), A′1 := bl(A1), c := bl(e),

and we have

bl(A) = bl(A0) + bl(A1) = s+A′1 ∈ | − 2KF4 |,
i.e., bl(A) is an anti-bicanonical curve, where s is the exceptional section of F4 with s2 = −4
and c is a fiber of the fibration F4 → s with c2 = 0. Since s · A′1 = 0, A′1 does not intersect
the section s.

We have −2KF4 ∼ 12c+ 4s. It follows that A′1 ∈ |12c+ 3s|.

Let

Rbl(A) = Rs ∪ RA′1
be the real part of the curve bl(A), where Rs and RA′1 are the real parts of s and A′1 respectively.

We set

P0 := bl(f) (∈ Rc).
Since A1 · f = 2 in Y , A′1 has one real double point P0. If A1 intersects with f at two

distinct points in Y , then they are real points or non-real conjugate points. In the former case P0

is a real node, and in the latter case it is a real isolated point. Anyway it is a nondegenerate
double point. If A1 touches to f in Y , then P0 is a real cusp. (a degenerate double point)

Thus, there are three topological types of the curve RA′1 near the double point P0.
Node case: P0 is a real node of RA′1.
Cusp case: P0 is a real cusp of RA′1. (degenerate double point)
Isolated point case: P0 is a real isolated point of RA′1.

See Figure 1 below.
We have A′1 · s = 0 and A′1 · c = 3 (A′1 is a trigonal curve). Since f · A0 = 0 in Y , the

section s does not meet the double point P0. We may assume that e does not pass through any
intersection point of A1 and f in Y . (See Figure 1.) Since A1 · e = 1 in Y , the intersection point
of A1 with e is real and does not meet f . Via the map bl, this point goes to a real intersection
point of A′1 with c with multiplicity 1. Thus we set

P1 := bl(A1 ∩ e). (the intersection point)

Since A′1 · c = 3, A′1 intersects with c at P0 with multiplicity 2 and at P1 with multiplicity 1.

Since A′1 ∩ s = ∅, any non-contractible (possibly real singular) components of RA′1 are
“parallel” to Rs. See Figure2, 3 and 4. But two types of non-contractible singular components
in Figure2 are real isotopic, and three types of non-contractible components in Figure4 are real
isotopic.

Definition 2.16. We call a connected component of RA′1 an oval if it has no real singular
points and contractible in RF4 (a torus), namely, realizes 0 in H1(RF4;Z).
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A1

Y(R)

1

1

1

bl

s

c

A'1
node

A0

f

e

RF4

A1

Y(R)

1

1

1

bl

s

c

cusp

A'1

A0

f

e

RF4

A1

Y(R)

1

1

1

bl

s

c

A'1

isolated point

f

A0
e

RF4

Figure 1. The real double point P0 of the curve A′1

s

c

s

c

Figure 2. A non-contractible component with a node of type Node (1)

s

c

Figure 3. A non-contractible component with a node of type Node (*)

Remark 2.17. Since A′1 · c = 3, A′1 is a trigonal curve on F4. See [3], [12] for related results.
We see that the interior of each oval of RA′1 does not contain any other ovals. Moreover, the
ovals are canonically ordered according to their projections to the base Rs.

We now get the following possibilities.
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s

c

s

c

s

c

Figure 4. A non-contractible component with a real cusp or without singular points

Node case:
Node (1) case: We consider the case when both the node P0 and the intersection point

P1 are contained in the same connected singular component of RA′1. Then RA′1 meets Rc at
only P0 and P1, and the singular component is not contractible. See Figure 2.

Note that RA′1 might have some ovals. Since A′1 · c = 3, the interior of any oval of RA1 does
not contain other ovals. The interior of the node also does not contain ovals.

The non-contractible singular component containing P0 and P1 and the section
Rs divide RF4 (a torus) into three parts, which are the interior of the node and two non-
contractible regions.

Definition 2.18 (The regionsR1 andR2 in Node (1) case). LetR1 denote the non-contractible
region which is connected with the interior of the node in the blow up of RF4, and
let R2 denote the other non-contractible region. We define the integers α and β as follows:

(2.2)
α := #{ovals contained in R1},
β := #{ovals contained in R2}.

See the left figure of Figure 5.

β

. . .

. . .

α

R

R1

2

Node (1)

RS

RS

RC

. . .

α

β

. . .

Node (2)

R2

R1

RS

RS

RC

Figure 5. The regions R1 and R2 in Node (1) or Node (2) case

Node (2) case and Node (*) case: When the node P0 and the intersection point P1

respectively are contained in different connected components of RA′1, the component containing
P1 is nonsingular and not contractible like the rightmost figure of Figure 4 above. The component
containing P0 can be either contractible (the left figure of Figure 6) or non-contractible
(Figure 3).
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s

c

s

c

Figure 6. Contractible components with a real node or a real cusp

Node (2) case: When the component containing the node P0 is contractible (the left figure
of Figure 6), RA′1 might have some ovals. The component containing P1 and the section
Rs divide RF4 into two regions.

Definition 2.19 (The regions R1 and R2 in Node (2) case). Let R1 denote the region which
does not contain the contractible component containing the node P0, and let R2 denote
the other region. (Since A′1 · c = 3, the interior of the contractible component containing P0 and
the interior of any oval of RA1 cannot contain any other ovals.)

We define the integers α and β by (2.2). See the right figure of Figure 5.

Node (*) case: If the component containing the node P0 is non-contractible (see Figure
3), then RA′1 has no ovals (see Figure 7).

Node (*)

RS

RS

RC

Figure 7. Node (*)

Cusp case:
Cusp (1): When both the cusp P0 and the point P1 are contained in the same connected

component of RA′1, RA′1 meets Rc at only P0 and P1, and the component containing P0 and
P1 is not contractible (the leftmost figure of Figure 4). RA′1 might have some ovals. The non-
contractible component containing P0 and P1 and the section Rs divide RF4 into two
regions (the left figure of Figure 8). One of these regions goes to a non-orientable region
via the blow up of RF4.

Definition 2.20 (The regions R1 and R2 in Cusp (1) case). Let R2 denote the region which
goes to a non-orientable region via the blow up of RF4. and let R1 denote the other region.
(Since A′1 · c = 3, the interior of any oval of RA1 does not contain any other ovals.)

We define the integers α and β by (2.2). See the left figure of Figure 8.
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RS

. . . 

. . . 

α

β

RS

RC

R1

R2

RS

. . .

α

β

. . .

RS

RC

R2

R1

Figure 8. The regions R1 and R2 in Cusp (1) or Cusp (2) case

Cusp (2) When the cusp P0 and P1 respectively are contained in different connected
components of RA′1, the component containing P1 is not contractible (the rightmost figure
of Figure 4). The component containing the cusp P0 should be contractible (the right figure
of Figure 6). (If not, then this component would be like the middle figure of Figure 4 and
the number of the intersection points of RA′1 with Rc would be even. This contradicts with
A′1 · c = 3.) RA′1 might have some ovals. The component containing P1 and the section
Rs divide RF4 into two regions.

Definition 2.21 (The regions R1 and R2 in Cusp (2) case). Let R1 denote the region which
does not contain the contractible component which contains the cusp P0, and let R2 denote the
other region. (the right figure of Figure 8) (Since A′1 · c = 3, the interior of any oval of RA1 does
not contain any ovals.)

We define the integers α and β by (2.2). See the right figure of Figure 8 above.

Isolated point case:
In this case the connected component containing P1 is nonsingular and non-contractible like

the right figure of Figure 4. RA′1 might have some ovals. The component containing P1 and
the section Rs divide RF4 into two regions.

Definition 2.22 (The regions R1 and R2 in Isolated point case). Let R1 denote the region which
does not contain the isolated point, and let R2 denote the other region. (Since A′1 · c = 3,
the interior of any oval of RA1 does not contain any other ovals.)

We define the integers α and β by (2.2). See Figure 9.

β 

. . .

. . .

α

R

R1

2

isolated point

RS

RS

RC

Figure 9. The regions R1 and R2 in Isolated point case
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From the above argument, we have:

Proposition 2.23. The real isotopy type of the singular connected component, which has one
double point, of the curve RA′1 on RF4 is one of the following 6 types:

• Node (1), Node (2), Node (*),
• Cusp (1), Cusp (2), or
• Isolated point.

See Table 3. �

I Node (1)

β

. . .

. . .

α

R

R1

2

Node (1)

RS

RS

RC

Cusp (1) RS

. . . 

. . . 

α

β

RS

RC

R1

R2

Isolated point

β 

. . .

. . .

α

R

R1

2

isolated point

RS

RS

RC

II Node (2)

. . .

α

β

. . .

Node (2)

R2

R1

RS

RS

RC

Cusp (2) RS

. . .

α

β

. . .

RS

RC

R2

R1

III Node (*)

Node (*)

RS

RS

RC

Table 3. Real isotopy types of the singular component of the curve RA′1.

2.6. Topology of the real parts of K3 surfaces X viewed via the blow up Y → F4. We
determine the topology of the real parts Xϕ(R) and Xϕ̃(R) of a real 2-elementary K3 surface
(X, τ, ϕ) of type (S, θ) ∼= ((3, 1, 1),−id), and the real part Y (R) of the quotient surface Y with
the real structure ϕmod τ . Recall Proposition 2.23.

I. Node (1), Cusp (1) and Isolated point cases.
In these cases, by the definitions of the regions A± and R1, R2, we see that:

• A+ is homeomorphic to the disjoint union of (an annulus with α holes) and (β disks),
and

• A− is homeomorphic to the disjoint union of (((an annulus \D2)∪Möbius band) with
β holes) and (α disks).
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For example, see Figure 10 for Node (1) case.

s

β

. . .

. . .

α

. . .

α A+

bl

annulus with

f

α holes

1R

β

. . .

s

c

β

. . .

. . .

α

c

β

. . .

. . .

α

e

f

attach

bl

((annulus - D  )     Mobius) with     holesU
2 ..

Mobius
..

A-

β

e

2R

Figure 10. The regions A+ and A− in Node (1) case

Suppose that the invariant H(ψ) = 0 for the involution ϕ.

If F is irreducible, then we have [Xϕ(R)∩F ] 6= 0 and π(Xϕ(R)) = A−. On the other hand,
for ϕ̃, we have [Xϕ̃(R) ∩ F ] = 0 and π(Xϕ̃(R)) = A+.

We can say that

α = #{ovals whose interiors are contained in bl(A−)}, and
β = #{ovals whose interiors are contained in bl(A+)}.

Thus we have

Xϕ(R) ∼ Σ2+β ∪ αS2.

Moreover, we have (r(ψ), a(ψ), δψS) 6= (10, 10, 0), (10, 8, 0),

r(ψ) = 9 + α− β, a(ψ) = 9− α− β.

On the other hand, we have

Xϕ̃(R) ∼ Σ1+α ∪ βS2.

Hence, we have H(σ ◦ ψ) ∼= Z/2Z and

r(σ ◦ ψ) = 10− α+ β, a(σ ◦ ψ) = 10− α− β.

We omit the cusp and isolated point cases.
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II. Node (2) and Cusp (2) cases.
In these cases, by the definitions of the regions A± and R1, R2, we see that

• A+ is homeomorphic to the disjoint union of (an annulus with α holes) and ((β + 1)
disks), and

• A− is homeomorphic to the disjoint union of (((an annulus \D2)∪Möbius band) with
(β + 1) holes) and (α disks).

For example, See Figure 11 for Node (2) case.

s

. . .

α

β

. . .

bl

. . .

α

β

. . .

A+

annulus with α holes

f

1R
s

c

. . .

α

β

. . .

c

bl

Mobius
..

. . .

β

. . .

α
attach

e

f

A-
e

2R

Figure 11. The regions A+ and A− in Node (2) case

Suppose that A− = π(Xϕ(R)), namely, the invariant H(ψ) = 0 for the involution ϕ. Then
we have

Xϕ(R) ∼ Σ2+(β+1) ∪ αS2.

Moreover, we have (r(ψ), a(ψ), δψS) 6= (10, 10, 0), (10, 8, 0),

r(ψ) = 8 + α− β, a(ψ) = 8− α− β.

On the other hand, we have A+ = π(Xϕ̃(R)) and

Xϕ̃(R) ∼ Σ1+α ∪ (β + 1)S2,

Moreover, we have H(σ ◦ ψ) ∼= Z/2Z and

r(σ ◦ ψ) = 11− α+ β, a(σ ◦ ψ) = 9− α− β.

We omit the cusp cases.



ANTI-BICANONICAL CURVES ON THE 4-TH REAL HIRZEBRUCH SURFACE 17

III. Node (*) case.
In this case, we see that

• A+ is homeomorphic to D2 \ 2D2 and
• A− is the disjoint union of an Möbius band and an annulus.

See Figure 12.

s

c

c

bl

A+

f

s

c

bl

Mobius

annulus

A-
f

..

Figure 12. The regions A+ and A− in Node (*) case

Suppose that, for ϕ, A− = π(Xϕ(R)). Then we see that

Xϕ(R) ∼ T 2 ∪ T 2,

and

A+ = π(Xϕ̃(R)), Xϕ̃(R) ∼ Σ2.

Moreover, we have

H(ψ) = 0 and (r(ψ), a(ψ), δψS) = (10, 8, 0).

On the other hand, we have

H(σ ◦ ψ) ∼= Z/2Z

and

(r(σ ◦ ψ), a(σ ◦ ψ), δσ◦ψS) = (9, 9, 0).
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2.7. Real isotopy types of real anti-bicanonical curves Rbl(A) with one real double
point on RA′1 on RF4. In Node and Cusp cases, the number of connected components of RA′1
equals to that of connected components of RA1. Hence, we have

1 ≤ #{Connected components of RA′1} ≤ 10.

In Node (1) and Cusp (1) cases, we have

0 ≤ α+ β ≤ 9.

If for ϕ, A− = π(Xϕ(R)), namely, the invariant H(ψ) = 0, then α+ β = 9− a(ψ).

In Node (2) and Cusp (2) cases, we have

0 ≤ α+ β ≤ 8.

If for ϕ, A− = π(Xϕ(R)), namely, the invariant H(ψ) = 0, then α+ β = 8− a(ψ).

In Isolated point case, the number of connected components of RA′1 equals to that of connected
components of RA1 plus 1.

Hence, we have
2 ≤ #{Connected components of RA′1} ≤ 11.

Hence, we have
0 ≤ α+ β ≤ 9.

If for ϕ, A− = π(Xϕ(R)), namely, the invariant H(ψ) = 0, then α+ β = 8− a(ψ).

We already have all the isometry classes. Recall Table 1 and Table 2 in Subsection 2.3.

Theorem 2.24. We have the following.

• For each isometry class with H(ψ) = 0, the real isotopy type of a real anti-bicanonical
curve Rbl(A) = Rs ∪ RA′1 on RF4 with one real nondegenerate double point on
RA′1 on RF4 is one of the data listed up in Table 4.
• For each isometry class with H(ψ) ∼= Z/2Z, the real isotopy type of a real anti-bicanonical

curve Rbl(A) = Rs ∪ RA′1 on RF4 with one real nondegenerate double point on
RA′1 on RF4 is one of the data listed up in Table 5.

Note that the isometry class No.k and the isometry class No.k′ are related integral involutions
for each k = 1, . . . , 50. The isometry class (10, 8, 0, H(ψ) = 0) and (9, 9, 0, H(ψ) ∼= Z/2Z) are
also related integral involutions. �



ANTI-BICANONICAL CURVES ON THE 4-TH REAL HIRZEBRUCH SURFACE 19

Isometry class Node (1) Isolated point Node (2) Node (*)

of type ((3, 1, 1),−id)

No. r(ψ) a(ψ) δϕS g k α β α β α β

1 1 1 1 10 0 0 8 0 8 0 7

2 2 0 0 10 1 1 8 1 8 1 7

3 2 2 0 9 0 0 7 0 7 0 6

4 2 2 1 9 0 0 7 0 7 0 6

5 3 1 1 9 1 1 7 1 7 1 6

6 3 3 1 8 0 0 6 0 6 0 5

7 4 2 1 8 1 1 6 1 6 1 5

8 4 4 1 7 0 0 5 0 5 0 4

9 5 3 1 7 1 1 5 1 5 1 4

10 5 5 1 6 0 0 4 0 4 0 3

11 6 2 0 7 2 2 5 2 5 2 4

12 6 4 0 6 1 1 4 1 4 1 3

13 6 4 1 6 1 1 4 1 4 1 3

14 6 6 1 5 0 0 3 0 3 0 2

15 7 3 1 6 2 2 4 2 4 2 3

16 7 5 1 5 1 1 3 1 3 1 2

17 7 7 1 4 0 0 2 0 2 0 1

18 8 2 1 6 3 3 4 3 4 3 3

19 8 4 1 5 2 2 3 2 3 2 2

20 8 6 1 4 1 1 2 1 2 1 1

21 8 8 1 3 0 0 1 0 1 0 0

22 9 1 1 6 4 4 4 4 4 4 3

23 9 3 1 5 3 3 3 3 3 3 2

24 9 5 1 4 2 2 2 2 2 2 1

25 9 7 1 3 1 1 1 1 1 1 0

26 9 9 1 2 0 0 0 0 0

27 10 0 0 6 5 5 4 5 4 5 3

28 10 2 0 5 4 4 3 4 3 4 2

29 10 2 1 5 4 4 3 4 3 4 2

30 10 4 0 4 3 3 2 3 2 3 1

31 10 4 1 4 3 3 2 3 2 3 1

32 10 6 0 3 2 2 1 2 1 2 0

33 10 6 1 3 2 2 1 2 1 2 0

10 8 0 2 1 T 2 ∪ T 2

34 10 8 1 2 1 1 0 1 0

35 11 1 1 5 5 5 3 5 3 5 2

36 11 3 1 4 4 4 2 4 2 4 1

37 11 5 1 3 3 3 1 3 1 3 0

38 11 7 1 2 2 2 0 2 0

39 12 2 1 4 5 5 2 5 2 5 1

40 12 4 1 3 4 4 1 4 1 4 0

41 12 6 1 2 3 3 0 3 0

42 13 3 1 3 5 5 1 5 1 5 0

43 13 5 1 2 4 4 0 4 0

44 14 2 0 3 6 6 1 6 1 6 0

45 14 4 0 2 5 5 0 5 0

46 14 4 1 2 5 5 0 5 0

47 15 3 1 2 6 6 0 6 0

48 16 2 1 2 7 7 0 7 0

49 17 1 1 2 8 8 0 8 0

50 18 0 0 2 9 9 0 9 0

Table 4. Candidates for real isotopy types of real anti-bicanonical curves
Rbl(A) with one real nondegenerate double point on RA′1 on RF4 for each
isometry class of type (S, θ) ∼= ((3, 1, 1),−id) with H(ψ) = 0
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Isometry class Node (1) Isolated point Node (2) Node (*)

of type ((3, 1, 1),−id)

No. r(ψ) a(ψ) δϕS g k α β α β α β

1’ 18 2 1 1 8 0 8 0 8 0 7

2’ 17 1 0 2 8 1 8 1 8 1 7

3’ 17 3 0 1 7 0 7 0 7 0 6

4’ 17 3 1 1 7 0 7 0 7 0 6

5’ 16 2 1 2 7 1 7 1 7 1 6

6’ 16 4 1 1 6 0 6 0 6 0 5

7’ 15 3 1 2 6 1 6 1 6 1 5

8’ 15 5 1 1 5 0 5 0 5 0 4

9’ 14 4 1 2 5 1 5 1 5 1 4

10’ 14 6 1 1 4 0 4 0 4 0 3

11’ 13 3 0 3 5 2 5 2 5 2 4

12’ 13 5 0 2 4 1 4 1 4 1 3

13’ 13 5 1 2 4 1 4 1 4 1 3

14’ 13 7 1 1 3 0 3 0 3 0 2

15’ 12 4 1 3 4 2 4 2 4 2 3

16’ 12 6 1 2 3 1 3 1 3 1 2

17’ 12 8 1 1 2 0 2 0 2 0 1

18’ 11 3 1 4 4 3 4 3 4 3 3

19’ 11 5 1 3 3 2 3 2 3 2 2

20’ 11 7 1 2 2 1 2 1 2 1 1

21’ 11 9 1 1 1 0 1 0 1 0 0

22’ 10 2 1 5 4 4 4 4 4 4 3

23’ 10 4 1 4 3 3 3 3 3 3 2

24’ 10 6 1 3 2 2 2 2 2 2 1

25’ 10 8 1 2 1 1 1 1 1 1 0

26’ 10 10 1 1 0 0 0 0 0

27’ 9 1 0 6 4 5 4 5 4 5 3

28’ 9 3 0 5 3 4 3 4 3 4 2

29’ 9 3 1 5 3 4 3 4 3 4 2

30’ 9 5 0 4 2 3 2 3 2 3 1

31’ 9 5 1 4 2 3 2 3 2 3 1

32’ 9 7 0 3 1 2 1 2 1 2 0

33’ 9 7 1 3 1 2 1 2 1 2 0

9 9 0 2 0 1 0 1 0 Σ2

34’ 9 9 1 2 0 1 0 1 0

35’ 8 2 1 6 3 5 3 5 3 5 2

36’ 8 4 1 5 2 4 2 4 2 4 1

37’ 8 6 1 4 1 3 1 3 1 3 0

38’ 8 8 1 3 0 2 0 2 0

39’ 7 3 1 6 2 5 2 5 2 5 1

40’ 7 5 1 5 1 4 1 4 1 4 0

41’ 7 7 1 4 0 3 0 3 0

42’ 6 4 1 6 1 5 1 5 1 5 0

43’ 6 6 1 5 0 4 0 4 0

44’ 5 3 0 7 1 6 1 6 1 6 0

45’ 5 5 0 6 0 5 0 5 0

46’ 5 5 1 6 0 5 0 5 0

47’ 4 4 1 7 0 6 0 6 0

48’ 3 3 1 8 0 7 0 7 0

49’ 2 2 1 9 0 8 0 8 0

50’ 1 1 0 10 0 9 0 9 0

Table 5. Candidates for real isotopy types of real anti-bicanonical curves
Rbl(A) with one real nondegenerate double point on RA′1 on RF4 for each
isometry class of type (S, θ) ∼= ((3, 1, 1),−id) with H(ψ) ∼= Z/2Z
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Remark 2.25. By Theorem 2.24, we find that each isometry class of integral involutions of
the K3 lattice LK3 of type (S, θ) ∼= ((3, 1, 1),−id) may contain several real isotopy types (for
example, Node (1), Isolated point, and Node (2)) of real anti-bicanonical curves Rbl(A) with one
real nondegenerate double point on RA′1 on RF4. Hence, the realizability of all the real isotopy
types listed in Table 4,5 has not been solved yet. However, we can take a real 2-elementary K3
surface for which F is irreducible in the same connected component of the moduli (see [11], notes
after Theorem 2). Hence, for each isometry class, at least one of real isotopy types is realizable.
Especially, Node (*) with the isometry class (10, 8, 0, H(ψ) = 0) is realizable. It is conjectured
that Node (1) with (α, β) = (1, 0) and Isolated point with (α, β) = (1, 0) do not exist for the
isometry class (9, 9, 0, H(ψ) ∼= Z/2Z). See also Remark 3.5 below.

Remark 2.26 ([11]). On the other hand, if we contract the exceptional curve e = π(E) in Y ,
then we get a map onto the 3-th Hirzebruch surface F3: bl1 : Y → F3. Then s := bl1(A0) is the
exceptional section of F3 with s2 = −3 and c := bl1(f) is a fiber. We have

bl1(A) = s+ bl1(A1) ∈ | − 2KF3
|.

A1 := bl1(A1) is a real nonsingular curve of genus 9. The real isotopic classification of RA1 on
RF3 was already done in [11], Theorem 1.

In order to distinguish the real isotopy types of real anti-bicanonical curves with one real
double point on RF4, we expect that Itenberg’s argument of the rigid isotopic classification of
real curves of degree 6 on RP2 with one nondegenerate double point are helpful. See [4],[5]
and [6], and also the last section 4 of this paper. This classification corresponds to that of
real nonsingular curves A in | − 2KF1 | on the first real Hirzebruch surface RF1 when we blow
up P2 at the nondegenerate double point to F1. The double coverings X of F1 ramified along
the nonsingular curves A are real 2-elementary K3 surfaces of type (S, θ) ∼= (〈2〉 ⊕ 〈−2〉,−id).
Moreover, the classification of real curves of degree 6 on RP2 with one nondegenerate double point
is related to that of “non-increasing simplest degenerations” (conjunctions and contractions) of
real nonsingular curves of degree 6 on RP2. See [4] and [5].

Thus we next pay attention to the degenerations of real nonsingular anti-bicanonical curves
on RF4.

3. Degenerations of nonsingular real anti-bicanonical curves on RF4

3.1. Review of nonsingular real anti-bicanonical curves on RF4. The contents of this
subsection are quoted from the last section of [10].

Let U be the even unimodular lattice of signature (1, 1) (the hyperbolic plane). Consider
real 2-elementary K3 surfaces (X, τ, ϕ) of type (S, θ) ∼= (U,−id). All these real 2-elementary K3
surfaces are (D)-nondegenerate.

Let A be the fixed point set of τ . Then A is a real nonsingular curve. We have Y := X/τ = F4.
Let π : X → F4 be the quotient map. We use the same symbol A for its image in F4 by π.
Then A ∈ | − 2KF4

|. Let s be the exceptional section with s2 = −4 of F4, and c the fiber of the
fibration f : F4 → s, where c2 = 0. We have −2KF4 ∼ 12c + 4s. The nonsingular curve A has
two irreducible components s and A1;

A = s ∪A1 (disjoint union).

Conversely, any nonsingular curve A1 in |12c + 3s| gives a nonsingular curve A = s + A1 in
| − 2KF4

|.
We set C := π∗(c) and E := π∗(s)/2 in H2(X,Z). Then C2 = 0, E2 = −2 and C · E = 1. C

and E generate the fixed part of τ∗ : H2(X,Z)→ H2(X,Z). Hence, S ∼= ZC + ZE ∼= U.
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An isometry class of an integral involution (LK3, ψ) of type (S, θ) ∼= (U,−id) is determined
(see [10]) by the data

(3.1) (r(ψ), a(ψ), δψ = δψS).

The complete list of the data (3.1) is given in Section 7 (Figure 30) of [10].

There are 14 isometry classes with δψ = 0 and 49 isometry classes with δψ = 1. Thus we have
63 classes.

If we identify related integral involutions, there are 10 isometry classes with δψ = 0 and 27
isometry classes with δψ = 1. Thus we have 37 classes.

If (r(ψ), a(ψ), δψ) = (10, 10, 0), then RF4 = ∅. Hence, RA = ∅.

If (r(ψ), a(ψ), δψ) 6= (10, 10, 0), then RF4 is not empty and homeomorphic to a 2-torus. We
have RA ⊃ Rs 6= ∅. The real curve RA1 is contained in the open cylinder RF4 \ Rs. The region
A− = π(Xϕ(R)) with the invariants (3.1) has the real isotopy type given in Figure 13.

When (r(ψ), a(ψ), δψ) 6= (10, 10, 0) and 6= (10, 8, 0), we set

g := (22− r(ψ)− a(ψ))/2 and k := (r(ψ)− a(ψ))/2.
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Figure 13. A region A− with (r(ψ), a(ψ), δψ) 6= (10, 8, 0), (10, 10, 0) and a
region A− with (r(ψ), a(ψ), δψ) = (10, 8, 0)

Since all real 2-elementary K3 surfaces of type (S, θ) ∼= (U,−id) are (D)-nondegenerate, by
Theorem 2.11, we have:

Theorem 3.1 ([10], Theorem 27). A connected component of the moduli of the regions

A− := π(Xϕ(R)),

curves A ∈ | − 2KF4 |, up to the action of the automorphisms group of F4 over R is determined
by the data (3.1), equivalently, the real isotopy types of A− and the invariants δψ = δψS. All the
data are given in Section 7 (Figure 30) of [10]. See also Figure 13.
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3.2. Degenerations of nonsingular real anti-bicanonical curves on RF4. We next in-
troduce the notions of “non-increasing simplest degenerations” (conjunctions, contractions) of
nonsingular real anti-bicanonical curves on RF4 as analogies of Section 3 (pp.284–285) of [4].

As stated in the previous subsection, a nonsingular curve in | − 2KF4 | has two irreducible
components s and A1, where A1 is a nonsingular curve in |12c+ 3s|.

Let C0 be a real curve in |12c+ 3s| on F4 with one nondegenerate double point, and

Ct (−ε < t < ε)

be a smoothing (, where every Ct (t 6= 0) is a real nonsingular curve in |12c+ 3s| on F4, ) such
that

]{ovals of a nonsingular curve Ct−1
} ≥ ]{ovals of a nonsingular curve Ct1 }

for any t−1 < 0 and any t1 > 0.
We call such a family Ct (t−1 ≤ t ≤ 0) a non-increasing simplest degeneration of Ct−1

to C0.
We do not know whether non-increasing simplest degenerations of Ct−1

to C0 are realizable
for any pair Ct−1

and C0.

We define 8 kinds of non-increasing simplest degenerations.

Definition 3.2 (Conjunctions 1), 2), 1’), 2’) and Contractions 3), 3’)). First we fix an isometry
class of integral involutions of type (S, θ) ∼= (U,−id) with (r(ψ), a(ψ), δψ) 6= (10, 8, 0) and
6= (10, 10, 0).

Take a corresponding real 2-elementary K3 surfaces (X, τ, ϕ) of type (S, θ) ∼= (U,−id). Let
π : X → X/τ = F4 be the quotient map. Then we get a real nonsingular curve A = s + A1 in
| − 2KF4 | where A1 is a real nonsingular curve in |12c+ 3s| on RF4. Suppose that the fixed point
set Xϕ(R) is homeomorphic to Σg ∪ kS2. Then the region π(Xϕ(R)) (⊂ RF4) is the disjoint
union of an annulus with (g − 1) holes and k disks. The boundary of the annulus with (g − 1)
holes consists of (see Figure 13) the non-contractible component of RA1, Rs, and the (g − 1)
empty ovals.

• Conjunction 1) The conjunction of the non-contractible component and one of the
(g − 1) empty ovals. (Recall that the annulus with (g − 1) holes is covered by the fixed
point set of the anti-holomorphic involution ϕ.)

• Conjunction 1’) The conjunction of the non-contractible component and one of the
k empty ovals. (Remark that the region (annulus) surrounded by the non-contractible
component, Rs and the k empty ovals is covered by the fixed point set of the related
involution ϕ̃ of the anti-holomorphic involution ϕ.)

• Conjunction 2) The conjunction of two of the (g − 1) empty ovals.
• Conjunction 2’) The conjunction of two of the k empty ovals.
• Contraction 3) The contraction of one of the (g − 1) empty ovals.
• Contraction 3’) The contraction of one of the k empty ovals.

Definition 3.3 (Conjunctions 4), 4’)). Consider the isometry class of integral involutions
of type (S, θ) ∼= (U,−id) with (r(ψ), a(ψ), δψ) = (9, 9, 1) or (11, 9, 1). Remark that these two
involutions are related.

If (r(ψ), a(ψ), δψ) = (9, 9, 1), then we have g = 2, k = 0. Then the region π(Xϕ(R)) (⊂ RF4)
is an annulus with one hole. The boundary of the annulus consists of the non-contractible
component of RA1, Rs, and the empty oval.

• Conjunction 4) The empty oval conjuncts with itself and becomes the union of two
real lines (Node (*)) on RF4.
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If (r(ψ), a(ψ), δψ) = (11, 9, 1), then we have g = 1, k = 1. Then the region π(Xϕ(R)) (⊂ RF4)
is the disjoint union of an annulus and one disk. The boundary of the annulus consists of the
non-contractible component of RA1 and Rs.

• Conjunction 4’) The empty oval conjuncts with itself and becomes the union of two
real lines (Node (*)) on RF4.

See Figure 14. Compare with Figure 13.
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Figure 14. Non-increasing simplest degenerations of nonsingular real anti-
bicanonical curves on RF4.
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isometry class conjunction 1) conjunction 2) contraction 3)
of type (U,−id)

(nonsingular curve) → Node (1) → Node (2) → Isolated point
r(ψ) a(ψ) δψ g k g − 1 α, β α, β α, β No.

1 1 1 10 0 9 0, 8 0, 7 0, 8 1
2 0 0 10 1 9 1, 8 1, 7 1, 8 2
2 2 0 9 0 8 0, 7 0, 6 0, 7 3
2 2 1 9 0 8 0, 7 0, 6 0, 7 4
3 1 1 9 1 8 1, 7 1, 6 1, 7 5
3 3 1 8 0 7 0, 6 0, 5 0, 6 6
4 2 1 8 1 7 1, 6 1, 5 1, 6 7
4 4 1 7 0 6 0, 5 0, 4 0, 5 8
5 3 1 7 1 6 1, 5 1, 4 1, 5 9
5 5 1 6 0 5 0, 4 0, 3 0, 4 10
6 2 0 7 2 6 2, 5 2, 4 2, 5 11
6 4 0 6 1 5 1, 4 1, 3 1, 4 12
6 4 1 6 1 5 1, 4 1, 3 1, 4 13
6 6 1 5 0 4 0, 3 0, 2 0, 3 14
7 3 1 6 2 5 2, 4 2, 3 2, 4 15
7 5 1 5 1 4 1, 3 1, 2 1, 3 16
7 7 1 4 0 3 0, 2 0, 1 0, 2 17
8 2 1 6 3 5 3, 4 3, 3 3, 4 18
8 4 1 5 2 4 2, 3 2, 2 2, 3 19
8 6 1 4 1 3 1, 2 1, 1 1, 2 20
8 8 1 3 0 2 0, 1 0, 0 0, 1 21
9 1 1 6 4 5 4, 4 4, 3 4, 4 22
9 3 1 5 3 4 3, 3 3, 2 3, 3 23
9 5 1 4 2 3 2, 2 2, 1 2, 2 24
9 7 1 3 1 2 1, 1 1, 0 1, 1 25
9 9 1 2 0 1 0, 0 impossible 0, 0 26

10 0 0 6 5 5 5, 4 5, 3 5, 4 27
10 2 0 5 4 4 4, 3 4, 2 4, 3 28
10 2 1 5 4 4 4, 3 4, 2 4, 3 29
10 4 0 4 3 3 3, 2 3, 1 3, 2 30
10 4 1 4 3 3 3, 2 3, 1 3, 2 31
10 6 0 3 2 2 2, 1 2, 0 2, 1 32
10 6 1 3 2 2 2, 1 2, 0 2, 1 33
10 8 1 2 1 1 1, 0 impossible 1, 0 34
11 1 1 5 5 4 5, 3 5, 2 5, 3 35
11 3 1 4 4 3 4, 2 4, 1 4, 2 36
11 5 1 3 3 2 3, 1 3, 0 3, 1 37
11 7 1 2 2 1 2, 0 impossible 2, 0 38
12 2 1 4 5 3 5, 2 5, 1 5, 2 39
12 4 1 3 4 2 4, 1 4, 0 4, 1 40
12 6 1 2 3 1 3, 0 impossible 3, 0 41
13 3 1 3 5 2 5, 1 5, 0 5, 1 42
13 5 1 2 4 1 4, 0 impossible 4, 0 43
14 2 0 3 6 2 6, 1 6, 0 6, 1 44
14 4 0 2 5 1 5, 0 impossible 5, 0 45
14 4 1 2 5 1 5, 0 impossible 5, 0 46
15 3 1 2 6 1 6, 0 impossible 6, 0 47
16 2 1 2 7 1 7, 0 impossible 7, 0 48
17 1 1 2 8 1 8, 0 impossible 8, 0 49
18 0 0 2 9 1 9, 0 impossible 9, 0 50

Table 6. Conjunction 1), Conjunction 2) and Contraction 3)

We list up candidates for possible non-increasing simplest degenerations for each of 63 isometry
classes of integral involutions of type (S, θ) ∼= (U,−id) with the invariant (r(ψ), a(ψ), δψ).

Theorem 3.4. We can enumerate up the following candidates:

• For Conjunction 1) Conjunction 2) Contraction 3), see Table 6.
• For Conjunction 1’) Conjunction 2’) Contraction 3’), see Table 7.
• For Conjunction 4) and 4’), see Table 8. �
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isometry class conjunction 1’) conjunction 2’) contraction 3’)
of type (U,−id)

(nonsingular curve) → Node (1) → Node (2) → Isolated point
r(ψ) a(ψ) δψ g k g − 1 α, β α, β α, β No.

19 1 1 1 9 0 0, 8 0, 7 0, 8 1’
18 0 0 2 9 1 1, 8 1, 7 1, 8 2’
18 2 0 1 8 0 0, 7 0, 6 0, 7 3’
18 2 1 1 8 0 0, 7 0, 6 0, 7 4’
17 1 1 2 8 1 1, 7 1, 6 1, 7 5’
17 3 1 1 7 0 0, 6 0, 5 0, 6 6’
16 2 1 2 7 1 1, 6 1, 5 1, 6 7’
16 4 1 1 6 0 0, 5 0, 4 0, 5 8’
15 3 1 2 6 1 1, 5 1, 4 1, 5 9’
15 5 1 1 5 0 0, 4 0, 3 0, 4 10’
14 2 0 3 6 2 2, 5 2, 4 2, 5 11’
14 4 0 2 5 1 1, 4 1, 3 1, 4 12’
14 4 1 2 5 1 1, 4 1, 3 1, 4 13’
14 6 1 1 4 0 0, 3 0, 2 0, 3 14’
13 3 1 3 5 2 2, 4 2, 3 2, 4 15’
13 5 1 2 4 1 1, 3 1, 2 1, 2 16’
13 7 1 1 3 0 0, 2 0, 1 0, 2 17’
12 2 1 4 5 3 3, 4 3, 3 3, 4 18’
12 4 1 3 4 2 2, 3 2, 2 2, 3 19’
12 6 1 2 3 1 1, 2 1, 1 1, 2 20’
12 8 1 1 2 0 0, 1 0, 0 0, 1 21’
11 1 1 5 5 4 4, 4 4, 3 4, 4 22’
11 3 1 4 4 3 3, 3 3, 2 3, 3 23’
11 5 1 3 3 2 2, 2 2, 1 2, 2 24’
11 7 1 2 2 1 1, 1 1, 0 1, 1 25’
11 9 1 1 1 0 0, 0 impossible 0, 0 26’
10 0 0 6 5 5 5, 4 5, 3 5, 4 27’
10 2 0 5 4 4 4, 3 4, 2 4, 3 28’
10 2 1 5 4 4 4, 3 4, 2 4, 3 29’
10 4 0 4 3 3 3, 2 3, 1 3, 2 30’
10 4 1 4 3 3 3, 2 3, 1 3, 2 31’
10 6 0 3 2 2 2, 1 2, 0 2, 1 32’
10 6 1 3 2 2 2, 1 2, 0 2, 1 33’
10 8 1 2 1 1 1, 0 impossible 1, 0 34’
9 1 1 6 4 5 5, 3 5, 2 5, 3 35’
9 3 1 5 3 4 4, 2 4, 1 4, 2 36’
9 5 1 4 2 3 3, 1 3, 0 3, 1 37’
9 7 1 3 1 2 2, 0 impossible 2, 0 38’
8 2 1 6 3 5 5, 2 5, 1 5, 2 39’
8 4 1 5 2 4 4, 1 4, 0 4, 1 40’
8 6 1 4 1 3 3, 0 impossible 3, 0 41’
7 3 1 6 2 5 5, 1 5, 0 5, 1 42’
7 5 1 5 1 4 4, 0 impossible 4, 0 43’
6 2 0 7 2 6 6, 1 6, 0 6, 1 44’
6 4 0 6 1 5 5, 0 impossible 5, 0 45’
6 4 1 6 1 5 5, 0 impossible 5, 0 46’
5 3 1 7 1 6 6, 0 impossible 6, 0 47’
4 2 1 8 1 7 7, 0 impossible 7, 0 48’
3 1 1 9 1 8 8, 0 impossible 8, 0 49’
2 0 0 10 1 9 9, 0 impossible 9, 0 50’

Table 7. Conjunction 1’), Conjunction 2’) and Contraction 3’)

isometry class
of type (U,−id) conjunction 4)

(nonsingular curve)
r(ψ) a(ψ) δψ g k g − 1

9 9 1 2 0 1 Node (*)

isometry class
of type (U,−id) conjunction 4’)

(nonsingular curve)
r(ψ) a(ψ) δψ g k g − 1

11 9 1 1 1 0 Node (*)

Table 8. Conjunctions 4) and 4’)
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Remark 3.5. We observe an obvious interesting correspondence between the data of Theorem
2.24 (Tables 4 — 5) and those of Theorem 3.4 (Tables 6 — 8).

If we prove the existence of all the non-increasing simplest degenerations listed in Tables
6, 7, and 8, then we can say that every real isotopy type with an anti-holomorphic involution
in Theorem 2.24 except Node (1) with (α, β) = (1, 0) and Isolated point with (α, β) = (1, 0)
in the isometry class (9, 9, 0, H(ψ) ∼= Z/2Z) can be obtain by certain non-increasing simplest
degeneration of a real nonsingular curve in |12c+ 3s| on F4. Recall Remark 2.25.

To state the following lemma 3.7, we distinguish the two anti-holomorphic involutions ϕ± on
(X, τ) of type (S, θ) ∼= ((3, 1, 1),−id) as follows.

Definition 3.6 (Definition of ϕ±). We define the anti-holomorphic involutions ϕ± on a 2-
elementary K3 surface (X, τ) of type (S, θ) ∼= ((3, 1, 1),−id) such that

π(Xϕ±(R)) = A±

respectively. Here recall Definition 2.14 of the two regions A±.

Thus, if H(ψ) = 0 for a real 2-elementary K3 surface (X, τ, ϕ) of type (S, θ) ∼= ((3, 1, 1),−id),
then we set A− = π(Xϕ(R)), and

ϕ− := ϕ and ϕ+ := ϕ̃ = τ ◦ ϕ.

Comparing the data in Theorem 2.24 and Theorem 3.4, we have:

Lemma 3.7. Fix an isometry class of integral involutions of LK3 of type (S, θ) ∼= (U,−id) with
(r(ψ), a(ψ), δψ) 6= (10, 8, 0), (10, 10, 0), and take a corresponding real 2-elementary K3 surface
of type (S, θ) ∼= (U,−id) and a real nonsingular curve A = s + A1 in | − 2KF4

| where A1 is a
real nonsingular curve in |12c+ 3s| on RF4.

Then we have the following:

• Take real curves A′1 with one nondegenerate double point on F4 from the degenera-
tions of types 1)—3) of the real nonsingular curve A1. Choose real 2-elementary K3
surfaces (X, τ, ϕ−) of type (S, θ) ∼= ((3, 1, 1),−id). (See Definition 3.6 and also Remark
4.7 below.)

Then, for all such marked real 2-elementary K3 surfaces ((X, τ, ϕ−), α) obtained
from A′1, their associated integral involutions α◦ (ϕ−)∗ ◦α−1 of LK3 are isometric with
respect to G = {id}.

• Take real curves A′1 with one nondegenerate double point on F4 from the degenera-
tions of types 1’)—3’) of the real nonsingular curve A1. Choose real 2-elementary K3
surfaces (X, τ, ϕ−) of type (S, θ) ∼= ((3, 1, 1),−id). (See Definition 3.6 and also Remark
4.7 below.)

Then, for all such marked real 2-elementary K3 surfaces ((X, τ, ϕ−), α) obtained
from A′1, their associated integral involutions α◦ (ϕ−)∗ ◦α−1 of LK3 are isometric with
respect to G = {id}. �

Lemma 3.7 is an analogy of Proposition 3.3 of [4].

4. Appendix: Period domains and further problems

We use the terminology defined in Subsection 2.1, and review the formulations of period
domains of marked real 2-elementary K3 surfaces in [10], [4].
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Lemma 4.1. Let ((X, τ, ϕ), α) and ((X ′, τ ′, ϕ′), α′) be two marked real 2-elementary K3 sur-
faces of type (S, θ). Let (LK3, ψ) and (LK3, ψ

′) be their associated integral involutions respec-
tively. Suppose that f is an isometry with respect to the group G from (LK3, ψ) to (LK3, ψ

′).
Then ((X ′, τ ′, ϕ′), f−1 ◦ α′) is also a marked real 2-elementary K3 surface of type (S, θ), and
its associated integral involution is also (LK3, ψ).

Especially, if f is an automorphism of (LK3, ψ) with respect to the group G, then ((X, τ, ϕ), f◦
α) is also a marked real 2-elementary K3 surface of type (S, θ), and its associated integral invo-
lution is also (LK3, ψ). (Recall Definition 2.9.)

Proof. We have ψ′◦f = f ◦ψ, f(S) = S, and f |S ∈ G. We have α′◦ϕ′∗◦α′
−1◦f = f ◦α◦ϕ∗◦α−1,

and hence, f−1 ◦ α′ ◦ ϕ′∗ ◦ α′
−1 ◦ f = α ◦ ϕ∗ ◦ α−1. We have

(f−1 ◦ α′) ◦ ϕ′∗ ◦ (f−1 ◦ α′)−1 = α ◦ ϕ∗ ◦ α−1 = ψ.

Here (f−1 ◦ α′) : H2(X ′,Z)→ LK3 is an isometry with

(f−1 ◦ α′)(H2+(X ′,Z)) = f−1(S) = S

and (f−1◦α′)◦ϕ′∗ = f−1◦(α′◦ϕ′∗) = f−1◦(ψ′◦α′) = ψ◦f−1◦α′. Since f−1◦α′(H2+(X ′,Z)) = S
and ψ|S = θ, we have

(f−1 ◦ α′) ◦ ϕ′∗ = θ ◦ f−1 ◦ α′on H2+(X ′,Z).

Hence,

(f−1 ◦ α′) : H2(X ′,Z)→ LK3

is another marking of (X ′, τ ′, ϕ′). If we take this new marking of (X ′, τ ′, ϕ′), then its associated
integral involution is ψ, which is the same as ((X, τ, ϕ), α). Moreover, since f |S ∈ G, we have

f(M) = M. Hence, if we set β := (f−1 ◦ α′), then β−1R (V +(S)) contains a hyperplane section
of X ′ and the set β−1(∆(S)+) contains only classes of effective curves of X ′. �

Let us fix an integral involution (LK3, ψ) of type (S, θ) through this subsection.

We set

Ωψ := {v (6= 0) ∈ LK3 ⊗ C | v · v = 0, v · v > 0, v · S = 0, ψC(v) = v}/R×.

Let ((X, τ, ϕ), α) be a marked real 2-elementary K3 surface of type (S, θ) satisfying

α ◦ ϕ∗ ◦ α−1 = ψ,

namely, ψ is the associated integral involution with ((X, τ, ϕ, ) α). We denote by

H (⊂ H2(X,C))

the Poincare dual of the complex 1-dimensional space H2,0(X). Then we have the complex
1-dimensional subspace αC(H) in LK3 ⊗ C. Then we have

αC(H) ∈ Ωψ.

Definition 4.2 (Periods). We say αC(H) the period of a marked real 2-elementary K3 surface
((X, τ, ϕ), α) of type (S, θ) satisfying α ◦ ϕ∗ ◦ α−1 = ψ.

By Lemma 4.1, all marked real 2-elementary K3 surfaces whose associated integral involutions
are isometric to (LK3, ψ) with respect to G can be found in Ωψ if we change their markings
appropriately.

A point in Ωψ is not necessarily the period of some marked real 2-elementary K3 surface of
type (S, θ) satisfying α ◦ ϕ∗ ◦ α−1 = ψ.
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Definition 4.3 (Equivalence). We say a point [v] (∈ Ωψ) is equivalent to a point [v′] (∈ Ωψ)
if [v′] = fC([v]) for an automorphism f of (LK3, ψ) of type (S, θ) with respect to the group G.

Lemma 4.4. If a point [v] (∈ Ωψ) is equivalent to [v′] (∈ Ωψ) and [v] is the period of some
marked real 2-elementary K3 surface ((X, τ, ϕ), α) of type (S, θ) satisfying α ◦ ϕ∗ ◦ α−1 = ψ,
then [v′] is also the period of a marked real 2-elementary K3 surface ((X, τ, ϕ), α′) of type (S, θ)
satisfying (α′) ◦ ϕ∗ ◦ (α′)−1 = ψ where α′ is some another marking of (X, τ, ϕ).

Proof. Since [v] is equivalent to [v′], we have [v′] = fC([v]) for an automorphism f of (LK3, ψ)
of type (S, θ) with respect to the group G. By Lemma 4.1, ((X, τ, ϕ), f ◦ α) is also a marked
real 2-elementary K3 surface of type (S, θ) satisfying (f ◦α) ◦ϕ∗ ◦ (f ◦α)−1 = ψ. Moreover, the
period of ((X, τ, ϕ), f ◦ α) is

(f ◦ α)C(H) = fC(αC(H)) = fC([v]) = [v′]

whereH (⊂ H2(X,C)) is the Poincare dual ofH2,0(X). It is sufficient that we set α′ = f◦α). �

Remark 4.5 ([10]). By the global Torelli theorem, if two periods are equivalent, then corre-
sponding marked real 2-elementary K3 surfaces are analytic isomorphic (see Definition 2.10).
The converse is also true.

The domain Ωψ has two connected components which are interchanged by −ψ. We see −ψ is
an automorphism of (LK3, ψ) with respect to the group G. Hence, by Lemma 4.4 and Remark
4.5, it is sufficient that we investigate the quotient space Ωψ/− ψ. We set

L± := {x ∈ LK3 | ψ(x) = ±x}.

Note that the lattices L± depend on the integral involution ψ.

For [v] ∈ Ωψ (v ∈ LK3 ⊗ C), we have the decomposition v = v+ + v−, where v± ∈ L± ⊗ R.

We restrict ourselves the case when S ⊂ L−, namely, θ = −id, and set

L−,S := L− ∩ S⊥.

L−,S also depends on the integral involution ψ.
Since v− ∈ L−,S ⊗ R and v2+ = v2− > 0, we see that L+, L−,S is a hyperbolic lattice.

Let L+, L−,S be the hyperbolic spaces obtained from L+ ⊗R, L−,S ⊗R respectively. Then
we have

Ωψ/− ψ = L+ × L−,S (a direct product).

We now fix a primitive hyperbolic 2-elementary sublattice S with S ∼= (3, 1, 1) of the K3
lattice LK3 and set θ := −id. Remark that G = {id} for this case (Remark 2.12).

We use the terminology and facts stated in Subsection 2.2. For a real 2-elementary K3 surface
(X, τ, ϕ) of type (S, θ) ∼= ((3, 1, 1),−id), the fixed point curve A is a disjoint union of A0 and A1.
X has an elliptic fibration with the exceptional section A0. Its unique reducible fiber is E + F .
There are two kinds of the curve F , which is irreducible or not. The classes [A0], [E] and [F ]
generate H2+(X,Z). We have an orthogonal decomposition

Z([A0], [E] + [F ])⊕ Z([F ])

of H2+(X,Z). The subgroups Z([A0], [E] + [F ]), Z([F ]) are isometric to the hyperbolic plane
and the lattice 〈−2〉 respectively.
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We fix an integral involution (LK3, ψ) of type (S, θ) ∼= ((3, 1, 1),−id). Moreover, we fix a
decomposition S = U⊕〈−2〉, where U is a sublattice of S isometric to the hyperbolic plane. Let
F be the generator of 〈−2〉 with M · F ≥ 0.

We consider marked real 2-elementary K3 surfaces ((X, τ, ϕ), α) of type (S, θ) ∼= ((3, 1, 1),−id)
(see Definition 2.4) such that

α(Z([A0], [E] + [F ])) = U, α([F ]) = F ,
and

α ◦ ϕ∗ ◦ α−1 = ψ.

Any real 2-elementary K3 surface (X, τ, ϕ) of type (S, θ) ∼= ((3, 1, 1),−id) has such a marking α.
We want to know a criterion for the double point of a real anti-bicanonical curve Rbl(A)

with one real double point on RA′1 on RF4 to be nondegenerate. At present we can prove the
following lemma.

Lemma 4.6. For [ω] ∈ Ωψ/−ψ, [ω] is the period of a marked real 2-elementary K3 surface of type
(S, θ) ∼= ((3, 1, 1),−id) (see Definition 2.4) such that α(Z([A0], [E]+[F ])) = U, α([F ]) = F , and
α◦ϕ∗◦α−1 = ψ obtained from a real anti-bicanonical curve Rbl(A) with one real nondegenerate
double point on RA′1 on RF4 if there are no v ( 6= ±F) in LK3 satisfying that v ·ω = 0, v ·U = 0,
and v2 = −2.

Proof. For a real anti-bicanonical curve with one real degenerate double point on RF4, the
corresponding marked real 2-elementary K3 surface (X, τ, ϕ, α) has a unique reducible fiber
E + F where F 2 = −2, F is the union of two nonsingular rational curves F ′ and F ′′. Here F ′

and F ′′ are conjugate by τ and F ′ · F ′′ = 1. Hence, (F ′)2 = (F ′′)2 = −2. (see Subsection 2.2)
Both [F ′] and [F ′′] are orthogonal to [A0] and [E] + [F ]. We set v := α[F ′] or α[F ′′]. Since
U = α(Z([A0], [E] + [F ])), we have v ( 6= ±F), v · ω = 0, v ·U = 0, and v2 = −2 for the period
[ω] of (X, τ, ϕ, α). �

Problem 1 (cf. [4], the top of p.281). Is the converse of Lemma 4.6 also true?

If the converse of Lemma 4.6 is true, then we can get the precise image (⊂ L+×L−,S) of the
period map on the set of all marked real 2-elementary K3 surfaces of type (S, θ) ∼= ((3, 1, 1),−id)
such that α(Z([A0], [E] + [F ])) = U, α([F ]) = F , and α ◦ ϕ∗ ◦ α−1 = ψ obtained from real
anti-bicanonical curves Rbl(A) with one real nondegenerate double point on RA′1 on RF4.

Let v be an element of L+ with square −2. The reflection on L+ with respect to the real
hyperplane v⊥ is well-defined and it sends a point in Ωψ/− ψ to its equivalent point. Also, the
reflection on L−,S with respect to the real hyperplane v⊥ where v is an element of L−,S with
square −2 is well-defined and it sends a point in Ωψ/− ψ to its equivalent point. Let

Ω+ (respectively, Ω−,S)

be the open fundamental domains with respect to the groups generated by the reflections with
respect to the real hyperplanes v⊥ satisfying v2 = −2 and v ∈ L+ (respectively, L−,S) and we
consider the direct product Ω+ × Ω−,S .

If the converse of Lemma 4.6 is true, then the periods of marked real 2-elementary K3 surfaces
(X, τ, ϕ, α) of type ((3, 1, 1), −id) obtained from some real anti-bicanonical curves with one real
nondegenerate double point on RF4 and satisfying α◦ϕ∗◦α−1 = ψ are contained in Ω+×Ω−,S
up to equivalence. Moreover, we should remove more ω = ω+ +ω− orthogonal to some v ∈ LK3

such that v (6= ±F), v · U = 0, v2 = −2, v 6∈ L+ and v 6∈ L−,S . Hence, as the argument before
Theorem 2.1 of Itenberg’s paper [4], we should remove some (−6)-orthogonal real hyperplanes
(extra “walls”) from Ω−,S or Ω+. This seems to be the reason why the connected components
of the moduli space in the sense of [10] (equivalently, the isometry classes of integral involutions
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of the K3 lattice) cannot distinguish the topological types (node or isolated point) of the real
double points (Remark 2.25).

Problem 2 (cf. [4], Theorem 2.1). Formulate some period domain, say it were ΩRF4
∗ , whose

connected components (up to equivalence) are in bijective correspondence with the connected
components of the moduli space (up to the action of the automorphism group of F4 over R) of
real anti-bicanonical curves with one real nondegenerate double point on RF4 which yield marked
real 2-elementary K3 surfaces ((X, τ, ϕ−), α) satisfying α ◦ (ϕ−)∗ ◦ α−1 = ψ.

Remark 4.7. For (LK3, ψ), either L+ or L−,S does not contain any element v such that

v ≡ F (mod 2LK3).

For the anti-holomorphic involution “ϕ−” (recall Definition 3.6), L−,S contains an element v
such that v ≡ F (mod 2LK3). This phenomenon is similar to the argument in [4].

We are also interested in the correspondences of the Coxeter graphs (see [4], [5]) obtained
from isometry classes of integral involutions of the K3 lattice LK3 of type (S, θ) ∼= ((3, 1, 1),−id)
and the non-increasing simplest degenerations of nonsingular curves. Problems concerning this
topic are as follows.

We fix an integral involution (LK3, ψ) of type (S, θ) ∼= ((3, 1, 1),−id). Recall

L± := {x ∈ LK3 | ψ(x) = ±x},

U, and L−,U := L− ∩ U⊥. L−,U is also hyperbolic. Let L−,U be the hyperbolic space obtained
from L−,U ⊗ R. The group generated by the reflections with respect to real hyperplanes v⊥

such that v ∈ L−,U with v2 = −2 acts on the hyperbolic space L−,U. Let Ω̃− be one of its

fundamental domains which has a face orthogonal to F . Let C be the Coxeter graph of Ω̃−.

Definition 4.8. • Let C ′ be the graph which is obtained by removing all thick or dotted
edges from C.

• Consider the group of symmetries of C ′ obtained from some automorphism of (LK3, ψ,U).
Let C ′′ be the quotient graph of C ′ by the action of the group.

• Let e be the vertex of C corresponding to F and let e′ be the class (in C ′′) containing e.
• Let K be the connected component of C ′′ containing e′.

Problem 3 (cf. [4], Proposition 3.1). Does the number (up to equivalence) of connected com-
ponents of ΩRF4

∗ coincide with that of vertices of the graph K ?

Degenerations and the graph P . We fix an isometry class of integral involutions of type
(S, θ) ∼= (U,−id) with (r(ψ), a(ψ), δψ) 6= (10, 8, 0), (10, 10, 0). Then we get a real 2-elementary
K3 surface (X, τ, ϕ) of type (S, θ) ∼= (U,−id) and a real nonsingular curve A = s + A1 in
| − 2KF4

| where A1 is a real nonsingular curve in |12c+ 3s| on RF4.
We define the graphs P as follows (See Definition 3.2).

Definition 4.9. • The vertices of P are all the rigid isotopy classes of real curves A′1
in |12c+3s| with one nondegenerate double point on F4 obtained from the degenerations
of types 1)—3) of the real nonsingular curve A1 with ϕ.

• Two vertices of P are connected by an edge if one rigid isotopy class is obtained from
the conjunction of the ovals E1 and the non-contractible component of A1 (Conjunction
1)), and the other rigid isotopy class is obtained from the contraction of the oval E1
(Contraction 3)).
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• Two vertices of P are connected by an edge if one rigid isotopy class is obtained from
the conjunction of the ovals E1 and E2 of A1 (Conjunction 2)), and the other rigid isotopy
class is obtained from the contraction of the oval E1 (Contraction 3)).

Problem 4 (cf. [4], Proposition 3.4). Fix a real nonsingular curve A = s + A1 in | − 2KF4
|

where A1 is a real nonsingular curve in |12c+ 3s| on RF4 and ϕ as above.
Let us get an arbitrary real curve A′1 in |12c+ 3s| with one nondegenerate double point on

F4 obtained from one of the degenerations of types 1)—3) of A1 with ϕ, and construct the graph
K (see Lemma 3.7 and Definition 4.8) from A′1 and ϕ−. Then, is the graph K isomorphic to the
graph P ?
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